Motivational Example

Size: px
Start display at page:

Download "Motivational Example"

Transcription

1 Motivational Example Data: Observational longitudinal study of obesity from birth to adulthood. Overall Goal: Build age-, gender-, height-specific growth charts (under 3 year) to diagnose growth abnomalities. Specific Aim: Estimate the reference range for age-, gender-, height-specific weight. A simple version: Estimate the reference range for age-, gender-specific BMI. Statistical Problem: Estimate covariate specific quantiles in a reference group.

2 New method: Semiparametric Models Allow the shape depend on X and do not specify specific distribution for Y. Model µ(x) and σ(x) parametricly to gain efficiency. General model Y i = µ(x i ; θ) + σ(x i ; θ)ε(x i ), µ(x i ; θ) is location parameter, σ(x i ; θ) is scale parametre, i.e. (Var(Y i X i )) and ε(x i ) is from baseline distribution with mean zero, unit varaince. Denote baseline distribution function by F 0 (z, X) = P(ε(X) z X), we have Y α (X; θ, F 0 ) = µ(x i ; θ) + σ(x i ; θ)z α (X), Z α (X) is the αth quantile of ε(x), i.e. F 0 (Z α (X), X) = α.

3 Model details We can use splines to model µ(x) and σ(x). Let θ = {β 1,, β p, γ 1,, γ q }. µ(x) = log{σ(x)} = p β k R k (X) k=1 q γ k S k (X) k=1 R(X) = {R 1 (X),, R p (X)} and S(X) = {S 1 (X),, S q (X)} are pre-specified regression spline basis functions.

4 Quasi-likelihood and GEE 2 Consider general moment restricted models as below: E[f (Y, X, θ) X] = 0. All RAL estimator for θ must be solution from E[A(X; θ)f (Y, X, θ)] = 0. The most efficient selection will be A(X; θ) = E[ f (Y, X, θ) X]Var[f (Y, X, θ) X] 1. θ

5 Quasi-likelihood and GEE 2 A special case, location and scale model, θ = (β, γ): f 1 (Y, X, θ) = Y µ(x; β) f 2 (Y, X, θ) = (Y µ(x; β)) 2 σ 2 (X; γ). We have E[ f 1(Y,X,θ) γ X] = E[ f 2(Y,X,θ) X] = 0, so estimating β functions should be µ(x; β) Var(Y X) 1 [Y µ(x; β)] β σ 2 (X; γ) Var[(Y µ(x; β)) 2 X] 1 [(Y µ(x; β)) 2 σ 2 (X; γ)] γ

6 Quasi-likelihood and GEE 2 Using independent working correlation and use normal distribution as working model for Y X, we obtain quasi-likelihood score equation. Var[(Y µ(x; β)) 2 X] = 2Var(Y X) 2 0 = i 0 = i µ(x i ; β) Y i µ(x i ; β) β σ 2 (X i ; γ) σ 2 (X i ; γ) γ (Y i µ(x i ; β)) 2 σ 2 (X i ; γ) 2σ 4 (X i ; γ)

7 Quasi-likelihood and GEE 2 For our model specification, we have µ(x i ; β) = R(X i ) T β σ 2 (X i ; β) = 2S(X i ) T σ 2 (X i ; β) β 0 = i 0 = i R(X i ) T Y i µ(x i ; β) σ 2 (X i ; γ) S(X i ) T (Y i µ(x i ; β)) 2 σ 2 (X i ; γ) σ 2 (X i ; γ)

8 Estimate Baseline Function Obtain consistent estimates of µ(x) and σ(x) as above Obtain the estimated residual ê i (X i ) = Y i µ(x i ; ˆθ) σ(x i ; ˆθ), then estimate the baseline function F 0 (z, X) from ê i (X i ).

9 Estimate Baseline Function Speical case: F 0 does not depend on X. ˆF 0 (z, X) = n 1 n I(ê i z). i=1 Step function continuous function. ˆF 0 (z, X) = n 1 n K λ2 (z, ê i ), i=1 where K λ2 (z, ê i ) = K {(z ê i )/λ 2 } and K ( ) is any continuous distribution function. lim K {(z ê i)/λ 2 } = I(ê i < z) + K (0)I(ê i = z). λ 2 0 ˆF 0 (z, X) is monotonicly increasing in z.

10 Estimate Baseline Function Speical case: F 0 does not depend on X. ˆF 0 (z, X) = n i=1 w λ 1 (X, X i )I(ê i z) n i=1 w, λ 1 (X, X i ) where w λ1 (X, X i ) = W ((X X i )/λ 1 ) and W ( ) can be any kernel function satisfy Continuous version: W (x) 0 W (x)dx = 1 σ 2 W = x 2 W (x)dx < ˆF 0 (z, X; λ 1, λ 2 ) = n i=1 w λ 1 (X, X i )K λ2 (z, ê i ) n i=1 w, λ 1 (X, X i )

11 Bandwith and Kernel Function We will use following kernels (for simplicity, not most efficient): w λ1 (X, X i ) = φ((x X i )/λ 1 ) K λ2 (z, ê i ) = Φ((z ê i )/λ 2 ) For λ 1 and λ 2, we can use either fixed value or allow they depend on X.

12 Comparing to kernel estimator from Y i A nonparametric way will be use ˆF(z, X) = n i=1 w λ 1 (X, X i )I(Y i z) n i=1 w, λ 1 (X, X i ) For certain z, X and λ 1, assuming we have a uniform distribution for X, the bias will be W (u/λ1 )[F(z, X + u) F(z, X)]du W (u/λ1 )du W (u/λ1 )[Ḟ(z, X)u F(z, X)u 2 ]du W (u/λ1 )du = 1 4 F(z, X)λ 2 1 σ2 W So whether semiparametric method gain depend on comparison of F(z, X) and F 0 (z, X) or F(z, X) 2 df X and F0 (z, X) 2 df X.

13 Optimal band width For certain z, X and λ 1, the variance is approximate (nλ 1 ) 1 F (z, X) W (u) 2 du. The mean square error (MSE) will be 1 4 F(z, X) 2 λ 4 1 σ4 W + (nλ 1) 1 F(z, X) W (u) 2 du λ 1 = ( n 1 F(z, X) ) 1/5 W (u) 2 du F(z, X) 2 σw 4 The estimator is n 2/5 consistent for both ˆF and ˆF 0. Semiparametric method and nonparametric one has same convergence rate!

14 Multiple covariates Estimating equation part: Use two set of spline basis R(X 1 ), R(X 2 ) and S(X 1 ), S(X 2 ). Use their tensor product to generate the new basis R(X) = R(X 1 ) R(X 2 ), S(X) = [S(X 1 ), S(X 2 )]. Baseline estimator: Not approximate indicator function by continuous one. For kernel W (X), can use any multivariate kernel, for example the tensor product of two univariate kernel W 1 (X 1 ) W 2 (X 2 ). In application, they use W (X) = W 1 (X 1 ).

15 Example BMI Age BMI Age Figure: Fitted mean (top) and standard deviation (bottom) function

16 Example Residual Age Figure: Residual quantile regression for fitted 1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th and 99th quantiles

17 Example Normal Q-Q Plot Sample Quantiles Theoretical Quantiles Figure: Residual Q-Q plot

18 Example Baseline not depend on X BMI Age Baseline depends on X BMI Age Figure: Fitted 1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th and 99th quantiles with (top) or without (bottom) allow baseline depend on X

19 Simulation: Methods Comparing We will compare following methods in univariate covariate setting: 1. Bin and smooth quantile 2. Nonparametric quantile regression 3. Locally weighted method (empirical one) 4. Parametric method (LMS model) 5. Semiparametric method assuming same baseline (empirical one) 6. Semiparametric method allowing baseline depend on X (empirical one) For methods using bandwidth, we will choose several bandwidths (0.05, 0.1, 0.2).

20 Simulation: Methods Comparing For simplicity, we use a linear term for all parametric parts. True model is generated with semiparametric model with n = 5000, where µ(x) = X log(σ(x)) = 3 + 2X, X follow standard uniform distribution and the e(x) from following distributions 1. Standard normal N(0, 1). 2. Standardized log normal distribution. 3. Mixture normal N( 0.5, 1), N(0.5, 1).

21 Simulation: Methods Comparing We are interested in estimating following things from M = 1000 simulations 1. Bias, variance and MSE of the estimator for specific quantiles (90%, 95%, 99%) and specific covariate values (0.05, 0.25, 0.5, 0.75, 0.95) 2. Integrated mean square error of the estimator for specific quantiles

Spatially Smoothed Kernel Density Estimation via Generalized Empirical Likelihood

Spatially Smoothed Kernel Density Estimation via Generalized Empirical Likelihood Spatially Smoothed Kernel Density Estimation via Generalized Empirical Likelihood Kuangyu Wen & Ximing Wu Texas A&M University Info-Metrics Institute Conference: Recent Innovations in Info-Metrics October

More information

Econ 582 Nonparametric Regression

Econ 582 Nonparametric Regression Econ 582 Nonparametric Regression Eric Zivot May 28, 2013 Nonparametric Regression Sofarwehaveonlyconsideredlinearregressionmodels = x 0 β + [ x ]=0 [ x = x] =x 0 β = [ x = x] [ x = x] x = β The assume

More information

Additive Isotonic Regression

Additive Isotonic Regression Additive Isotonic Regression Enno Mammen and Kyusang Yu 11. July 2006 INTRODUCTION: We have i.i.d. random vectors (Y 1, X 1 ),..., (Y n, X n ) with X i = (X1 i,..., X d i ) and we consider the additive

More information

12 - Nonparametric Density Estimation

12 - Nonparametric Density Estimation ST 697 Fall 2017 1/49 12 - Nonparametric Density Estimation ST 697 Fall 2017 University of Alabama Density Review ST 697 Fall 2017 2/49 Continuous Random Variables ST 697 Fall 2017 3/49 1.0 0.8 F(x) 0.6

More information

Robustness to Parametric Assumptions in Missing Data Models

Robustness to Parametric Assumptions in Missing Data Models Robustness to Parametric Assumptions in Missing Data Models Bryan Graham NYU Keisuke Hirano University of Arizona April 2011 Motivation Motivation We consider the classic missing data problem. In practice

More information

Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics. Jiti Gao

Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics. Jiti Gao Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics Jiti Gao Department of Statistics School of Mathematics and Statistics The University of Western Australia Crawley

More information

Minimum Hellinger Distance Estimation in a. Semiparametric Mixture Model

Minimum Hellinger Distance Estimation in a. Semiparametric Mixture Model Minimum Hellinger Distance Estimation in a Semiparametric Mixture Model Sijia Xiang 1, Weixin Yao 1, and Jingjing Wu 2 1 Department of Statistics, Kansas State University, Manhattan, Kansas, USA 66506-0802.

More information

Local Polynomial Modelling and Its Applications

Local Polynomial Modelling and Its Applications Local Polynomial Modelling and Its Applications J. Fan Department of Statistics University of North Carolina Chapel Hill, USA and I. Gijbels Institute of Statistics Catholic University oflouvain Louvain-la-Neuve,

More information

Integrated Likelihood Estimation in Semiparametric Regression Models. Thomas A. Severini Department of Statistics Northwestern University

Integrated Likelihood Estimation in Semiparametric Regression Models. Thomas A. Severini Department of Statistics Northwestern University Integrated Likelihood Estimation in Semiparametric Regression Models Thomas A. Severini Department of Statistics Northwestern University Joint work with Heping He, University of York Introduction Let Y

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

Time Series and Forecasting Lecture 4 NonLinear Time Series

Time Series and Forecasting Lecture 4 NonLinear Time Series Time Series and Forecasting Lecture 4 NonLinear Time Series Bruce E. Hansen Summer School in Economics and Econometrics University of Crete July 23-27, 2012 Bruce Hansen (University of Wisconsin) Foundations

More information

Introduction to Regression

Introduction to Regression Introduction to Regression p. 1/97 Introduction to Regression Chad Schafer cschafer@stat.cmu.edu Carnegie Mellon University Introduction to Regression p. 1/97 Acknowledgement Larry Wasserman, All of Nonparametric

More information

Efficient Estimation of Population Quantiles in General Semiparametric Regression Models

Efficient Estimation of Population Quantiles in General Semiparametric Regression Models Efficient Estimation of Population Quantiles in General Semiparametric Regression Models Arnab Maity 1 Department of Statistics, Texas A&M University, College Station TX 77843-3143, U.S.A. amaity@stat.tamu.edu

More information

Density estimation Nonparametric conditional mean estimation Semiparametric conditional mean estimation. Nonparametrics. Gabriel Montes-Rojas

Density estimation Nonparametric conditional mean estimation Semiparametric conditional mean estimation. Nonparametrics. Gabriel Montes-Rojas 0 0 5 Motivation: Regression discontinuity (Angrist&Pischke) Outcome.5 1 1.5 A. Linear E[Y 0i X i] 0.2.4.6.8 1 X Outcome.5 1 1.5 B. Nonlinear E[Y 0i X i] i 0.2.4.6.8 1 X utcome.5 1 1.5 C. Nonlinearity

More information

41903: Introduction to Nonparametrics

41903: Introduction to Nonparametrics 41903: Notes 5 Introduction Nonparametrics fundamentally about fitting flexible models: want model that is flexible enough to accommodate important patterns but not so flexible it overspecializes to specific

More information

Efficient estimation of a semiparametric dynamic copula model

Efficient estimation of a semiparametric dynamic copula model Efficient estimation of a semiparametric dynamic copula model Christian Hafner Olga Reznikova Institute of Statistics Université catholique de Louvain Louvain-la-Neuve, Blgium 30 January 2009 Young Researchers

More information

Chapter 2: Resampling Maarten Jansen

Chapter 2: Resampling Maarten Jansen Chapter 2: Resampling Maarten Jansen Randomization tests Randomized experiment random assignment of sample subjects to groups Example: medical experiment with control group n 1 subjects for true medicine,

More information

Lecture 3: Statistical Decision Theory (Part II)

Lecture 3: Statistical Decision Theory (Part II) Lecture 3: Statistical Decision Theory (Part II) Hao Helen Zhang Hao Helen Zhang Lecture 3: Statistical Decision Theory (Part II) 1 / 27 Outline of This Note Part I: Statistics Decision Theory (Classical

More information

Research Projects. Hanxiang Peng. March 4, Department of Mathematical Sciences Indiana University-Purdue University at Indianapolis

Research Projects. Hanxiang Peng. March 4, Department of Mathematical Sciences Indiana University-Purdue University at Indianapolis Hanxiang Department of Mathematical Sciences Indiana University-Purdue University at Indianapolis March 4, 2009 Outline Project I: Free Knot Spline Cox Model Project I: Free Knot Spline Cox Model Consider

More information

Statistics: Learning models from data

Statistics: Learning models from data DS-GA 1002 Lecture notes 5 October 19, 2015 Statistics: Learning models from data Learning models from data that are assumed to be generated probabilistically from a certain unknown distribution is a crucial

More information

STA 2201/442 Assignment 2

STA 2201/442 Assignment 2 STA 2201/442 Assignment 2 1. This is about how to simulate from a continuous univariate distribution. Let the random variable X have a continuous distribution with density f X (x) and cumulative distribution

More information

Stat 710: Mathematical Statistics Lecture 31

Stat 710: Mathematical Statistics Lecture 31 Stat 710: Mathematical Statistics Lecture 31 Jun Shao Department of Statistics University of Wisconsin Madison, WI 53706, USA Jun Shao (UW-Madison) Stat 710, Lecture 31 April 13, 2009 1 / 13 Lecture 31:

More information

Model-free prediction intervals for regression and autoregression. Dimitris N. Politis University of California, San Diego

Model-free prediction intervals for regression and autoregression. Dimitris N. Politis University of California, San Diego Model-free prediction intervals for regression and autoregression Dimitris N. Politis University of California, San Diego To explain or to predict? Models are indispensable for exploring/utilizing relationships

More information

Nonparametric Econometrics

Nonparametric Econometrics Applied Microeconometrics with Stata Nonparametric Econometrics Spring Term 2011 1 / 37 Contents Introduction The histogram estimator The kernel density estimator Nonparametric regression estimators Semi-

More information

Introduction to Regression

Introduction to Regression Introduction to Regression Chad M. Schafer May 20, 2015 Outline General Concepts of Regression, Bias-Variance Tradeoff Linear Regression Nonparametric Procedures Cross Validation Local Polynomial Regression

More information

Statistics 135 Fall 2008 Final Exam

Statistics 135 Fall 2008 Final Exam Name: SID: Statistics 135 Fall 2008 Final Exam Show your work. The number of points each question is worth is shown at the beginning of the question. There are 10 problems. 1. [2] The normal equations

More information

Introduction to Regression

Introduction to Regression Introduction to Regression Chad M. Schafer cschafer@stat.cmu.edu Carnegie Mellon University Introduction to Regression p. 1/100 Outline General Concepts of Regression, Bias-Variance Tradeoff Linear Regression

More information

Nonparametric Estimation of Luminosity Functions

Nonparametric Estimation of Luminosity Functions x x Nonparametric Estimation of Luminosity Functions Chad Schafer Department of Statistics, Carnegie Mellon University cschafer@stat.cmu.edu 1 Luminosity Functions The luminosity function gives the number

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

Nonparametric Regression. Badr Missaoui

Nonparametric Regression. Badr Missaoui Badr Missaoui Outline Kernel and local polynomial regression. Penalized regression. We are given n pairs of observations (X 1, Y 1 ),...,(X n, Y n ) where Y i = r(x i ) + ε i, i = 1,..., n and r(x) = E(Y

More information

Some Observations on the Wilcoxon Rank Sum Test

Some Observations on the Wilcoxon Rank Sum Test UW Biostatistics Working Paper Series 8-16-011 Some Observations on the Wilcoxon Rank Sum Test Scott S. Emerson University of Washington, semerson@u.washington.edu Suggested Citation Emerson, Scott S.,

More information

UNIVERSITÄT POTSDAM Institut für Mathematik

UNIVERSITÄT POTSDAM Institut für Mathematik UNIVERSITÄT POTSDAM Institut für Mathematik Testing the Acceleration Function in Life Time Models Hannelore Liero Matthias Liero Mathematische Statistik und Wahrscheinlichkeitstheorie Universität Potsdam

More information

A general mixed model approach for spatio-temporal regression data

A general mixed model approach for spatio-temporal regression data A general mixed model approach for spatio-temporal regression data Thomas Kneib, Ludwig Fahrmeir & Stefan Lang Department of Statistics, Ludwig-Maximilians-University Munich 1. Spatio-temporal regression

More information

High Dimensional Empirical Likelihood for Generalized Estimating Equations with Dependent Data

High Dimensional Empirical Likelihood for Generalized Estimating Equations with Dependent Data High Dimensional Empirical Likelihood for Generalized Estimating Equations with Dependent Data Song Xi CHEN Guanghua School of Management and Center for Statistical Science, Peking University Department

More information

Introduction to Regression

Introduction to Regression Introduction to Regression David E Jones (slides mostly by Chad M Schafer) June 1, 2016 1 / 102 Outline General Concepts of Regression, Bias-Variance Tradeoff Linear Regression Nonparametric Procedures

More information

Lecture 5 Models and methods for recurrent event data

Lecture 5 Models and methods for recurrent event data Lecture 5 Models and methods for recurrent event data Recurrent and multiple events are commonly encountered in longitudinal studies. In this chapter we consider ordered recurrent and multiple events.

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Semi-Nonparametric Inferences for Massive Data

Semi-Nonparametric Inferences for Massive Data Semi-Nonparametric Inferences for Massive Data Guang Cheng 1 Department of Statistics Purdue University Statistics Seminar at NCSU October, 2015 1 Acknowledge NSF, Simons Foundation and ONR. A Joint Work

More information

Bootstrap, Jackknife and other resampling methods

Bootstrap, Jackknife and other resampling methods Bootstrap, Jackknife and other resampling methods Part III: Parametric Bootstrap Rozenn Dahyot Room 128, Department of Statistics Trinity College Dublin, Ireland dahyot@mee.tcd.ie 2005 R. Dahyot (TCD)

More information

The impact of covariance misspecification in multivariate Gaussian mixtures on estimation and inference

The impact of covariance misspecification in multivariate Gaussian mixtures on estimation and inference The impact of covariance misspecification in multivariate Gaussian mixtures on estimation and inference An application to longitudinal modeling Brianna Heggeseth with Nicholas Jewell Department of Statistics

More information

Single Index Quantile Regression for Heteroscedastic Data

Single Index Quantile Regression for Heteroscedastic Data Single Index Quantile Regression for Heteroscedastic Data E. Christou M. G. Akritas Department of Statistics The Pennsylvania State University SMAC, November 6, 2015 E. Christou, M. G. Akritas (PSU) SIQR

More information

Using Estimating Equations for Spatially Correlated A

Using Estimating Equations for Spatially Correlated A Using Estimating Equations for Spatially Correlated Areal Data December 8, 2009 Introduction GEEs Spatial Estimating Equations Implementation Simulation Conclusion Typical Problem Assess the relationship

More information

Statistical distributions: Synopsis

Statistical distributions: Synopsis Statistical distributions: Synopsis Basics of Distributions Special Distributions: Binomial, Exponential, Poisson, Gamma, Chi-Square, F, Extreme-value etc Uniform Distribution Empirical Distributions Quantile

More information

Nonparametric Density Estimation

Nonparametric Density Estimation Nonparametric Density Estimation Econ 690 Purdue University Justin L. Tobias (Purdue) Nonparametric Density Estimation 1 / 29 Density Estimation Suppose that you had some data, say on wages, and you wanted

More information

Extreme Value Analysis and Spatial Extremes

Extreme Value Analysis and Spatial Extremes Extreme Value Analysis and Department of Statistics Purdue University 11/07/2013 Outline Motivation 1 Motivation 2 Extreme Value Theorem and 3 Bayesian Hierarchical Models Copula Models Max-stable Models

More information

COMP2610/COMP Information Theory

COMP2610/COMP Information Theory COMP2610/COMP6261 - Information Theory Lecture 9: Probabilistic Inequalities Mark Reid and Aditya Menon Research School of Computer Science The Australian National University August 19th, 2014 Mark Reid

More information

Non-Parametric Bootstrap Mean. Squared Error Estimation For M- Quantile Estimators Of Small Area. Averages, Quantiles And Poverty

Non-Parametric Bootstrap Mean. Squared Error Estimation For M- Quantile Estimators Of Small Area. Averages, Quantiles And Poverty Working Paper M11/02 Methodology Non-Parametric Bootstrap Mean Squared Error Estimation For M- Quantile Estimators Of Small Area Averages, Quantiles And Poverty Indicators Stefano Marchetti, Nikos Tzavidis,

More information

Statistical Properties of Numerical Derivatives

Statistical Properties of Numerical Derivatives Statistical Properties of Numerical Derivatives Han Hong, Aprajit Mahajan, and Denis Nekipelov Stanford University and UC Berkeley November 2010 1 / 63 Motivation Introduction Many models have objective

More information

F & B Approaches to a simple model

F & B Approaches to a simple model A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 215 http://www.astro.cornell.edu/~cordes/a6523 Lecture 11 Applications: Model comparison Challenges in large-scale surveys

More information

A Kullback-Leibler Divergence for Bayesian Model Comparison with Applications to Diabetes Studies. Chen-Pin Wang, UTHSCSA Malay Ghosh, U.

A Kullback-Leibler Divergence for Bayesian Model Comparison with Applications to Diabetes Studies. Chen-Pin Wang, UTHSCSA Malay Ghosh, U. A Kullback-Leibler Divergence for Bayesian Model Comparison with Applications to Diabetes Studies Chen-Pin Wang, UTHSCSA Malay Ghosh, U. Florida Lehmann Symposium, May 9, 2011 1 Background KLD: the expected

More information

CURRENT STATUS LINEAR REGRESSION. By Piet Groeneboom and Kim Hendrickx Delft University of Technology and Hasselt University

CURRENT STATUS LINEAR REGRESSION. By Piet Groeneboom and Kim Hendrickx Delft University of Technology and Hasselt University CURRENT STATUS LINEAR REGRESSION By Piet Groeneboom and Kim Hendrickx Delft University of Technology and Hasselt University We construct n-consistent and asymptotically normal estimates for the finite

More information

Tobit and Interval Censored Regression Model

Tobit and Interval Censored Regression Model Global Journal of Pure and Applied Mathematics. ISSN 0973-768 Volume 2, Number (206), pp. 98-994 Research India Publications http://www.ripublication.com Tobit and Interval Censored Regression Model Raidani

More information

ECONOMETRICS II (ECO 2401S) University of Toronto. Department of Economics. Spring 2013 Instructor: Victor Aguirregabiria

ECONOMETRICS II (ECO 2401S) University of Toronto. Department of Economics. Spring 2013 Instructor: Victor Aguirregabiria ECONOMETRICS II (ECO 2401S) University of Toronto. Department of Economics. Spring 2013 Instructor: Victor Aguirregabiria SOLUTION TO FINAL EXAM Friday, April 12, 2013. From 9:00-12:00 (3 hours) INSTRUCTIONS:

More information

Goodness-of-fit tests for the cure rate in a mixture cure model

Goodness-of-fit tests for the cure rate in a mixture cure model Biometrika (217), 13, 1, pp. 1 7 Printed in Great Britain Advance Access publication on 31 July 216 Goodness-of-fit tests for the cure rate in a mixture cure model BY U.U. MÜLLER Department of Statistics,

More information

ECAS Summer Course. Quantile Regression for Longitudinal Data. Roger Koenker University of Illinois at Urbana-Champaign

ECAS Summer Course. Quantile Regression for Longitudinal Data. Roger Koenker University of Illinois at Urbana-Champaign ECAS Summer Course 1 Quantile Regression for Longitudinal Data Roger Koenker University of Illinois at Urbana-Champaign La Roche-en-Ardennes: September 2005 Part I: Penalty Methods for Random Effects Part

More information

Quantile Regression Methods for Reference Growth Charts

Quantile Regression Methods for Reference Growth Charts Quantile Regression Methods for Reference Growth Charts 1 Roger Koenker University of Illinois at Urbana-Champaign ASA Workshop on Nonparametric Statistics Texas A&M, January 15, 2005 Based on joint work

More information

STAT440/840: Statistical Computing

STAT440/840: Statistical Computing First Prev Next Last STAT440/840: Statistical Computing Paul Marriott pmarriott@math.uwaterloo.ca MC 6096 February 2, 2005 Page 1 of 41 First Prev Next Last Page 2 of 41 Chapter 3: Data resampling: the

More information

Pairwise rank based likelihood for estimating the relationship between two homogeneous populations and their mixture proportion

Pairwise rank based likelihood for estimating the relationship between two homogeneous populations and their mixture proportion Pairwise rank based likelihood for estimating the relationship between two homogeneous populations and their mixture proportion Glenn Heller and Jing Qin Department of Epidemiology and Biostatistics Memorial

More information

Density estimators for the convolution of discrete and continuous random variables

Density estimators for the convolution of discrete and continuous random variables Density estimators for the convolution of discrete and continuous random variables Ursula U Müller Texas A&M University Anton Schick Binghamton University Wolfgang Wefelmeyer Universität zu Köln Abstract

More information

Extending clustered point process-based rainfall models to a non-stationary climate

Extending clustered point process-based rainfall models to a non-stationary climate Extending clustered point process-based rainfall models to a non-stationary climate Jo Kaczmarska 1, 2 Valerie Isham 2 Paul Northrop 2 1 Risk Management Solutions 2 Department of Statistical Science, University

More information

From Histograms to Multivariate Polynomial Histograms and Shape Estimation. Assoc Prof Inge Koch

From Histograms to Multivariate Polynomial Histograms and Shape Estimation. Assoc Prof Inge Koch From Histograms to Multivariate Polynomial Histograms and Shape Estimation Assoc Prof Inge Koch Statistics, School of Mathematical Sciences University of Adelaide Inge Koch (UNSW, Adelaide) Poly Histograms

More information

Nonparametric Methods

Nonparametric Methods Nonparametric Methods Michael R. Roberts Department of Finance The Wharton School University of Pennsylvania July 28, 2009 Michael R. Roberts Nonparametric Methods 1/42 Overview Great for data analysis

More information

Nonparametric Regression Härdle, Müller, Sperlich, Werwarz, 1995, Nonparametric and Semiparametric Models, An Introduction

Nonparametric Regression Härdle, Müller, Sperlich, Werwarz, 1995, Nonparametric and Semiparametric Models, An Introduction Härdle, Müller, Sperlich, Werwarz, 1995, Nonparametric and Semiparametric Models, An Introduction Tine Buch-Kromann Univariate Kernel Regression The relationship between two variables, X and Y where m(

More information

DESIGN-ADAPTIVE MINIMAX LOCAL LINEAR REGRESSION FOR LONGITUDINAL/CLUSTERED DATA

DESIGN-ADAPTIVE MINIMAX LOCAL LINEAR REGRESSION FOR LONGITUDINAL/CLUSTERED DATA Statistica Sinica 18(2008), 515-534 DESIGN-ADAPTIVE MINIMAX LOCAL LINEAR REGRESSION FOR LONGITUDINAL/CLUSTERED DATA Kani Chen 1, Jianqing Fan 2 and Zhezhen Jin 3 1 Hong Kong University of Science and Technology,

More information

Maximum Likelihood Tests and Quasi-Maximum-Likelihood

Maximum Likelihood Tests and Quasi-Maximum-Likelihood Maximum Likelihood Tests and Quasi-Maximum-Likelihood Wendelin Schnedler Department of Economics University of Heidelberg 10. Dezember 2007 Wendelin Schnedler (AWI) Maximum Likelihood Tests and Quasi-Maximum-Likelihood10.

More information

Lecture 32: Asymptotic confidence sets and likelihoods

Lecture 32: Asymptotic confidence sets and likelihoods Lecture 32: Asymptotic confidence sets and likelihoods Asymptotic criterion In some problems, especially in nonparametric problems, it is difficult to find a reasonable confidence set with a given confidence

More information

Math 494: Mathematical Statistics

Math 494: Mathematical Statistics Math 494: Mathematical Statistics Instructor: Jimin Ding jmding@wustl.edu Department of Mathematics Washington University in St. Louis Class materials are available on course website (www.math.wustl.edu/

More information

Modelling Non-linear and Non-stationary Time Series

Modelling Non-linear and Non-stationary Time Series Modelling Non-linear and Non-stationary Time Series Chapter 2: Non-parametric methods Henrik Madsen Advanced Time Series Analysis September 206 Henrik Madsen (02427 Adv. TS Analysis) Lecture Notes September

More information

DEPARTMENT MATHEMATIK ARBEITSBEREICH MATHEMATISCHE STATISTIK UND STOCHASTISCHE PROZESSE

DEPARTMENT MATHEMATIK ARBEITSBEREICH MATHEMATISCHE STATISTIK UND STOCHASTISCHE PROZESSE Estimating the error distribution in nonparametric multiple regression with applications to model testing Natalie Neumeyer & Ingrid Van Keilegom Preprint No. 2008-01 July 2008 DEPARTMENT MATHEMATIK ARBEITSBEREICH

More information

Recitation 5. Inference and Power Calculations. Yiqing Xu. March 7, 2014 MIT

Recitation 5. Inference and Power Calculations. Yiqing Xu. March 7, 2014 MIT 17.802 Recitation 5 Inference and Power Calculations Yiqing Xu MIT March 7, 2014 1 Inference of Frequentists 2 Power Calculations Inference (mostly MHE Ch8) Inference in Asymptopia (and with Weak Null)

More information

A measurement error model approach to small area estimation

A measurement error model approach to small area estimation A measurement error model approach to small area estimation Jae-kwang Kim 1 Spring, 2015 1 Joint work with Seunghwan Park and Seoyoung Kim Ouline Introduction Basic Theory Application to Korean LFS Discussion

More information

Generalized Additive Models

Generalized Additive Models Generalized Additive Models The Model The GLM is: g( µ) = ß 0 + ß 1 x 1 + ß 2 x 2 +... + ß k x k The generalization to the GAM is: g(µ) = ß 0 + f 1 (x 1 ) + f 2 (x 2 ) +... + f k (x k ) where the functions

More information

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Elizabeth C. Mannshardt-Shamseldin Advisor: Richard L. Smith Duke University Department

More information

Estimation of cumulative distribution function with spline functions

Estimation of cumulative distribution function with spline functions INTERNATIONAL JOURNAL OF ECONOMICS AND STATISTICS Volume 5, 017 Estimation of cumulative distribution function with functions Akhlitdin Nizamitdinov, Aladdin Shamilov Abstract The estimation of the cumulative

More information

Semiparametric Generalized Linear Models

Semiparametric Generalized Linear Models Semiparametric Generalized Linear Models North American Stata Users Group Meeting Chicago, Illinois Paul Rathouz Department of Health Studies University of Chicago prathouz@uchicago.edu Liping Gao MS Student

More information

The Nonparametric Bootstrap

The Nonparametric Bootstrap The Nonparametric Bootstrap The nonparametric bootstrap may involve inferences about a parameter, but we use a nonparametric procedure in approximating the parametric distribution using the ECDF. We use

More information

Gaussian kernel GARCH models

Gaussian kernel GARCH models Gaussian kernel GARCH models Xibin (Bill) Zhang and Maxwell L. King Department of Econometrics and Business Statistics Faculty of Business and Economics 7 June 2013 Motivation A regression model is often

More information

Why experimenters should not randomize, and what they should do instead

Why experimenters should not randomize, and what they should do instead Why experimenters should not randomize, and what they should do instead Maximilian Kasy Department of Economics, Harvard University Maximilian Kasy (Harvard) Experimental design 1 / 42 project STAR Introduction

More information

High-dimensional regression with unknown variance

High-dimensional regression with unknown variance High-dimensional regression with unknown variance Christophe Giraud Ecole Polytechnique march 2012 Setting Gaussian regression with unknown variance: Y i = f i + ε i with ε i i.i.d. N (0, σ 2 ) f = (f

More information

Multilevel Statistical Models: 3 rd edition, 2003 Contents

Multilevel Statistical Models: 3 rd edition, 2003 Contents Multilevel Statistical Models: 3 rd edition, 2003 Contents Preface Acknowledgements Notation Two and three level models. A general classification notation and diagram Glossary Chapter 1 An introduction

More information

1.4 Properties of the autocovariance for stationary time-series

1.4 Properties of the autocovariance for stationary time-series 1.4 Properties of the autocovariance for stationary time-series In general, for a stationary time-series, (i) The variance is given by (0) = E((X t µ) 2 ) 0. (ii) (h) apple (0) for all h 2 Z. ThisfollowsbyCauchy-Schwarzas

More information

Ultra High Dimensional Variable Selection with Endogenous Variables

Ultra High Dimensional Variable Selection with Endogenous Variables 1 / 39 Ultra High Dimensional Variable Selection with Endogenous Variables Yuan Liao Princeton University Joint work with Jianqing Fan Job Market Talk January, 2012 2 / 39 Outline 1 Examples of Ultra High

More information

Discussion of the paper Inference for Semiparametric Models: Some Questions and an Answer by Bickel and Kwon

Discussion of the paper Inference for Semiparametric Models: Some Questions and an Answer by Bickel and Kwon Discussion of the paper Inference for Semiparametric Models: Some Questions and an Answer by Bickel and Kwon Jianqing Fan Department of Statistics Chinese University of Hong Kong AND Department of Statistics

More information

A Goodness-of-fit Test for Copulas

A Goodness-of-fit Test for Copulas A Goodness-of-fit Test for Copulas Artem Prokhorov August 2008 Abstract A new goodness-of-fit test for copulas is proposed. It is based on restrictions on certain elements of the information matrix and

More information

STATISTICAL MODELS FOR QUANTIFYING THE SPATIAL DISTRIBUTION OF SEASONALLY DERIVED OZONE STANDARDS

STATISTICAL MODELS FOR QUANTIFYING THE SPATIAL DISTRIBUTION OF SEASONALLY DERIVED OZONE STANDARDS STATISTICAL MODELS FOR QUANTIFYING THE SPATIAL DISTRIBUTION OF SEASONALLY DERIVED OZONE STANDARDS Eric Gilleland Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research Supported

More information

Estimation of Treatment Effects under Essential Heterogeneity

Estimation of Treatment Effects under Essential Heterogeneity Estimation of Treatment Effects under Essential Heterogeneity James Heckman University of Chicago and American Bar Foundation Sergio Urzua University of Chicago Edward Vytlacil Columbia University March

More information

BAYESIAN CONDITIONAL DENSITY ESTIMATION

BAYESIAN CONDITIONAL DENSITY ESTIMATION BAYESIAN CONDITIONAL DENSITY ESTIMATION JUNGMO YOON DEPARTMENT OF ECONOMICS UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Abstract. We consider a nonparametric Bayesian method for conditional density function

More information

Chapter 2 Inference on Mean Residual Life-Overview

Chapter 2 Inference on Mean Residual Life-Overview Chapter 2 Inference on Mean Residual Life-Overview Statistical inference based on the remaining lifetimes would be intuitively more appealing than the popular hazard function defined as the risk of immediate

More information

Histogram Härdle, Müller, Sperlich, Werwatz, 1995, Nonparametric and Semiparametric Models, An Introduction

Histogram Härdle, Müller, Sperlich, Werwatz, 1995, Nonparametric and Semiparametric Models, An Introduction Härdle, Müller, Sperlich, Werwatz, 1995, Nonparametric and Semiparametric Models, An Introduction Tine Buch-Kromann Construction X 1,..., X n iid r.v. with (unknown) density, f. Aim: Estimate the density

More information

Professors Lin and Ying are to be congratulated for an interesting paper on a challenging topic and for introducing survival analysis techniques to th

Professors Lin and Ying are to be congratulated for an interesting paper on a challenging topic and for introducing survival analysis techniques to th DISCUSSION OF THE PAPER BY LIN AND YING Xihong Lin and Raymond J. Carroll Λ July 21, 2000 Λ Xihong Lin (xlin@sph.umich.edu) is Associate Professor, Department ofbiostatistics, University of Michigan, Ann

More information

MINIMUM HELLINGER DISTANCE ESTIMATION IN A SEMIPARAMETRIC MIXTURE MODEL SIJIA XIANG. B.S., Zhejiang Normal University, China, 2010 A REPORT

MINIMUM HELLINGER DISTANCE ESTIMATION IN A SEMIPARAMETRIC MIXTURE MODEL SIJIA XIANG. B.S., Zhejiang Normal University, China, 2010 A REPORT MINIMUM HELLINGER DISTANCE ESTIMATION IN A SEMIPARAMETRIC MIXTURE MODEL by SIJIA XIANG B.S., Zhejiang Normal University, China, 2010 A REPORT submitted in partial fulfillment of the requirements for the

More information

Nonparametric Density Estimation (Multidimension)

Nonparametric Density Estimation (Multidimension) Nonparametric Density Estimation (Multidimension) Härdle, Müller, Sperlich, Werwarz, 1995, Nonparametric and Semiparametric Models, An Introduction Tine Buch-Kromann February 19, 2007 Setup One-dimensional

More information

WEIGHTED LIKELIHOOD NEGATIVE BINOMIAL REGRESSION

WEIGHTED LIKELIHOOD NEGATIVE BINOMIAL REGRESSION WEIGHTED LIKELIHOOD NEGATIVE BINOMIAL REGRESSION Michael Amiguet 1, Alfio Marazzi 1, Victor Yohai 2 1 - University of Lausanne, Institute for Social and Preventive Medicine, Lausanne, Switzerland 2 - University

More information

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Maximilian Kasy Department of Economics, Harvard University 1 / 37 Agenda 6 equivalent representations of the

More information

Semiparametric Efficiency in Irregularly Identified Models

Semiparametric Efficiency in Irregularly Identified Models Semiparametric Efficiency in Irregularly Identified Models Shakeeb Khan and Denis Nekipelov July 008 ABSTRACT. This paper considers efficient estimation of structural parameters in a class of semiparametric

More information

36. Multisample U-statistics and jointly distributed U-statistics Lehmann 6.1

36. Multisample U-statistics and jointly distributed U-statistics Lehmann 6.1 36. Multisample U-statistics jointly distributed U-statistics Lehmann 6.1 In this topic, we generalize the idea of U-statistics in two different directions. First, we consider single U-statistics for situations

More information

Accommodating measurement scale uncertainty in extreme value analysis of. northern North Sea storm severity

Accommodating measurement scale uncertainty in extreme value analysis of. northern North Sea storm severity Introduction Model Analysis Conclusions Accommodating measurement scale uncertainty in extreme value analysis of northern North Sea storm severity Yanyun Wu, David Randell, Daniel Reeve Philip Jonathan,

More information

Better Bootstrap Confidence Intervals

Better Bootstrap Confidence Intervals by Bradley Efron University of Washington, Department of Statistics April 12, 2012 An example Suppose we wish to make inference on some parameter θ T (F ) (e.g. θ = E F X ), based on data We might suppose

More information

Single Index Quantile Regression for Heteroscedastic Data

Single Index Quantile Regression for Heteroscedastic Data Single Index Quantile Regression for Heteroscedastic Data E. Christou M. G. Akritas Department of Statistics The Pennsylvania State University JSM, 2015 E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015

More information

Teruko Takada Department of Economics, University of Illinois. Abstract

Teruko Takada Department of Economics, University of Illinois. Abstract Nonparametric density estimation: A comparative study Teruko Takada Department of Economics, University of Illinois Abstract Motivated by finance applications, the objective of this paper is to assess

More information