Simulation of Natural Convection in a Complicated Enclosure with Two Wavy Vertical Walls

Size: px
Start display at page:

Download "Simulation of Natural Convection in a Complicated Enclosure with Two Wavy Vertical Walls"

Transcription

1 A Mtt S, V. 6, 2012,. 57, Sut Ntu Cvt Ct Eu wt Tw Wvy Vt W P S Dtt Mtt, Futy S K K Uvty, K K 40002, T Ct E Mtt CHE, S Ayutty R., B 10400, T y 129@t. Sut Wtyu 1 Dtt Mtt, Futy S K K Uvty, K K 40002, T ut w@u..t Att Ntu vt u u v tw wvy vt w tu. A u wt u-tut u. A vty t ty tt w w w t t w ttu. T tv t tuy t t w, ttu tut t t t vty w vu Dy u, Ry u wv tu. T yz t, t v t ut uy t t FPDE 6.17 P w t t u u v. F t tuy ut, Dy Ry u t tt vt. I t, t tu ttu t tut. I t wv tu, t w tty tut y ut t t tu. Kyw: Ft Et Mt, Ntu Cvt, Pu M 1 C Aut.

2 2834 P. S S. Wtyu 1 Itut T tuy tu vt tw- u wt utut u v t ttt t y tt y t. My tuy t t u wt vu uy t. Mt t y, tu, tz tu. Du t u t t u y, t v, ut u, u ut, t ut, t., t vt t t vty tu t ut t yt. I vty wt u, B t. [1] tu t tu vt w tz u u u u t tt w u tt tw vt w t t tt ttu w t t w ut. B t. [2] vtt t t u -u t w tu vt w wt tu u. T ut u ut y ty t t y wt -ut t. K t. [3] t tu w tt w t ty w t ttu w t t w u ttu t t w. I t, tu u u t t tutu t tuy t t t. A N [4],[5] vtt t t t, Ry u t t t t vt t tu -t u u wt t y u t vu tt ut tu. P Sut [6] yz t w ttu tut tt t-tu u u tt t w t t. I t vty, D D [7],[8],[9] tu t tu vt u u v t t w wvy t vt w t, tw t uut. Fut, Ozt t. [10] tu t tu vt t t wvy-w u t t t u t t wv t y u t-vu t. Itt t t t t Ry u t tu wvy w. T t tuy tu vt u u u tt tw vt w wvy. T u-tut u t t. Btt w t ty w w t t w ttu. T tv t vtt t vt t t vty w Dy u, Ry u wv tu v y u t t t. I t 2, t tt tt u tuut t. St 3 vv t

3 Sut tu vt t u 2835 t ut u. Fy, w vut t utt ut t u u. 2 Ntt P Ctt T w tt tuut t. AR t t, AR = H/L D Dy u t u t vty ( 1 ) H t t u () L t t u () Nu Nut u u (P) P u P Pt u R Ry u T ttu (C) T H ttu t w T C ttu w u uut λ wv tu γ ty t θ ttu ν t vty ( 2 1 ) ρ ty ( 3 ) ψ t ut K ty t u u φ t ut,y Ct t () u,v,y t vty U,V,y t vty X,Y t,y t T tv t t vtt t w, ttu tut t t u t tu vt u u v tw wvy vt w. T u-tut u Nwt t u. H, u, Pt u t tt t 0.71, t u t. Bu t u tw wvy vt w, t t t wvy w v y (1) (2), tvy. 1 (y) =1 λ + λ (2π(1 y)) (1) 2 (y) =1 λ + λ (2πy). (2) Dt vu ttu t uy. Btt w t ty, T H, w w t t w ttu, T C. T ttu t tt wtt T () =T C + T [ ( )] H T C 2π 1. (3) 2 L Vty w z (u = v = 0). At t utt t z. It t t t t

4 2836 P. S S. Wtyu u = v = T = 0 H u = v = 0, T = Su L Fu 1: A vty wt tw wvy vt w uy t. vt w t t t tt w (AR = H/L). A y u u v w F.1. 3 Gv Eut Ntu vt y t ut vt, tu y ([11]). T w ut tw t y t u wt u u t tt t t ty t uyy. T v ut ty tw- tu vt w t u vty : u + v =0, (4) y u u + v u u v + v v y = 1 ρ y = 1 ρ + ν y + ν u T + v T y = α ( 2 v + 2 v 2 y 2 ( 2 u + 2 u 2 y 2 ) ( 2 T T y 2 ) ν u, (5) K ν K v + β (T T C), (6) wt w uy t: u( 1 (y),y)=u( 2 (y),y)=u(, 0) = u(, y) =0, v( 1 (y),y)=v( 2 (y),y)=v(, 0) = v(, y) =0, T ( 1 (y),y)=t( 2 (y),y)=t(, y) =T C =0, T (, 0) = T H = T C + T H T C 2 ) [ 1. (7) ( 2π L )].

5 Sut tu vt t u 2837 T v v ut t t - y u t w v: X = L, Y = y L, U = ul α, V = vl α, θ = T T C T H T C P = L2 ρα, P = ν 2 α, R = β (T H T C ) L 3 P, D = K ν 2 L. 2 T ut (4)-(7) t : U X + V Y U U X + V U Y = P ( 2 ) X + P U X + 2 U 2 Y 2 U V X + V V ( 2 ) Y = P Y + P V X + 2 V 2 Y 2 =0, (8) P U, (9) D P V + RPθ, (10) D U θ X + V θ ( 2 ) Y = θ X + 2 θ. (11) 2 Y 2 S t t w t tuy t w, t u t y y u t t ut w U = ψ ψ V =. Tu, Y X E.(8) t E.(12) 2 ψ X ψ Y 2 = U Y V X. (12) T t t u P, w u t ty t t t wt ty t γ u tt P = γ ( U + ) V X Y ([12]). Suttut P t E.(9) (10) y E.(13) (14). U U X + V U Y = γ ( U X X + V ) ( 2 ) U + P Y X + 2 U 2 Y 2 U V X + V V Y = γ Y P U, (13) D ( U X + V ) ( 2 ) V + P Y X + 2 V P 2 Y 2 D V + RPθ. (14) T t uy t : U( 1 (Y ),Y)=U( 2 (Y ),Y)=U(X, 0) = U(X, Y )=0, V ( 1 (Y ),Y)=V ( 2 (Y ),Y)=V (X, 0) = V (X, Y )=0, (15)

6 2838 P. S S. Wtyu θ( 1 (Y ),Y)=θ( 2 (Y ),Y)=θ(X, Y )=0, θ(x, 0) = 1 (1 (2πX)). 2 T vuz t t t y u w, tut tw- vt [13] 2 φ X + 2 φ 2 Y = (Uθ) (Vθ) 2 Y X. (16) Wt w uy t: φ(x, 0) = π (πx) φ( 1 (Y ),Y)=φ( 2 (Y ),Y)=φ(X, Y )=0. (17) 4 Rut Du T yz t u ut, t v ut t vuy t FPDE 6.17 P. FPDE tw w t t y t tu t t t ut yt t t t. T, t v t yt t tu utut t ut. I t t, t tt t Dy u, Ry u wv tu. T ut t vy vu t t y y t, t t w utut FPDE t w u vu. I t tuy, t t tz t t t vu D, R λ. Cutt v ut vu D = R = v w t ([1],[9]). A, t wv tu v tu ([9]). T t t,ar, u uut t 1 2, tvy. Buy t w tut v y E.(15),(16) (17). St, t t t vy tt t w t utt u ut t t t vty. F.2. w t ut D w F.2()-2() t ut D =10 2 F.2()-2() D =10 4. St utt tt u ut yt wt t t t vt t ψ =0.0 u tt t t tv vu t t tv. T t t t t u wy tt tv tv v t-w w ut tt, tvy. T w v w t t tt t w tt w D. T u vu t ut F.2() ψ =7.5 tuy t ψ =0.16

7 Sut tu vt t u 2839 w F.2(). T ttu tut t tt. I F.2(), t t t t u w t tu tut t w D w F.2(). D D y t t. Ht F.2 w tt t w t tt t t t t w t tut t t tt. t v y z A D E B C w u E : 7.50 D : 7.00 C : 6.50 B : 6.00 A : 5.50 z : 5.00 y : 4.50 : 4.00 w : 3.50 v : 3.00 : : : : : : :-6.00 : :-7.00 :-7.50 t u : 1.00 t : 0.95 : 0.90 : 0.85 : 0.80 : 0.75 : 0.70 : 0.65 :0.60 : 0.55 : 0.50 : 0.45 : 0.40 : 0.35 : 0.30 : 0.25 : 0.20 : 0.15 : 0.10 : 0.05 : 0.00 v : 3.30 u : 3.00 t : 2.70 : 2.40 : 2.10 : 1.80 : 1.50 : 1.20 : 0.90 : 0.60 : : : : : : : : : : () () () : 0.16 : 0.14 : 0.12 : 0.10 :0.08 : 0.06 : 0.04 : 0.02 : 0.00 :-0.02 :-0.04 : :-0.08 :-0.10 : :-0.14 :-0.16 u : 1.00 t : 0.95 : 0.90 : 0.85 : 0.80 : 0.75 : 0.70 : 0.65 :0.60 : 0.55 : 0.50 : 0.45 : 0.40 : 0.35 : 0.30 : 0.25 : 0.20 : 0.15 : 0.10 : 0.05 : 0.00 u t v : 3.30 u : 3.00 t : 2.70 : 2.40 : 2.10 : 1.80 : 1.50 : 1.20 : 0.90 : 0.60 : 0.30 : 0.00 : : : : : : : : : : () () () Fu 2: St (t), t () t (t) R =10 5, λ =0.05, D =10 2 (v), D =10 4 (tt). A R t 10 3 (F.3), t v tt t tty ut t t vu wt R =10 5 (F.2()). S t t D, t tu ttu t tut w R u. T ut t vy wv tu y y t (F.4). It t tt t w tw vt wvy w tt u t t t u. Mv, t w tt wt vu wv tu. F λ = 0.02, t u vu t ut ψ =9.0 ψ =5.5 w λ t 1.0.

8 2840 P. S S. Wtyu : 4.50 : 4.00 : 3.50 : 3.00 : 2.50 : 2.00 : 1.50 : 1.00 : 0.50 : 0.00 : :-1.00 :-1.50 : : : : :-4.00 : S = -2 u : 1.00 t : 0.95 : 0.90 : 0.85 : 0.80 : 0.75 : 0.70 : 0.65 : 0.60 : 0.55 : 0.50 : 0.45 : 0.40 : 0.35 : 0.30 : 0.25 : 0.20 : 0.15 : 0.10 : 0.05 : 0.00 v : 3.30 u : 3.00 t : 2.70 : 2.40 : 2.10 : 1.80 : 1.50 : 1.20 : 0.90 : 0.60 : 0.30 : 0.00 : : : : : : : : :-2.70 : () () () Fu 3: St (t), t () t (t) D =10 2, λ =0.05, R =10 3. : 9.00 : 8.00 : 7.00 : 6.00 : 5.00 : 4.00 : 3.00 : 2.00 : 1.00 : 0.00 : :-2.00 :-3.00 : : :-6.00 : :-8.00 : z t w u y v C A B C : 7.00 A : 6.00 y : 5.00 w : 4.00 u : 3.00 : 2.00 : 1.50 : 1.00 : 0.50 : 0.00 : :-1.00 : : : : : : : u t v w w : 5.50 v : 5.00 t : 4.00 : 3.00 : 2.50 : 2.00 : 1.50 : 1.00 : 0.50 : 0.00 : : : :-2.00 :-2.50 : :-4.00 :-5.00 : () () () Fu 4: St t wv tu R = 10 5, D = 10 2, λ =0.02, 0.06, 1.0, tvy. S t t t t, t ut t w. 5 Cu T t w vtt t tu vt u u u tt tw vt w wvy. T u-tut u t t. H, t u. T t tuy t t t Dy u, Ry u wv tu tu vt y t ut vt,

9 Sut tu vt t u 2841 tu y. T yz t, t v ut t tw FPDE 6.17 P. Itt ut t y y t, t t. T vu Ry Dy u v w ty. T R v I t u wt u, D u t t w t. I t v ty, t D tw St w vu t utt tt t D t tt vt. I t, t tu t t tt wt w D. I t R, t uvt t uyy v w. It v tt R t tt t u w. T wv tu t t w tty t vty, tt, t w tut y ut t t tu. T wvy w t ttu t tut. ACKNOWLEDGEMENTS. T (ty) ut y Ct E Mtt, t C H Eut, T. T ut wu t t Dtt Mtt, Futy S, K K Uvty (T) utt u y t w. R [1] T. B, S. Ry, A. S I. P, Ft t ut tu vt w tz u wt u u u t u -u t, Itt Ju Ht M T, 52 (2009), [2] T. B, S. Ry, B. K A.R. B, Ft t y tu vt w tu u u t u -u t t t w, Itt Ju Ht M T, 51 (2008), [3] A. K, H.A. Ozt Y. B, T t Pt u tu vt tu u wt z t w, Itt Ju Ht M T, 34 (2007), [4] H. A L. N, L tu vt t tu -t: u y uy t, Ey Bu, 33 (2000),

10 2842 P. S S. Wtyu [5] H. A L. N, Nu ut uyt w tu -t u wt y uy t, Ey Bu, 33 (2000), [6] P. S S. Wtyu, Nu tuy tu vt tu w t ttu ut t t, L Ju A S, 2 (2011), [7] A. D M.K. D, L tu vt t vty wt ty v w ttu, Itt Ju Ht M T, 48 (2005), [8] A. D M.K. D, Ntu vt vty wt wvy w t w uy t t t, ASME Ju Ht T, 128 (2006), [9] A. D M.K. D, Ht t t vuzt tu vt t vty, Itt Ju Ht M T, 51 (2008), [10] H.F. Ozt, E. Au-N, Y. V A. C, Ntu vt wvy u wt vut t u, Itt Ju T S, 50 (2011), [11] M. Styty, T. B, S. Ry I. P, Sty tu vt w u vty wt u u y t w(), Itt Ju Ht M T, 50 (2007), [12] J.N. Ry, A tut t t t t t, MGw-H, Nw Y, [13] T. B, G. Av S. Ry, Vuzt t w u t tu vt wt tu vt u B t t, Itt Ju Ht M T, 52 (2009), Rv: Juy, 2012

/99 $10.00 (c) 1999 IEEE

/99 $10.00 (c) 1999 IEEE P t Hw Itt C Syt S 999 P t Hw Itt C Syt S - 999 A Nw Atv C At At Cu M Syt Y ZHANG Ittut Py P S, Uvty Tuu, I 0-87, J Att I t, w tv t t u yt x wt y tty, t wt tv w (LBSB) t. T w t t x t tty t uy ; tt, t x

More information

Available online Journal of Scientific and Engineering Research, 2016, 3(6): Research Article

Available online  Journal of Scientific and Engineering Research, 2016, 3(6): Research Article Av www.. Ju St E R, 2016, 3(6):131-138 R At ISSN: 2394-2630 CODEN(USA): JSERBR Cutvt R Au Su H Lv I y t Mt Btt M Zu H Ut, Su, W Hy Dtt Ay Futy Autu, Uvt Tw, J. Tw N. 9 P, 25136,Wt Sut, I, E-: 65@y. Att

More information

SHORT WAY SYMMETRY/SYMMETRICAL SYNTHETIC TREAD TELEVISION VERTICAL VITREOUS VOLUME. 1 BID SET No. Revisions / Submissions Date CAR

SHORT WAY SYMMETRY/SYMMETRICAL SYNTHETIC TREAD TELEVISION VERTICAL VITREOUS VOLUME. 1 BID SET No. Revisions / Submissions Date CAR //0 :: T U 0 : /" = '-0" 0 0 0 View ame T W T U T UT 0 0 T T U 0 U T T TT TY V TT TY T. 00' - 0" T U T T U T T U U ( ) '-" T V V U T W T T U V T U U ( ) T T 0 T U XT W T WW Y TT T U U ( ) U WW00 T U W

More information

Differentiation of allergenic fungal spores by image analysis, with application to aerobiological counts

Differentiation of allergenic fungal spores by image analysis, with application to aerobiological counts 15: 211 223, 1999. 1999 Kuw Puss. Pt t ts. 211 tt u ss y yss, wt t t uts.. By 1, S. s 2,EuR.Tvy 2 St 3 1 tt Ss, R 407 Bu (05), Uvsty Syy, SW, 2006, ust; 2 st ty, v 4 Bu u (6), sttut Rsty, Uvsty Syy, SW,

More information

Asynchronous Training in Wireless Sensor Networks

Asynchronous Training in Wireless Sensor Networks u t... t. tt. tt. u.. tt tt -t t t - t, t u u t t. t tut t t t t t tt t u t ut. t u, t tt t u t t t t, t tt t t t, t t t t t. t t tt u t t t., t- t ut t t, tt t t tt. 1 tut t t tu ut- tt - t t t tu tt-t

More information

Econometric modelling and forecasting of intraday electricity prices

Econometric modelling and forecasting of intraday electricity prices E y y Xv:1812.09081v1 [q-.st] 21 D 2018 M Nw Uvy Duu-E F Z Uvy Duu-E D 24, 2018 A I w w y ID 3 -P G Iy Cuu Ey M u. A uv u uy qu-uy u y. W u qu u-- vy - uy. T w u. F u v w G Iy Cuu Ey M y ID 3 -P vu. T

More information

Fuzzy Reasoning and Optimization Based on a Generalized Bayesian Network

Fuzzy Reasoning and Optimization Based on a Generalized Bayesian Network Fuy R O B G By Nw H-Y K D M Du M Hu Cu Uvy 48 Hu Cu R Hu 300 Tw. @w.u.u.w A By w v wy u w w uy. Hwv u uy u By w y u v w uu By w w w u vu vv y. T uy v By w w uy v v uy. B By w uy. T uy v uy. T w w w- uy.

More information

2 u Du, k Hu Dv Hu, y H. u Cu j u qu u. Nv. v uy. Cu Hu F A H. qu Cu.. Cu j 1980, u V, v Nu My O k. v u u. A G C. My u v k, 2.5 H v v u / u v u v k y

2 u Du, k Hu Dv Hu, y H. u Cu j u qu u. Nv. v uy. Cu Hu F A H. qu Cu.. Cu j 1980, u V, v Nu My O k. v u u. A G C. My u v k, 2.5 H v v u / u v u v k y H HE 1016 M EEING OF HE ODIE CLU 1,016 Cu 7:30.. D 11, 2007 y W L Uvy. C : Pu A y: Ov 25 x u. Hk, u k MA k D u y Hu, u G, u C C, MN C, Nk Dv Hu, MN, u K A u vu v. W y A Pku G, G u. N EW UINE: D, Cu, 22

More information

BLUE LINE TROLLEY STATION IMPROVEMENTS

BLUE LINE TROLLEY STATION IMPROVEMENTS TUT GT DD T T TUT HU GT WTH HG GHT G TZ # - + V Y 0/00 HZ GT WTH HG - + = U& PV-50 #555- P JUT X GHT G & DD. HG GHT D P UT UT Y TW P GT WTH HG GHT G & P DT P UT # - + U& P-50 #500-0 UT Y W/HVY DUTY TT

More information

CONSTRUCTION DOCUMENTS

CONSTRUCTION DOCUMENTS //0 :: 0 0 OV Y T TY O YTO: TY O YTO W # : U.. O OVTO 00 WT V V, OO OTUTO OUT U 0, 0 UTO U U \\d\ayton rojects\ayton nternational irport\.00 Y ustoms acility\\rchitecture\ rocessing enovation_entral.rvt

More information

Solutions to Homework 3

Solutions to Homework 3 Solutions to Homework 3 Section 3.4, Repeated Roots; Reduction of Order Q 1). Find the general solution to 2y + y = 0. Answer: The charactertic equation : r 2 2r + 1 = 0, solving it we get r = 1 as a repeated

More information

Mouse-Human Experimental Epigenetic Analysis Unmasks Dietary Targets and Genetic Liability for Diabetic Phenotypes

Mouse-Human Experimental Epigenetic Analysis Unmasks Dietary Targets and Genetic Liability for Diabetic Phenotypes C M Ru Mu-Hu Ex E Ay U Dy T G Ly D Py M L. Muu,,, Mu M. S,,, Aw E. J,,, X L,, H K, P M, Yuyu L, V Ruz,, Ax D, M Hu, C L, M MCy,,, E Näu, Ju R. Z, G. W W,, Aw P. F,, * D M, J H Uvy S M, N W S, B, MD, USA

More information

13 Congruent Circles in a Circle

13 Congruent Circles in a Circle B - g zu Agb u G bu B Agb Gy g z u Agb u G Vu B ä bu g zu Agb u Agb G N hyh Gy bu D kg Agb Gy Vu gu Vu N N - F F Fhvz u IV h D kg H hyh Sz D Hugy kg gu Ab kg gu kw qu gu I h F F x gu hw gu Fhvz u Kvz qugh

More information

S J M I PAC T A F CT R O : CR E D EP

S J M I PAC T A F CT R O : CR E D EP u Cu R 5 N 3 07 46-5 Cyg Rg Rv R vw u bu K m z : Ov vw k Ckby D R S, Dm S, U vy Gu Bg,, W Bg, y Rv: 09-0- 07 Rv: 4-0- 07 : 8-0- 07 C g u: k C kby D R S, Dm S, Uvy Gu Bg,, W Bg, b w mv uy ug bu mu bu km

More information

A Step by Step Guide Chris Dew: Clinical Indicators Programme Manager Health and Social Care Information Centre

A Step by Step Guide Chris Dew: Clinical Indicators Programme Manager Health and Social Care Information Centre Mug Quy ug C Quy I, M Db A S by S Gu C Dw: C I Pg Mg H S C If C 1 Ev Cx Sy w g: A w y f g, vg, ug f, ub u Nw uu b bw NHS Eg, Pub H Eg, H S C If C (HSCIC), D f H (DH) Gv A gu vu g Nw guy fu f uy b T Quy

More information

Computer Graphics. Viewing & Projections

Computer Graphics. Viewing & Projections Vw & Ovrvw rr : rss r t -vw trsrt: st st, rr w.r.t. r rqurs r rr (rt syst) rt: 2 trsrt st, rt trsrt t 2D rqurs t r y rt rts ss Rr P usuy st try trsrt t wr rts t rs t surs trsrt t r rts u rt w.r.t. vw vu

More information

T H E S C I E N C E B E H I N D T H E A R T

T H E S C I E N C E B E H I N D T H E A R T A t t R u r s - L x C t I. xtr turs t Lx Ct Rurs. Rr qurtr s s r t surt strutur. Ts Att Rurs rv ut us, s srt t tr t rtt rt yur t w yu ru. T uqu Lx st ut rv ss ts ss t t y rt t tys t r ts w wr rtts. Atrx

More information

Three Phase Asymmetrical Load Flow for Four-Wire Distribution Networks

Three Phase Asymmetrical Load Flow for Four-Wire Distribution Networks T Aytl Lo Flow o Fou-W Dtuto Ntwo M. Mo *, A. M. Dy. M. A Dtt o Eltl E, A Uvty o Toloy Hz Av., T 59, I * El: o8@yoo.o Att-- Mjoty o tuto two ul u to ul lo, yty to l two l ut. T tt o tuto yt ult y o ovt

More information

THIS PAGE DECLASSIFIED IAW E

THIS PAGE DECLASSIFIED IAW E THS PAGE DECLASSFED AW E0 2958 BL K THS PAGE DECLASSFED AW E0 2958 THS PAGE DECLASSFED AW E0 2958 B L K THS PAGE DECLASSFED AW E0 2958 THS PAGE DECLASSFED AW EO 2958 THS PAGE DECLASSFED AW EO 2958 THS

More information

On Hamiltonian Tetrahedralizations Of Convex Polyhedra

On Hamiltonian Tetrahedralizations Of Convex Polyhedra O Ht Ttrrzts O Cvx Pyr Frs C 1 Q-Hu D 2 C A W 3 1 Dprtt Cputr S T Uvrsty H K, H K, C. E: @s.u. 2 R & TV Trsss Ctr, Hu, C. E: q@163.t 3 Dprtt Cputr S, Mr Uvrsty Nwu St. J s, Nwu, C A1B 35. E: w@r.s.u. Astrt

More information

FilfidatiPm 51mazi6umn1I40171mhz4nnin15miTtiuvintfr, b 1,1411.1

FilfidatiPm 51mazi6umn1I40171mhz4nnin15miTtiuvintfr, b 1,1411.1 'h ldflu D w ) l blv JLfffTU f8fltflud dbw uuu vultj @@ @ DJ b bub LD ftujf:ttvtt t:9u zfty f/d:thlvtuuzytvvu (Ttulu) lfdt zuhzttuvtf b uvj:ulludlutluwul'ut'jj/fll ltttvtulvlztvfvt tt tluu bb b(ttd ulfu

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MATHEMATICS ACADEMIC YEAR / EVEN SEMESTER QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MATHEMATICS ACADEMIC YEAR / EVEN SEMESTER QUESTION BANK KINGS COLLEGE OF ENGINEERING MA5-NUMERICAL METHODS DEPARTMENT OF MATHEMATICS ACADEMIC YEAR 00-0 / EVEN SEMESTER QUESTION BANK SUBJECT NAME: NUMERICAL METHODS YEAR/SEM: II / IV UNIT - I SOLUTION OF EQUATIONS

More information

Lecture Notes in Mathematics. A First Course in Quasi-Linear Partial Differential Equations for Physical Sciences and Engineering Solution Manual

Lecture Notes in Mathematics. A First Course in Quasi-Linear Partial Differential Equations for Physical Sciences and Engineering Solution Manual Lecture Notes in Mathematics A First Course in Quasi-Linear Partial Differential Equations for Physical Sciences and Engineering Solution Manual Marcel B. Finan Arkansas Tech University c All Rights Reserved

More information

R a. Aeolian Church. A O g C. Air, Storm, Wind. P a h. Affinity: Clan Law. r q V a b a. R 5 Z t 6. c g M b. Atroxic Church. d / X.

R a. Aeolian Church. A O g C. Air, Storm, Wind. P a h. Affinity: Clan Law. r q V a b a. R 5 Z t 6. c g M b. Atroxic Church. d / X. A M W A A A A R A O C A () A 6 A A G A A A A A A-C Au A A P 0 V A T < Au J Az01 Az02 A Au A A A A R 5 Z 6 M B G B B B P T Bu B B B B S B / X B A Cu A, S, W A: S Hu Ru A: C L A, S, F, S A, u F C, R C F

More information

Chapter 5: Quantization of Radiation in Cavities and Free Space

Chapter 5: Quantization of Radiation in Cavities and Free Space Quu O f Ph Ol Fh R Cll vy Ch 5: Quz f R Cv F S 5 Cll ly 5 Cll Cvy ly Mxwll u f lg J 4 h lv l C fl vy W f h g f h vy Th vy u luly ll W l u h J Cvy F Mxwll u v h wv u Th v u lv h f h fu h vy I w wh h v l

More information

A TYP A-602 A-304 A-602 A-302 GRADE BEAM SEE 95% COMPACTED STRUCTURAL FILL A '-0"

A TYP A-602 A-304 A-602 A-302 GRADE BEAM SEE 95% COMPACTED STRUCTURAL FILL A '-0 W W/TITI -0 X U I I X TITI TY S W TYS TIS X W S SU XISTI -0-0 -0-0 -0-0 ' - " ' - " ' - " ' - " ' - " ' - /" ' - /" ' - " -STUTU I -0 ' - ' - " " ' - " " 0' - " ' - U I S STUT W'S TY UTI W S STUT W'S TY

More information

Summer 2017 MATH Solution to Exercise 5

Summer 2017 MATH Solution to Exercise 5 Summer 07 MATH00 Solution to Exercise 5. Find the partial derivatives of the following functions: (a (xy 5z/( + x, (b x/ x + y, (c arctan y/x, (d log((t + 3 + ts, (e sin(xy z 3, (f x α, x = (x,, x n. (a

More information

Math 220A - Fall 2002 Homework 5 Solutions

Math 220A - Fall 2002 Homework 5 Solutions Math 0A - Fall 00 Homework 5 Solutions. Consider the initial-value problem for the hyperbolic equation u tt + u xt 0u xx 0 < x 0 u t (x, 0) ψ(x). Use energy methods to show that the domain of dependence

More information

N C GM L P, u u y Du J W P: u,, uy u y j S, P k v, L C k u, u GM L O v L v y, u k y v v QV v u, v- v ju, v, u v u S L v: S u E x y v O, L O C u y y, k

N C GM L P, u u y Du J W P: u,, uy u y j S, P k v, L C k u, u GM L O v L v y, u k y v v QV v u, v- v ju, v, u v u S L v: S u E x y v O, L O C u y y, k Qu V vu P O B x 1361, Bu QLD 4575 C k N 96 N EWSLEE NOV/ DECE MBE 2015 E N u uu L O C 21 Nv, 2 QV v Py Cu Lv Su, 23 2 5 N v, 4 2015 u G M v y y : y quu u C, u k y Bu k v, u u vy v y y C k! u,, uu G M u

More information

FH6 GENERAL CW CW CHEMISTRY # BMC10-4 1BMC BMC10-5 1BMC10-22 FUTURE. 48 x 22 CART 1BMC10-6 2NHT-14,16,18 36 X x 22.

FH6 GENERAL CW CW CHEMISTRY # BMC10-4 1BMC BMC10-5 1BMC10-22 FUTURE. 48 x 22 CART 1BMC10-6 2NHT-14,16,18 36 X x 22. 0 //0 :0: TR -00 A 0-W -00 00-W -00 A 00-W R0- W- & W- U RTAY TA- RAT WT AA TRATR R AT ' R0- B U 0-00 R0- B- B0- B0- R0- R0- R0- R0- B0- R0-0 B0- B0- A. B0- B0- UTR TAT 0-00 R0-,, T R-,,0 0-0 A R- R0-,

More information

duct end blocks filters lamps filters duct end blocks filters lamps filters metric

duct end blocks filters lamps filters duct end blocks filters lamps filters metric S Iu N 33 t t ut ut t t ut t ut t t t ut t ut ut t t t ut t ut ut t ut t t t ut ut t t t ut t ut ut t t t ut t ut ut t t t ut t ut t t t ut t t t t ut ut t t t ut t ut t ut t t t t ut ut t t ut t t t t

More information

68X LOUIE B NUNN PKWYLOUIE B NUNN PKWY NC

68X LOUIE B NUNN PKWYLOUIE B NUNN PKWY NC B v Lk Wf gmt A Ix p 86 12'W 86 1'W 85 56'W 85 54'W 85 52'W 85 5'W 37 'N 68X Ggw LOI B NNN KWYLOI B NNN KWY N 36 58'N WAN p 1 36 56'N utt' v vt A S p 4 B v Lk Bg Stt Ntu v BAN 36 52'N 36 5'N p 2 Spg B

More information

Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows

Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows Alexander Chesnokov Lavrentyev Institute of Hydrodynamics Novosibirsk, Russia chesnokov@hydro.nsc.ru July 14,

More information

WELL-POSEDNESS FOR HYPERBOLIC PROBLEMS (0.2)

WELL-POSEDNESS FOR HYPERBOLIC PROBLEMS (0.2) WELL-POSEDNESS FOR HYPERBOLIC PROBLEMS We will use the familiar Hilbert spaces H = L 2 (Ω) and V = H 1 (Ω). We consider the Cauchy problem (.1) c u = ( 2 t c )u = f L 2 ((, T ) Ω) on [, T ] Ω u() = u H

More information

Lecture two. January 17, 2019

Lecture two. January 17, 2019 Lecture two January 17, 2019 We will learn how to solve rst-order linear equations in this lecture. Example 1. 1) Find all solutions satisfy the equation u x (x, y) = 0. 2) Find the solution if we know

More information

MASSALINA CONDO MARINA

MASSALINA CONDO MARINA p p p p p G.. HWY. p p.. HWY... HWY. : HG, 00 T. TY, 0 Y 0 T o. B WG T T 0 okia 0 icrosoft orporatio - VY - T - T - GG - HBT - TT - T - TT T - TWT T 0 - T TT T - T TT T T T - TTY T - - T VT - K T ( H ),±

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Exam 2, Solution 4. Jordan Paschke

Exam 2, Solution 4. Jordan Paschke Exam 2, Solution 4 Jordan Paschke Problem 4. Suppose that y 1 (t) = t and y 2 (t) = t 3 are solutions to the equation 3t 3 y t 2 y 6ty + 6y = 0, t > 0. ( ) Find the general solution of the above equation.

More information

Contents FREE!

Contents FREE! Fw h Hu G, h Cp h w bu Vy Tu u P. Th p h pk wh h pp h. Th u y D 1 D 1 h h Cp. Th. Th hu K E xp h Th Hu I Ch F, bh K P pp h u. Du h p, K G u h xp Ch F. P u D 11, 8, 6, 4, 3. Th bk w K pp. Wh P p pp h p,

More information

BUILDER SERIES BALL KNOBSETS

BUILDER SERIES BALL KNOBSETS BU B NBT FTU NTT P N Y HN GUNT YWY 5 PN -YB, WT PTY YNG NTUTN YNG () T YNG () FT 1 3 8" T 1 3 4" TH 2 1 1 4" U N JUTB T TH 2 3 8" 2 3 4" BT UTTN PTN FNH # QTY. G B NB N T FNT/B NTY PH B (U3) 36-4410 30

More information

Distributed Set Reachability

Distributed Set Reachability Dstt St Rty S Gj Mt T Mx-P Isttt Its, Usty U Gy SIGMOD 2016, S Fs, USA Dstt St Rty Dstt St Rty (DSR) s zt ty xt t sts stt stt Dstt St Rty 2 Dstt St Rty Dstt St Rty (DSR) s zt ty xt t sts stt stt Dstt St

More information

INVITATION FOR BID Exploratory Geothermal Drilling Services Department of Natural Resources (DNR)

INVITATION FOR BID Exploratory Geothermal Drilling Services Department of Natural Resources (DNR) V F B 21064 xy G v f u u ( B u: y : : u : -B ( u /k Wy y 30 2 1500 ff y W 98501 Bx 41017 y W 98504-1017 W 360-407-9399 w@wv y 18 2012 2:00 1500 ff 2331 y W 98501 ://wwwwv//u-f ://wwwwv/v/-k B U B V BF

More information

Review. To solve ay + by + cy = 0 we consider the characteristic equation. aλ 2 + bλ + c = 0.

Review. To solve ay + by + cy = 0 we consider the characteristic equation. aλ 2 + bλ + c = 0. Review To solve ay + by + cy = 0 we consider the characteristic equation aλ 2 + bλ + c = 0. If λ is a solution of the characteristic equation then e λt is a solution of the differential equation. if there

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 15 Heat with a source So far we considered homogeneous wave and heat equations and the associated initial value problems on the whole line, as

More information

T e c h n i c u e. SOUTH'S LIVEST COLLEGE WEEKLY Georgia School of Technology. Phi Kappa Tau Frat Installed With WeekEnd of Activity mm

T e c h n i c u e. SOUTH'S LIVEST COLLEGE WEEKLY Georgia School of Technology. Phi Kappa Tau Frat Installed With WeekEnd of Activity mm V X V U' V KY y,!!j[»jqu,, Y, 9 Y, 99 6 J K B B U U q : p B B By VV Y Kpp vy Y 7-8 y p p Kpp, z, p y, y, y p y, Kpp,, y p p p y p v y y y p, p, K, B, y y, B v U, Uvy, x, ; v y,, Uvy ; J, p p ( 5),, v y

More information

Net Wt. 15 lbs. (6.8 kg) Covers 5,000 Sq. Ft. CAUTION CAUTION L AW N Storage and Disposal KEEP OUT OF REACH OF CHILDREN. Spreader Directions

Net Wt. 15 lbs. (6.8 kg) Covers 5,000 Sq. Ft. CAUTION CAUTION L AW N Storage and Disposal KEEP OUT OF REACH OF CHILDREN. Spreader Directions L W OI: h. U y. f uy h u, h Wy h h. If, u h u. uy Hz Hu D UIO u y. v h y h. U v y h u y y. Wh huhy h f h f, k, h u, u. F H y y y h f 1-2 u. IF I Y: v, f, f h f u, h u y. f v. D : F k h f h yu v. h k h.

More information

MAHARASHTRA STATE POWER GENERATION COMPANY LIMITED [Plot No. G-9, Prakashgad, Bandra (E), Mumbai ] Website:

MAHARASHTRA STATE POWER GENERATION COMPANY LIMITED [Plot No. G-9, Prakashgad, Bandra (E), Mumbai ] Website: MAHARASHTRA STATE POWER GENERATION COMPANY LIMITED [P N. G-9, Pkh, B (E), Mumb 400051] Wb: www.h. PBLIC NOTICE Su bj MSPGCL Au P Rvw (APR) P FY 2008-09 u MYT mwk, u u FY 2007-08 m FY 2009-10 (C N 115 2008)

More information

Trade Patterns, Production networks, and Trade and employment in the Asia-US region

Trade Patterns, Production networks, and Trade and employment in the Asia-US region Trade Patterns, Production networks, and Trade and employment in the Asia-U region atoshi Inomata Institute of Developing Economies ETRO Development of cross-national production linkages, 1985-2005 1985

More information

First order wave equations. Transport equation is conservation law with J = cu, u t + cu x = 0, < x <.

First order wave equations. Transport equation is conservation law with J = cu, u t + cu x = 0, < x <. First order wave equations Transport equation is conservation law with J = cu, u t + cu x = 0, < x

More information

D ON MY HONOR, I WILL TRY.. AISI S E R S O DASS A B BR AM OWNI S E R S I GIRL SCOUTS! JUN SENIO IORS CAD E TTES

D ON MY HONOR, I WILL TRY.. AISI S E R S O DASS A B BR AM OWNI S E R S I GIRL SCOUTS! JUN SENIO IORS CAD E TTES ON MY HONOR, I WILL TRY.. DAISI ES AMBASSADORS BROWNI ES I JUNIORS 2017-2018 GIRL SCOUTS! CAD E TTES SENIORS Wm! W' I? W'v Pm G, v, m m G S x. I, y' m w x m, v, v v G S G W M. T v wm.. I y v y q q m, 888.474.9686

More information

144 Chapter 3. Second Order Linear Equations

144 Chapter 3. Second Order Linear Equations 144 Chapter 3. Second Order Linear Equations PROBLEMS In each of Problems 1 through 8 find the general solution of the given differential equation. 1. y + 2y 3y = 0 2. y + 3y + 2y = 0 3. 6y y y = 0 4.

More information

Data, frameworks, and financial instrument identification

Data, frameworks, and financial instrument identification , fmw, f um f U f h F um Gb f (FG) Rh Rb b57@bmb. ymby uy R, mb L.. F; WW 2017, -RG v f b 17-18, 2017; Wh.. vmb 2-3, 2017; h Gb, -ju, -fu vw Mu f x f f um ff b ; y Ly mb Exhu M ju Fu u (fmb )., m wh Wh

More information

T T - PTV - PTV :\er\en utler.p\ektop\ VT \9- T\_ T.rvt T PT P ode aterial. Pattern / olor imenion omment PT T T ode aterial. Pattern / olor imenion omment W T ode aterial. Pattern / olor imenion omment

More information

Dierential Geometry Curves and surfaces Local properties Geometric foundations (critical for visual modeling and computing) Quantitative analysis Algo

Dierential Geometry Curves and surfaces Local properties Geometric foundations (critical for visual modeling and computing) Quantitative analysis Algo Dierential Geometry Curves and surfaces Local properties Geometric foundations (critical for visual modeling and computing) Quantitative analysis Algorithm development Shape control and interrogation Curves

More information

LEVEL 2 ASSESSMENT TASK. WRITING Can write a Personal Response

LEVEL 2 ASSESSMENT TASK. WRITING Can write a Personal Response W f f N Su W S 4 6 Vu A Sybu d f S 4 6 P, Vd d D Im d S 5 6 Vu D Sybu. LEVEL 2 ASSESSMENT TASK ASSESSMENT CONDITIONS Tm d: u 50 mu E d/ Bu d MAY NOT b ud U m f vbuy Gmm d d f m dmb TASK: W k: H D C/A By

More information

The Hilltopper-20 a compact 20M CW transceiver. Offered by the 4-State QRP Group

The Hilltopper-20 a compact 20M CW transceiver. Offered by the 4-State QRP Group T H-2 m 2M CW v Off 4-S QRP Gu T H-2 Tv KSWL v O 28 u: u v: 4 43 MHz Tu: Hz /2 Hz Tm uu: W m Rv u : x 6 ma Sz: 43 x 39 x 7, 8 z u- k- O--f CW, m m A/B, 8-3 m Ajum: BO m, -m u C u u: Au M SMT P 2: P- D:

More information

A BRIEF INTRODUCTION INTO SOLVING DIFFERENTIAL EQUATIONS

A BRIEF INTRODUCTION INTO SOLVING DIFFERENTIAL EQUATIONS MATTHIAS GERDTS A BRIEF INTRODUCTION INTO SOLVING DIFFERENTIAL EQUATIONS Universität der Bundeswehr München Addresse des Autors: Matthias Gerdts Institut für Mathematik und Rechneranwendung Universität

More information

LOCAL NEWS. PAVBBS any at this offioe. TAKE NOT IUE. AH accounts due the. firm qf MORRIS A' III HE mutt be paid to

LOCAL NEWS. PAVBBS any at this offioe. TAKE NOT IUE. AH accounts due the. firm qf MORRIS A' III HE mutt be paid to U Q -2 U- VU V G DDY Y 2 (87 U U UD VY D D Y G UY- D * (* ) * * D U D U q F D G** D D * * * G UX UUV ; 5 6 87 V* " * - j ; j $ Q F X * * «* F U 25 ](«* 7» * * 75! j j U8F j» ; F DVG j * * F DY U» *»q*

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 13: 3.4 Repeated Roots and Reduction Of Order

Lecture Notes for Math 251: ODE and PDE. Lecture 13: 3.4 Repeated Roots and Reduction Of Order Lecture Notes for Math 251: ODE and PDE. Lecture 13: 3.4 Repeated Roots and Reduction Of Order Shawn D. Ryan Spring 2012 1 Repeated Roots of the Characteristic Equation and Reduction of Order Last Time:

More information

GALERKIN TIME STEPPING METHODS FOR NONLINEAR PARABOLIC EQUATIONS

GALERKIN TIME STEPPING METHODS FOR NONLINEAR PARABOLIC EQUATIONS GALERKIN TIME STEPPING METHODS FOR NONLINEAR PARABOLIC EQUATIONS GEORGIOS AKRIVIS AND CHARALAMBOS MAKRIDAKIS Abstract. We consider discontinuous as well as continuous Galerkin methods for the time discretization

More information

PwC Middle East Spa Benchmarking Survey January - August 2012

PwC Middle East Spa Benchmarking Survey January - August 2012 www.pw.m/m Mdd E Sp Bhmkg Suvy Juy - Augu 2012 W pd p h u f PwhuCp () Sp Bhmk uvy f h p h Mdd E. Th h y bhmk p vg h Dd S, Dh, d Bu p g. Th Sp Bhmk Rp ud -uy b d h d v h pd fm Juy Augu 2012. Th Sp Bhmk

More information

READ T H E DATE ON LABEL A blue m a r k a r o u n d this notice will call y o u r attention to y o u r LOWELL. MICHIGAN, THURSDAY, AUGUST 29.

READ T H E DATE ON LABEL A blue m a r k a r o u n d this notice will call y o u r attention to y o u r LOWELL. MICHIGAN, THURSDAY, AUGUST 29. B U D D B < / UDY UU 29 929 VU XXXV Y B 5 2 $25 25 25 U 6 B j 3 $8 D D D VD V D D V D B B % B 2 D - Q 22: 5 B 2 3 Z D 2 5 B V $ 2 52 2 $5 25 25 $ Y Y D - 8 q 2 2 6 Y U DD D D D Y!! B D V!! XU XX D x D

More information

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort - 7 7 Z 8 q ) V x - X > q - < Y Y X V - z - - - - V - V - q \ - q q < -- V - - - x - - V q > x - x q - x q - x - - - 7 -» - - - - 6 q x - > - - x - - - x- - - q q - V - x - - ( Y q Y7 - >»> - x Y - ] [

More information

kind read i i i i i i

kind read i i i i i i T u Mu P W NNG: Wu 1J1:9 u P OUT, 1J1: 6-10. u u u, u u, u' u u. v v 53:10-1 1' LXX x, u b : P u, N u, v u u u ( P ' "5 v" k ) k z u) ( ( k, u) ku ( u, k k, ub) ( u b u) k ( b Mk u, Ju) 1 J1:9 T Pb- v

More information

Solutions to Homework 1, Introduction to Differential Equations, 3450: , Dr. Montero, Spring y(x) = ce 2x + e x

Solutions to Homework 1, Introduction to Differential Equations, 3450: , Dr. Montero, Spring y(x) = ce 2x + e x Solutions to Homewor 1, Introduction to Differential Equations, 3450:335-003, Dr. Montero, Spring 2009 problem 2. The problem says that the function yx = ce 2x + e x solves the ODE y + 2y = e x, and ass

More information

A symmetry-based method for constructing nonlocally related partial differential equation systems

A symmetry-based method for constructing nonlocally related partial differential equation systems A symmetry-based method for constructing nonlocally related partial differential equation systems George W. Bluman and Zhengzheng Yang Citation: Journal of Mathematical Physics 54, 093504 (2013); doi:

More information

Partial Differential Equations

Partial Differential Equations Part II Partial Differential Equations Year 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2015 Paper 4, Section II 29E Partial Differential Equations 72 (a) Show that the Cauchy problem for u(x,

More information

Math 266 Midterm Exam 2

Math 266 Midterm Exam 2 Math 266 Midterm Exam 2 March 2st 26 Name: Ground Rules. Calculator is NOT allowed. 2. Show your work for every problem unless otherwise stated (partial credits are available). 3. You may use one 4-by-6

More information

Mathematical and Information Technologies, MIT-2016 Mathematical modeling

Mathematical and Information Technologies, MIT-2016 Mathematical modeling 473 474 ρ u,t = p,x q,y, ρ v,t = q,x p,y, ω,t = 2 q + µ x,x + µ y,y, φ,t = ω, p,t = k u,x + v,y + β T,t, q,t = α v,x u,y 2 α ω + q/η, µ x,t = γ ω,x, µ y,t = γ ω,y, c T,t = 11 T,x + 12 T,y,x + 12 T,x +

More information

. p.1/31. Department Mathematics and Statistics Arizona State University. Don Jones

. p.1/31. Department Mathematics and Statistics Arizona State University. Don Jones Modified-Truncation Finite Difference Schemes. p.1/31 Department Mathematics and Statistics Arizona State University Don Jones dajones@math.asu.edu . p.2/31 Heat Equation t u = λu xx + f . p.2/31 Heat

More information

Partial Differential Equations, Winter 2015

Partial Differential Equations, Winter 2015 Partial Differential Equations, Winter 215 Homework #2 Due: Thursday, February 12th, 215 1. (Chapter 2.1) Solve u xx + u xt 2u tt =, u(x, ) = φ(x), u t (x, ) = ψ(x). Hint: Factor the operator as we did

More information

2 Lx H h , ug ,. Lx, h yph p g j g - pg g, pg g h h uy h, k. h p Uvy ' P g gz, u hy u u g h y h. P' k h, guy hh u, v u,. p p u h WW v

2 Lx H h , ug ,. Lx, h yph p g j g - pg g, pg g h h uy h, k. h p Uvy ' P g gz, u hy u u g h y h. P' k h, guy hh u, v u,. p p u h WW v h H HE 1005 EENG F HE RDE LU 1005 g. 17, 2006 Ry Wgh Z gy L Uvy. h: F S y: v 22 u gu. J y Hu, gu R D hy, gu F h E Pggy H, gu G S uy, gu u F u Sp g ppv hg. N EW USNESS: g u p 2006-2007 y. uy J Rg v u Juy

More information

Synthesizing and Modeling Human Locomotion Using System Identification

Synthesizing and Modeling Human Locomotion Using System Identification yz d Md H U y Id W UIMAN, Adé MONIN d J-P AUMOND AA - CNR 7 v d C R, 3077 T Cdx 4, F {,, j}@. Ab yz d b -d d. Hwv, yzd, w d. U y, w w d d d dy d. T d jy v d d w bdy. T dy y, w dd bk-bx, w w dd d d. W w

More information

The Model and Preliminaries Problems and Solutions

The Model and Preliminaries Problems and Solutions Chapter The Model and Preliminaries Problems and Solutions Facts that are recalled in the problems The wave equation u = c u + G(x,t), { u(x,) = u (x), u (x,) = v (x), u(x,t) = f (x,t) x Γ, u(x,t) = x

More information

129.00' Pond EXIST. TREES 100' WETLAND REVIEW LINE PROPOSED RESIDENCE EXIST. TREE TO REMAIN PROPOSED 4' HT. GATE 76'

129.00' Pond EXIST. TREES 100' WETLAND REVIEW LINE PROPOSED RESIDENCE EXIST. TREE TO REMAIN PROPOSED 4' HT. GATE 76' . W XST S S S SP T WY M P T S.. WTT MSS S PV- T S WS USS TWS T. V u.p.. S WS MSS T P V SM S WS. u.p.. MSS T UTS U WS, S PPS WS, S WS P ST SS XPS U USS TWS T.. MSS +/-, V..., 'VY' 'M' S MSU V WT TU TS.

More information

Winnie flies again. Winnie s Song. hat. A big tall hat Ten long toes A black magic wand A long red nose. nose. She s Winnie Winnie the Witch.

Winnie flies again. Winnie s Song. hat. A big tall hat Ten long toes A black magic wand A long red nose. nose. She s Winnie Winnie the Witch. Wnn f gn ht Wnn Song A g t ht Tn ong to A k g wnd A ong d no. no Sh Wnn Wnn th Wth. y t d to A ong k t Bg gn y H go wth Wnn Whn h f. wnd ootk H Wu Wu th t. Ptu Dtony oo hopt oon okt hng gd ho y ktod nh

More information

MIDTERM 1 PRACTICE PROBLEM SOLUTIONS

MIDTERM 1 PRACTICE PROBLEM SOLUTIONS MIDTERM 1 PRACTICE PROBLEM SOLUTIONS Problem 1. Give an example of: (a) an ODE of the form y (t) = f(y) such that all solutions with y(0) > 0 satisfy y(t) = +. lim t + (b) an ODE of the form y (t) = f(y)

More information

Evaluation of The Necessary of Agriculture Public Expenditure for Poverty Reduction and Food Security in Benin

Evaluation of The Necessary of Agriculture Public Expenditure for Poverty Reduction and Food Security in Benin MPRA Mu P RPE Av Evu N Aguu Pu Exu Pv Ru F Su B A C L Zg Uv E Lw O 010 O ://.u.u-u./447/ MPRA P N. 447, 7. Augu 010 0:17 UC qwugjkzxvqw ugjkzxvqwu gjkzxvqwug [ Evu N jkzxvqwugjkzx vqwugjkzxv qwugjkzxvqw

More information

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No xhibit 2-9/3/15 Invie Filing Pge 1841 f Pge 366 Dket. 44498 F u v 7? u ' 1 L ffi s xs L. s 91 S'.e q ; t w W yn S. s t = p '1 F? 5! 4 ` p V -', {} f6 3 j v > ; gl. li -. " F LL tfi = g us J 3 y 4 @" V)

More information

Discovery Guide. And now, the fight you came for. Welcome to Center Theatre Group and The Royale by Marco Ramirez

Discovery Guide. And now, the fight you came for. Welcome to Center Theatre Group and The Royale by Marco Ramirez Dvy G W C T G T Ry by M Rz S y 1900 w bk w w w Jy S Jk w y : b w vyw w. T w y vv b y b w w. Tk k b b. W w b x w b y b? w y k y v? w b? bw? y w? D y v w w b? b w? T b bx y wy. R vw w yw M Rz v w w. Tk b

More information

Carleson measures and elliptic boundary value problems Abstract. Mathematics Subject Classification (2010). Keywords. 1.

Carleson measures and elliptic boundary value problems Abstract. Mathematics Subject Classification (2010). Keywords. 1. 2 3 4 5 6 7 8 9 0 A 2 3 4 5 6 7 8 9 20 2 22 23 24 25 26 27 28 29 30 3 32 33 34 BMO BMO R n R n+ + BMO Q R n l(q) T Q = {(x, t) R n+ + : x I, 0 < t < l(q)} Q T Q dµ R n+ + C Q R n µ(t (Q)) < C Q Q 35 36

More information

arxiv: v1 [math.pr] 19 Aug 2014

arxiv: v1 [math.pr] 19 Aug 2014 A Multiplicative Wavelet-based Model for Simulation of a andom Process IEVGEN TUCHYN University of Lausanne, Lausanne, Switzerland arxiv:1408.453v1 [math.p] 19 Aug 014 We consider a random process Y(t)

More information

The first order quasi-linear PDEs

The first order quasi-linear PDEs Chapter 2 The first order quasi-linear PDEs The first order quasi-linear PDEs have the following general form: F (x, u, Du) = 0, (2.1) where x = (x 1, x 2,, x 3 ) R n, u = u(x), Du is the gradient of u.

More information

Fall 2001, AM33 Solution to hw7

Fall 2001, AM33 Solution to hw7 Fall 21, AM33 Solution to hw7 1. Section 3.4, problem 41 We are solving the ODE t 2 y +3ty +1.25y = Byproblem38x =logt turns this DE into a constant coefficient DE. x =logt t = e x dt dx = ex = t By the

More information

nd A L T O SOLO LOWELL. MICHIGAN. THURSDAY. APRIL Spring Activities Heads Up and Forward (Editorial By " T h e Committee'')

nd A L T O SOLO LOWELL. MICHIGAN. THURSDAY. APRIL Spring Activities Heads Up and Forward (Editorial By  T h e Committee'') - 6 7 8 9 3-6 7 8 9 3 G UDY 3 93 VU XXXV U XY F K FD D j V K D V FY G F D Y X K X DD Y j \ V F \ VD GD D U Y 78 K U D Y U Y 484?35 V 93 7 4 U x K 77 - D :3 F K > 6 D x F 5 - - x - G 7 43 8 D $35 K F $5

More information

Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer C2 b 2

Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer C2 b 2 Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer ringhofer@asu.edu, C2 b 2 2 h2 x u http://math.la.asu.edu/ chris Last update: Jan 24, 2006 1 LITERATURE 1. Numerical Methods for Conservation

More information

Section 2.4 Linear Equations

Section 2.4 Linear Equations Section 2.4 Linear Equations Key Terms: Linear equation Homogeneous linear equation Nonhomogeneous (inhomogeneous) linear equation Integrating factor General solution Variation of parameters A first-order

More information

Map A-2. Riparian Reserves, Late-Successional Reserves, and Adaptive Management Area Land Management Allocations.

Map A-2. Riparian Reserves, Late-Successional Reserves, and Adaptive Management Area Land Management Allocations. Appix A: Mp Mp A-. G pjt p. Mp A-. ipi v, Lt-Sui v, Aptiv Mgt A L Mgt Ati. Mp A-. t P gt ti witi t pjt (t giy Digt A u Wi Ivti A i t pjt buy). Mp A-. Attiv B Lggig yt,, u f uit i t pjt. Mp A-. Attiv B

More information

MATH 220: Problem Set 3 Solutions

MATH 220: Problem Set 3 Solutions MATH 220: Problem Set 3 Solutions Problem 1. Let ψ C() be given by: 0, x < 1, 1 + x, 1 < x < 0, ψ(x) = 1 x, 0 < x < 1, 0, x > 1, so that it verifies ψ 0, ψ(x) = 0 if x 1 and ψ(x)dx = 1. Consider (ψ j )

More information

TH THE 997 M EETING OF THE BRODIE CLUB th The 997 meeting of The Brodie Club was held on Nov. 15, R amsay Wright Zoological Laboratories at the Univer

TH THE 997 M EETING OF THE BRODIE CLUB th The 997 meeting of The Brodie Club was held on Nov. 15, R amsay Wright Zoological Laboratories at the Univer H HE 997 M EENG OF HE RODE CLU 997 m d Cu w d Nv 15, R my W Z L U 2005 Rm 432 C m: K Am S y: Ov w 19 mm d v u R my d P Add d M R, u Ed Add J my Hu, u Dvd Hu J Sdm, u J Yu mu 995 m w ppvd w m R Pwy d d

More information

(1 + 2y)y = x. ( x. The right-hand side is a standard integral, so in the end we have the implicit solution. y(x) + y 2 (x) = x2 2 +C.

(1 + 2y)y = x. ( x. The right-hand side is a standard integral, so in the end we have the implicit solution. y(x) + y 2 (x) = x2 2 +C. Midterm 1 33B-1 015 October 1 Find the exact solution of the initial value problem. Indicate the interval of existence. y = x, y( 1) = 0. 1 + y Solution. We observe that the equation is separable, and

More information

Crowds of eager worshippers trooping into the venue

Crowds of eager worshippers trooping into the venue LvWld Cv A lld y F uv Fdy m Juy ldg wk Fbuy, ud l gd LvWld Cv A Lg, Ng, l lg mg w P C ggd, Am F Ml Lv. Hly G-dzvu w Ld' y my. Adg P C, dd' ll mg. Ld lly lld m...h d l; w H wd. Cwd g w g vu AN APPNMEN WH

More information

Math 308 Exam I Practice Problems

Math 308 Exam I Practice Problems Math 308 Exam I Practice Problems This review should not be used as your sole source of preparation for the exam. You should also re-work all examples given in lecture and all suggested homework problems..

More information

Definition 3 (Continuity). A function f is continuous at c if lim x c f(x) = f(c).

Definition 3 (Continuity). A function f is continuous at c if lim x c f(x) = f(c). Functions of Several Variables A function of several variables is just what it sounds like. It may be viewed in at least three different ways. We will use a function of two variables as an example. z =

More information

Probe fire that killed 23

Probe fire that killed 23 V ' ( WUY J Y JUY 88 P k z ' ' F x k J K Y - P k k k Pz Pk k k 'J Pk k U k k - - k k Pz " " k x k k k W k k k ' z " x - " z k k k x j k k k k x k zz "' ' k " k k k» «K VU G k - k z k U k x (P) - P z

More information

Diff. Eq. App.( ) Midterm 1 Solutions

Diff. Eq. App.( ) Midterm 1 Solutions Diff. Eq. App.(110.302) Midterm 1 Solutions Johns Hopkins University February 28, 2011 Problem 1.[3 15 = 45 points] Solve the following differential equations. (Hint: Identify the types of the equations

More information

r R N S Hobbs P J Phelan B E A Edmeaes K D Boyce 2016 Membership ams A P Cowan D D J Robinson B J Hyam J S Foster A NAME MEMBERSHIP NUMBER

r R N S Hobbs P J Phelan B E A Edmeaes K D Boyce 2016 Membership ams A P Cowan D D J Robinson B J Hyam J S Foster A NAME MEMBERSHIP NUMBER ug bb K S bb h B E E ch Smth K t Sth E ugh m Cw b C w h T B ug bb K C t tch S bb h B E ch Smth K t Sth E ugh m Cw b S B C w Shh T ug bb K C tch S bb h ch Smth K t u Sth E m Cw b h S B C w O Shh T ug bb

More information

Lecture 13 The Fundamental Forms of a Surface

Lecture 13 The Fundamental Forms of a Surface Lecture 13 The Fundamental Forms of a Surface In the following we denote by F : O R 3 a parametric surface in R 3, F(u, v) = (x(u, v), y(u, v), z(u, v)). We denote partial derivatives with respect to the

More information

Estimation of State Noise for the Ensemble Kalman filter algorithm for 2D shallow water equations.

Estimation of State Noise for the Ensemble Kalman filter algorithm for 2D shallow water equations. Estimation of State Noise for the Ensemble Kalman filter algorithm for 2D shallow water equations. May 6, 2009 Motivation Constitutive Equations EnKF algorithm Some results Method Navier Stokes equations

More information