New Nano-structured Semiconductor Photocatalysts for Photocatalytic Solar Hydrogen Production

Size: px
Start display at page:

Download "New Nano-structured Semiconductor Photocatalysts for Photocatalytic Solar Hydrogen Production"

Transcription

1 2010 The 7th Korea-USA Nano Forum New Nano-structured Semiconductor Photocatalysts for Photocatalytic Solar Hydrogen Production JIN-OOK BAEG Jin-Ook Baeg Korea Research Institute of of Chemical Technology

2 Photocatalyst Application Environmental Remediation - Pollutant Treatment - Deodorization - Sterilization h Solar Energy Conversion - Water Splitting - H 2 S Splitting Energy Photo-induced reaction Pollutant (organic comp.) +O 2 G<0 (down hill) E G<0 The reaction irreversibly proceeds. degradation CO 2 + H 2 O + etc. Energy Light energy conversion reaction H 2 O Water splitting H 2 + O 2 G>0 (up hill) A back reaction easily proceeds.

3 Solar Energy Conversion for Hydrogen Production Photocatalytic Water Splitting for H 2 Production Solar light H 2 O Photocatalyst PV / hybrid H 2

4 Solar Energy h Solar Energy 1.74 x 10 5 TW Global l need 15.7 TW in ,000 times of Current world demands (~ 0.1% of the Earth s surface : 10% conversion efficiency )

5 Photocatalytic Water Splitting for Hydrogen Production h Conduction Band H 2 O O Valence Band h 2H 2 O 2H 2 + O 2 H 2 O H 2 Potent tial + h CB Band gap VB e - h + + H + / H2 0V O2/ H2O V

6 Energy Requirement for Overall Water Splitting 2 H 2 O 2H 2 + O 2 G = 237kJ/mol(E = - G /nf = -1.23V) Overpotentials for photo-splitting of water Reaction type Energy required ev Electron transfer at a cathode 0.2 Hole transfer at an anode 0.2 H 2 overpotential ti at a cathode 0.1 O 2 overpotential at an anode 0.5 Band bending for efficient charge separation at an anode 0.2 Total 1.2

7 2400 Solar Spectrum 물광분해반응의열역학적고찰 Spectral Irradienc ce (W/m 2 / m) Air Mass 0 Air Mass 1.5 AM1.5 ~ 100mW/cm Wavelength ( m) 0% 0.5% 3.5% 46% Wavelength (nm) UV VIS IR 510 nm 1008 nm 3.10eV (400nm) 2.43eV 1.55eV (800nm) 1.23eV

8 Band Gap Energy and Band Edge Position of Photocatalysts

9 Photocatalysts for Water Splitting (UV Light) TiO 2 Photocatalyst TiO 2 - h Pt H 2 O H 2 H 2 O + O 2 RuO 2 TiO 2 : E g = 3.2 ev, g = 388 nm Catalyst H 2 (μmol/h) Pt/TiO 2 2 Pt/TiO 2 /RuO J. C. Escudero et al., J. Catal., 1990, 123, 319.

10 Perovskite Photocatalyst (UV Light) Water splitting mechanism of K 4 Nb 6 O 17 h A [M n-1 Nb n O 3n+1 ] Ⅰ Ⅱ Ⅰ Ⅱ O 2 h + e - H 2 O Ni Ni e - h e + - e - h + H 2 H 2 O h + h + Ni e - Ni h + h + H 2 O O 2 NbO 6 h + e - h H + 2 O A (Alkali Metals) Ⅰ Ni Ni H e- = K, Rb, Cs, etc. 2 e - h + M (Alkali Earth Metals) = Ca, St, etc. e - h

11 Perovskite Photocatalyst (UV Light) X Catalyst Rate of Gas evolution (μmol/h) H 2 O Ni-K 4 Nb 6 O Ni-K 4Ta 2Nb 6O Ni-K 4 Ta 3 Nb 6 O Ni-K 4 Ta 4 Nb 6 O A [M n-1 Nb n O 3n+1 ] 0 Ni-Rb 4 Nb 6 O Ni-Rb 4 Ta 2 Nb 4 O 17 Ni-Rb 4 Ta 3 Nb 4 O 17 Ni-Rb 4 Ta 4 Nb 4 O 17 Ni-Rb 4 Ta 6 Nb 4 O Ni-Rb 4 Ta 6 Nb 4 O wt% nickel was loaded. d Catalyst, t 1 g; distilled d water, 350 ml; high pressure Hg lamp (400 W); inner irradiation cell (quartz). - K. Domen et al., Catal. Today, 1996, 28, 175.

12 Summary of Quantum Efficiency of Overall Water Splitting Under UV Light NiO-SrTiO 3 1% (300nm) Ni-Rb 4 Nb 6 O 17 10% (300nm) NiO-NaTaO3 :La 56% (270nm) NiO-Ni- Rb 2 La 2 Ti 3 O 10 30% (300nm)

13 Photocatalyst for Water Splitting (Visible Light) CdS : Eg = 2.4eV, g = 517nm - CdS has ideal band gap & band edge position for water splitting for H 2 production under visible light irradiation. h h CdS - TiO 2 - Support H 2 But it undergoes photocorrosion! H + H 2 yield, μmol Pt Catalyst Calcination Temp.( C) h Pt/TiO 2 /SiO CdS/SiO Pt/TiO H 2 /SiO CdS/SiO H + Pt/TiO 2 /SiO CdS/SiO Pt/TiO 2 /SiO Pt CdS/SiO Pt/TiO 2 /SiO CdS/SiO Interparticle electron transfer: (A) Mediated by the conduction band of TiO 2 ; (B) Direct electron transfer to separately supported platinum. - J. M. White et al., J. Phys. Chem., 1987, 91, a Reaction conditions: 10 mg of TiO 2 /SiO 2 ; 0.4 wt% Pt (in situ photoplatinization); 10 ml of 1:1 H 2 O-MeOH 0.01 M KOH; light source: 450W Xe lamp, 420 nm cut-off filter

14 ZnCuS Photocatalyst ZnS Zn Cu S E g = 3.7eV E g = 2.5eV g = 335nm g = 496nm b.units Absorban nce / ar ZnS Zn Cu S CuS * Quantum yield: 37%( 3.7% > 420 nm) (Photocorrosion) * Rate of H 2 revolution: 430 mol/g.cat.hr (0.5M Na 2 SO 3 ) Wavelength/nm - A. Kudo et al. Catal Letter, 1999, 58, 241.

15 Rh 2 O 3 : Cr 2 O 3 /(Ga 1-x Zn x )(N 1-x O x ) Photocatalyst for Water Splitting ( = 420~ nm; ph=4.5) QY: 2.5% Catalyst: 0.3 g, Rh 2 O 3 : Cr 2 O 3 5 wt.%, Domen, et. al., Nature, 440, 295 (2006).

16 CdIn 2 S 4 Nanotube and Marigold Nanostructure Photocatalyst Cubic spinel nanostructured CdIn 2 S 4 Marigold(aq.) : 3~5 μm CdIn 2 S 4 - Nanotubs Nanotube(MeOH) : 25nm X 780nm Density of states (DOS) for CdIn 2 S 4 (Calc. Eg = 1.90 ev) VB (S 3p) ; CB (In 5s, 5p major & Cd 5s, 5p) Advanced Functional Materials, 2006,16, 1349.

17 CdIn 2 S 4 Nanotube and Marigold Nanostructure Photocatalyst CdIn 2 S 4 Photocatalyst for Hydrogen production 1.8 A bs (b) (c) (d) (a) Eg = 2.19 ev (570 nm) High quantum yield! - Nanotube(MeOH) : 17.1% (@ = 500 nm) - Marigold(aq.) : 16.8% (@ = 500 nm) Quantum yield (%) = [Number of H 2 molecules evolved x 2] [Number of incident photons] X Rate of H 2 revolution: wavelength(nm) - Nanotube : 3480 mol/hr - Marigold : 3476 mol/hr Diffuse Reflection Spectra s (a) aqueous (b) methanol (c) ethylene glycol (d) polyethylene glycol (5%) mediated CdIn 2S 4. Advanced Functional Materials, 2006,16, 1349.

18 Nano-CdS Q.D. Photocatalyst in Glass Matrix Procedure of Preparation for Powder of Q-CdS in glass matrix SiO2 + Na2O + K2O + ZnO, B2O3 + TiO2 + BaO & CdS(0.5 wt%) Ball-milled mixing for 6h a b Reaction at 1500~1600 o C for 3h Annealing at o C (Tg = ) 580) for 72h Grinding Typical photographs of glass matrix, a) host glass b) after crystal growth of Q-CdS Powder of Q-CdS in glass matrix Journal of Material Chemistry, 2007, 17, 4297.

19 Nano-CdS Q.D. Photocatalyst in Glass Matrix Photocatalytic Activity for H 2 Production (Visible ) Q-CdS (1% amount ) has 300% higher photocatalytic activity than bulk CdS!! High quantum yield (@ = 470 nm)!! - Q-CdS-glass: 17.5% (1g of powder contains 0.005g of Q-CdS) - CdS: 5.5% (0.5 g of CdS) Quantum yield (%) = [Number of H 2 molecules evolved x 2] [Number of incident photons] X 100 Journal of Material Chemistry, 2007, 17, 4297.

20 Octahedrally Coordinated d 0 Transition Metal Oxide Photocatalysts Octahedrally Coordinated d 0 Transition Metal Oxide Photocatalysts TiO 2, SrTiO 3, A 2 Ti 6 O 13 (A = Na, K, Rb) BaTi 4 O 9, A 2 La 2 Ti 3 O 10 (A = K, Rb, Cs) K 2 Ti 4 O 9, Na 2 Ti 3 O 7 Ti 4+ V Cr ZrO 2 Zr 4+ Nb 5+ Mo Hf Ta 5+ W Ta 2 O 5, ATaO 3 (A = Na, K) A 4 Nb 6 O 17 (A=K, Rb) MTa 2 O 6 (M = Ca, Sr, Ba) Sr 2 Nb 2 O 7 Sr 2 Nb 2 O 7

21 Density of States of TiO 2 by First Principle Calculation O - TiO 2 Conduction Band h Ti + Valence Band Density of states of TiO 2 TiO 2

22 Density of States of ZnBiGaO 2 by First Principle Calculation Zn 2 GaO 4 Eg = 3.82 ev ZnBiGaO 4 Eg = 1.92 ev

23 Photocatalytic 물Activities 광분해반응의 of New 열역학적 Photocatalysts 고찰 (Visible) Photocatalytic H 2 Production System(Visible ) Catalyst Band gap energy (ev) H 2 evolution rate a ( mol/hr) ZnBiGaO (440nm) 3,030 CdBiGaO (510nm) 2,454 a Catalyst 0.5g, 250mL(H 2 O) + KOH(0.5M), H 2 S(2.5mL/min), Xe lamp(450w), light filter(>420nm).

24 Development of Synthetic Method for New Metal Oxide Photocatalyst Low temperature economical photocatalyst preparation method! Procedure of Preparation for ZnBiVO 4 by Solid State Method Procedure of Preparation for ZnBiVO 4 by Hydrothermal Method Zn(II)-oxide Bi(III)-oxide V(III)-oxide Zn(NO 3 ) 2 5H 2 O + Bi(NO3) 3 6H 2 O Mixing & Tableting NH 4 VO (b) (b) hydrothermal Urea & water Reaction at 670 o C for 15h Grinding Abs (a) (a) solid state Reaction at 130 o C for 60-72h Reaction at 725 o C for 12h Grinding ZnBiVO (Eg = 2.30eV: 539nm) wavelength(nm) Specific surface Area BET (m 2 /g) : 0.27 Wash & Dry at 250 o Cfor5h Specific surface ZnBiVO Area BET (m 2 4 /g) : 2.50

25 Preparation of Visible Light Photocatalyst by N-doping Procedure of Preparation for Nb 2 Zr 6 O 17-x N x ZrO 2 Nb 2 O 5 Mixing & Tableting Reaction at 1300 o C for 24h Grinding Nb 2 Zr 6 O 17 NH 3 /20mL/min Reaction at 800 o C for 2h Grinding Nb 2 Zr 6 O 17-x N x

26 New Visible Light Photocatalyst Synthesis by Molten Salt Method Procedure of Preparation for Ga 2 Pb 2 Nb 2 O 7 Pb(II)-oxide Ga(III)-oxide Nb(V)-oxide Mixing & Tableting NaCl (10eq.) Reaction at 1093 o K for 4h Grinding & Washing Reaction at 1473 o C for 12h Grinding Ga 2 Pb 2 Nb 2 O 7

27 Present Statust Conclusions Quantum efficiency (UV) : ~ 56%(270nm: H 2 O) Quantum efficiency (Visible) : ~ 5.2%(410nm: H 2 O) Quantum efficiency (Visible) : ~ 20%(500nm: H 2 S) Future target Quantum efficiency (Visible) : 30% ( 600nm) Hydrogen production rate (1 km 2 ) : 16,500Nm 3 /h Photoreactor t H 2 Solar Hydrogen Production System Purification Storage

28 Thank you!

Laurea in Scienza dei Materiali Materiali Inorganici Funzionali. Hydrogen production by photocatalytic water splitting

Laurea in Scienza dei Materiali Materiali Inorganici Funzionali. Hydrogen production by photocatalytic water splitting Laurea in Scienza dei Materiali Materiali Inorganici Funzionali Hydrogen production by photocatalytic water splitting Prof. Dr. Antonella Glisenti -- Dip. Scienze Chimiche -- Università degli Studi di

More information

Supporting Information

Supporting Information Supporting Information Dynamic Interaction between Methylammonium Lead Iodide and TiO 2 Nanocrystals Leads to Enhanced Photocatalytic H 2 Evolution from HI Splitting Xiaomei Wang,, Hong Wang,, Hefeng Zhang,,

More information

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960 Introduction to X-ray Photoelectron Spectroscopy (XPS) X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA) is a widely used technique to investigate

More information

single-layer transition metal dichalcogenides MC2

single-layer transition metal dichalcogenides MC2 single-layer transition metal dichalcogenides MC2 Period 1 1 H 18 He 2 Group 1 2 Li Be Group 13 14 15 16 17 18 B C N O F Ne 3 4 Na K Mg Ca Group 3 4 5 6 7 8 9 10 11 12 Sc Ti V Cr Mn Fe Co Ni Cu Zn Al Ga

More information

Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. I. Review: Comparison of ionic and molecular compounds Molecular compounds Ionic

More information

ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom.

ORBITAL DIAGRAM - A graphical representation of the quantum number map of electrons around an atom. 178 (MAGNETIC) SPIN QUANTUM NUMBER: "spin down" or "spin up" - An ORBITAL (region with fixed "n", "l" and "ml" values) can hold TWO electrons. ORBITAL DIAGRAM - A graphical representation of the quantum

More information

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials 1

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials 1 CLASS TEST GRADE PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials MARKS: 45 TIME: hour INSTRUCTIONS AND INFORMATION. Answer ALL the questions. 2. You may use non-programmable calculators. 3. You

More information

CHEM 107 (Spring-2005) Exam 3 (100 pts)

CHEM 107 (Spring-2005) Exam 3 (100 pts) CHEM 107 (Spring-2005) Exam 3 (100 pts) Name: ------------------------------------------------------------------------, Clid # ------------------------------ LAST NAME, First (Circle the alphabet segment

More information

Supplementary Information

Supplementary Information Supplementary Information In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants Hefeng Cheng, Baibiao Huang*, Peng Wang, Zeyan Wang, Zaizhu

More information

8. Relax and do well.

8. Relax and do well. CHEM 1314 3;30 pm Theory Exam III John III. Gelder November 13, 2002 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 8 different pages. The last page include a periodic

More information

materials and their properties

materials and their properties materials and their properties macroscopic properties phase state strength / stiffness electrical conductivity chemical properties color / transparence spectroscopical properties surface properties density

More information

Structure of PbBi 2 Nb 2 O 9 and Its Cr-Doped Layered Perovskite System and Their Photocatalytic Activities

Structure of PbBi 2 Nb 2 O 9 and Its Cr-Doped Layered Perovskite System and Their Photocatalytic Activities Journal of the Korean Physical Society, Vol. 51, July 2007, pp. S27 S31 Structure of PbBi 2 Nb 2 O 9 and Its Cr-Doped Layered Perovskite System and Their Photocatalytic Activities S. J. Hong, P. H. Borse,

More information

Supporting Information

Supporting Information Supporting Information Enhanced Activity and Stability of Carbon-Decorated Cuprous Oxide Mesoporous Nanorods for CO 2 Reduction in Artificial Photosynthesis Luo Yu a, Guojian Li a, Xiaoshu Zhang a, Xin

More information

4.1 Atomic structure and the periodic table. GCSE Chemistry

4.1 Atomic structure and the periodic table. GCSE Chemistry 4.1 Atomic structure and the periodic table GCSE Chemistry All substances are made of atoms this is cannot be chemically broken down it is the smallest part of an element. Elements are made of only one

More information

-"l" also contributes ENERGY. Higher values for "l" mean the electron has higher energy.

-l also contributes ENERGY. Higher values for l mean the electron has higher energy. 175 - Giving the four parameters will uniquely identify an electron around an atom. No two electrons in the same atom can share all four. These parameters are called QUANTUM NUMBERS. PRINCIPAL QUANTUM

More information

Give the number of protons, neutrons and electrons in this atom of aluminium. Why is aluminium positioned in Group 3 of the periodic table? ...

Give the number of protons, neutrons and electrons in this atom of aluminium. Why is aluminium positioned in Group 3 of the periodic table? ... Q1.An atom of aluminium has the symbol (a) Give the number of protons, neutrons and electrons in this atom of aluminium. Number of protons... Number of neutrons... Number of electrons... (3) (b) Why is

More information

- Light has properties of WAVES such as DIFFRACTION (it bends around small obstructions).

- Light has properties of WAVES such as DIFFRACTION (it bends around small obstructions). 170 LIGHT wavelength Diffraction frequency = wavelengths / time = - Light has properties of WAVES such as DIFFRACTION (it bends around small obstructions). - Einstein noted that viewing light as a particle

More information

Agilent 8800 Triple Quadrupole ICP-MS: Understanding oxygen reaction mode in ICP-MS/MS

Agilent 8800 Triple Quadrupole ICP-MS: Understanding oxygen reaction mode in ICP-MS/MS Agilent 8800 Triple Quadrupole ICP-MS: Understanding oxygen reaction mode in ICP-MS/MS Agilent 8800 ICP-QQQ Technical Overview Introduction The use of oxygen as a reaction gas for the removal of interferences

More information

CHEMICAL COMPOUNDS MOLECULAR COMPOUNDS

CHEMICAL COMPOUNDS MOLECULAR COMPOUNDS 48 CHEMICAL COMPOUNDS - Dalton's theory does not mention this, but there is more than one way for atoms to come together to make chemical compounds! - There are TWO common kinds of chemical compound, classified

More information

Chapter 3: Elements and Compounds. 3.1 Elements

Chapter 3: Elements and Compounds. 3.1 Elements Chapter 3: Elements and Compounds 3.1 Elements An element is a fundamental substance that cannot be broken down by chemical or physical methods to simpler substances. The 118 known elements are nature

More information

Solutions and Ions. Pure Substances

Solutions and Ions. Pure Substances Class #4 Solutions and Ions CHEM 107 L.S. Brown Texas A&M University Pure Substances Pure substance: described completely by a single chemical formula Fixed composition 1 Mixtures Combination of 2 or more

More information

How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas?

How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas? 146 EXAMPLE PROBLEM: How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas? 1 - Convert 2545 grams of chlorine gas to moles. Use formula weight. 2 - Convert moles

More information

Element Cube Project (x2)

Element Cube Project (x2) Element Cube Project (x2) Background: As a class, we will construct a three dimensional periodic table by each student selecting two elements in which you will need to create an element cube. Helpful Links

More information

M11/4/CHEMI/SPM/ENG/TZ2/XX CHEMISTRY STANDARD LEVEL PAPER 1. Monday 9 May 2011 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

M11/4/CHEMI/SPM/ENG/TZ2/XX CHEMISTRY STANDARD LEVEL PAPER 1. Monday 9 May 2011 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES M11/4/CHEMI/SPM/ENG/TZ/XX 116116 CHEMISTRY STANDARD LEVEL PAPER 1 Monday 9 May 011 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES Do not open this examination paper until instructed to do so. Answer

More information

Polymer Semiconductors for Artificial Photosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light

Polymer Semiconductors for Artificial Photosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light Polymer Semiconductors for Artificial Photosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light Xinchen Wang*, Kazuhiko Maeda, Xiufang Chen, Kazuhiro Takanabe, Kazunari

More information

8. Relax and do well.

8. Relax and do well. CHEM 1215 Exam III John III. Gelder November 11, 1998 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 7 different pages. The last page includes a periodic table and

More information

8. Relax and do well.

8. Relax and do well. CHEM 34.02 and 34.03 Name Exam III John III. Gelder TA's Name November 5, 2000 Lab Section INSTRUCTIONS:. This examination consists of a total of 9 different pages. The last three pages include a periodic

More information

School of Engineering Science, Osaka University, Toyonaka , Japan , Japan

School of Engineering Science, Osaka University, Toyonaka , Japan , Japan Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 14 Platinum nanoparticles strongly associated with graphitic carbon nitride as efficient co-catalysts

More information

M09/4/CHEMI/SPM/ENG/TZ1/XX+ CHEMISTRY. Monday 18 May 2009 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

M09/4/CHEMI/SPM/ENG/TZ1/XX+ CHEMISTRY. Monday 18 May 2009 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES M09/4/CHEMI/SPM/ENG/TZ1/XX+ 22096110 CHEMISTRY standard level Paper 1 Monday 18 May 2009 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES Do not open this examination paper until instructed to do so.

More information

CHEMICAL COMPOUNDS MOLECULAR COMPOUNDS

CHEMICAL COMPOUNDS MOLECULAR COMPOUNDS 48 CHEMICAL COMPOUNDS - Dalton's theory does not mention this, but there is more than one way for atoms to come together to make chemical compounds! - There are TWO common kinds of chemical compound, classified

More information

Supporting Information. CdS/mesoporous ZnS core/shell particles for efficient and stable photocatalytic hydrogen evolution under visible light

Supporting Information. CdS/mesoporous ZnS core/shell particles for efficient and stable photocatalytic hydrogen evolution under visible light Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Supporting Information CdS/mesoporous ZnS core/shell particles for efficient

More information

Circle the letters only. NO ANSWERS in the Columns!

Circle the letters only. NO ANSWERS in the Columns! Chemistry 1304.001 Name (please print) Exam 5 (100 points) April 18, 2018 On my honor, I have neither given nor received unauthorized aid on this exam. Signed Date Circle the letters only. NO ANSWERS in

More information

How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas?

How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas? EXAMPLE PROBLEM: How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas? 1 - Convert 2545 grams of chlorine to moles chlorine using formula weight 2 - Convert moles

More information

7. Relax and do well.

7. Relax and do well. CHEM 1215 Exam II John II. Gelder October 7, 1998 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 5 different pages. The last page includes a periodic table and a solubility

More information

INSTRUCTIONS: Exam III. November 10, 1999 Lab Section

INSTRUCTIONS: Exam III. November 10, 1999 Lab Section CHEM 1215 Exam III John III. Gelder November 10, 1999 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 7 different pages. The last page includes a periodic table and

More information

8. Relax and do well.

8. Relax and do well. CHEM 1515 Exam II John II. Gelder October 14, 1993 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 8 different pages. The last two pages include a periodic table, a

More information

Supporting Information

Supporting Information Supporting Information Unveiling Charge Separation Dynamics in CdS/Metal-Organic Framework Composites for Enhanced Photocatalysis Hai-Qun Xu,, Sizhuo Yang,, Xing Ma,, Jier Huang,*, and Hai-Long Jiang*,

More information

Using the Periodic Table

Using the Periodic Table MATH SKILLS TRANSPARENCY WORKSHEET Using the Periodic Table 6 Use with Chapter 6, Section 6.2 1. Identify the number of valence electrons in each of the following elements. a. Ne e. O b. K f. Cl c. B g.

More information

Supporting information

Supporting information Supporting information Self-doped Ti 3+ Enhanced Photocatalyst For Hydrogen Production Under Visible-light Fan Zuo, Le Wang, Tao Wu, Zhengyu Zhang, Dan Borchardt, and Pingyun Feng Department of Chemistry,

More information

- A CHEMICAL BOND is a strong attractive force between the atoms in a compound. attractive forces between oppositely charged ions

- A CHEMICAL BOND is a strong attractive force between the atoms in a compound. attractive forces between oppositely charged ions CHEMICAL BONDS - A CHEMICAL BOND is a strong attractive force between the atoms in a compound. 3 TYPES OF CHEMICAL BOND Ionic bonds attractive forces between oppositely charged ions sodium chloride Covalent

More information

Nano-engineered materials for H 2 production by water photo-electrolysis

Nano-engineered materials for H 2 production by water photo-electrolysis Nano-engineered materials for H 2 production by water photo-electrolysis C. Ampelli, R. Passalacqua, S. Perathoner, G. Centi Department of Industrial Chemistry and Materials Engineering, University of

More information

BROOKLYN COLLEGE Department of Chemistry. Chemistry 1 Second Lecture Exam Nov. 27, Name Page 1 of 5

BROOKLYN COLLEGE Department of Chemistry. Chemistry 1 Second Lecture Exam Nov. 27, Name Page 1 of 5 BROOKLYN COLLEGE Department of Chemistry Chemistry 1 Second Lecture Exam Nov. 27, 2002 Name Page 1 of 5 Circle the name of your lab instructor Kobrak, Zhou, Girotto, Hussey, Du Before you begin the exam,

More information

ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom.

ORBITAL DIAGRAM - A graphical representation of the quantum number map of electrons around an atom. 160 ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom. 4p 3d 4s 3p 3s 2p 2s 1s Each blank represents an ORBITAL, and can hold two electrons. The 4s subshell

More information

lectures accompanying the book: Solid State Physics: An Introduction, by Philip ofmann (2nd edition 2015, ISBN-10: 3527412824, ISBN-13: 978-3527412822, Wiley-VC Berlin. www.philiphofmann.net 1 Bonds between

More information

-"l" also contributes ENERGY. Higher values for "l" mean the electron has higher energy.

-l also contributes ENERGY. Higher values for l mean the electron has higher energy. 170 - Giving the four parameters will uniquely identify an electron around an atom. No two electrons in the same atom can share all four. These parameters are called QUANTUM NUMBERS. PRINCIPAL QUANTUM

More information

PERIODIC TABLE OF THE ELEMENTS

PERIODIC TABLE OF THE ELEMENTS Useful Constants and equations: K = o C + 273 Avogadro's number = 6.022 x 10 23 d = density = mass/volume R H = 2.178 x 10-18 J c = E = h = hc/ h = 6.626 x 10-34 J s c = 2.998 x 10 8 m/s E n = -R H Z 2

More information

Chapter 3: Stoichiometry

Chapter 3: Stoichiometry Chapter 3: Stoichiometry Chem 6A Michael J. Sailor, UC San Diego 1 Announcements: Thursday (Sep 29) quiz: Bring student ID or we cannot accept your quiz! No notes, no calculators Covers chapters 1 and

More information

Course theme. Three hours of lab Complete E1 (Parts 1, 2, 3, 4, and 5B) Prepare discussion presentation Prepare team report.

Course theme. Three hours of lab Complete E1 (Parts 1, 2, 3, 4, and 5B) Prepare discussion presentation Prepare team report. Experiment Session 2 Electrons and Solution Color Three hours of lab Complete E (Parts, 2, 3, 4, and 5B) Prepare discussion presentation Prepare team report. Course theme There are structure and property

More information

Three hours of lab Complete E1 (Parts 1, 2, 3, 4, and 5B) Prepare discussion presentation Prepare team report. Course theme

Three hours of lab Complete E1 (Parts 1, 2, 3, 4, and 5B) Prepare discussion presentation Prepare team report. Course theme Experiment 1 Session 2 Electrons and Solution Color Three hours of lab Complete E1 (Parts 1, 2, 3, 4, and 5B) Prepare discussion presentation Prepare team report. Course theme There are structure and property

More information

- Atomic line spectra are UNIQUE to each element. They're like atomic "fingerprints".

- Atomic line spectra are UNIQUE to each element. They're like atomic fingerprints. - Atomic line spectra are UNIQUE to each element. They're like atomic "fingerprints". - Problem was that the current model of the atom completely failed to explain why atoms emitted these lines. An orbit

More information

Chemistry 31A Autumn 2004 Professors Chidsey & Zare Exam 2 Name:

Chemistry 31A Autumn 2004 Professors Chidsey & Zare Exam 2 Name: Chemistry 31A Autumn 2004 Professors Chidsey & Zare Exam 2 Name: SUNetID: @stanford.edu Honor Code Observed: (Signature) Circle your section 9:00am 10:00am 2:15pm 3:15pm 7:00pm 8:00pm S02 OC103 S04 OC103

More information

- Why are phase labels required? Because phase changes either absorb or release energy. ... what does this mean?

- Why are phase labels required? Because phase changes either absorb or release energy. ... what does this mean? 157 SINCE the enthalpy change does NOT depend on path, this means that we can use standard values for enthalpy to predict the heat change in reactions that we have not tested in a calorimeter. THERMOCHEMICAL

More information

Atomic weight: This is a decimal number, but for radioactive elements it is replaced with a number in parenthesis.

Atomic weight: This is a decimal number, but for radioactive elements it is replaced with a number in parenthesis. 47 Blocks on the periodic table 11 Sodium 22.99 Atomic number: This is always a whole number. The periodic table is arranged by atomic number! Element symbol: A one or two letter abbreviation for the name

More information

Marks for each question are as indicated in [] brackets.

Marks for each question are as indicated in [] brackets. Name Student Number CHEMISTRY 140 FINAL EXAM December 10, 2002 Numerical answers must be given with appropriate units and significant figures. Please place all answers in the space provided for the question.

More information

Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1

Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1 Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1 The development of the periodic table brought a system of order to what was otherwise an collection of thousands of pieces of information.

More information

Three hour lab. Chem : Sept Experiment 2 Session 2. Preparation Pre-lab prep and reading for E2, Parts 3-5

Three hour lab. Chem : Sept Experiment 2 Session 2. Preparation Pre-lab prep and reading for E2, Parts 3-5 Chem.25-26: Sept.24-3 Experiment 2 Session 2 Preparation Pre-lab prep and reading for E2, Parts 3-5 Experiment 2 Session 2 Electrons and Solution Color Three hour lab Complete E2 (Parts - 5) Prepare discussion

More information

Photocatalysis: semiconductor physics

Photocatalysis: semiconductor physics Photocatalysis: semiconductor physics Carlos J. Tavares Center of Physics, University of Minho, Portugal ctavares@fisica.uminho.pt www.fisica.uminho.pt 1 Guimarães Where do I come from? 3 Guimarães 4 Introduction>>

More information

SEMICONDUCTORS AS CATALYSTS FOR WATER SPLITTING. Chandramathy Surendran Praveen. Materials Research Laboratory UNIVERSITY OF NOVA GORICA

SEMICONDUCTORS AS CATALYSTS FOR WATER SPLITTING. Chandramathy Surendran Praveen. Materials Research Laboratory UNIVERSITY OF NOVA GORICA SEMICONDUCTORS AS CATALYSTS FOR WATER SPLITTING Chandramathy Surendran Praveen Materials Research Laboratory UNIVERSITY OF NOVA GORICA OUTLINE Introduction and history of the discovery of semiconductor

More information

7. Relax and do well.

7. Relax and do well. CHEM 1215 Exam II John II. Gelder October 7, 1998 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 5 different pages. The last page includes a periodic table and a solubility

More information

Supporting Information:

Supporting Information: Supporting Information: High Efficiency Photoelectrocatalytic Hydrogen Generation Enabled by Palladium Quantum Dots Sensitized TiO 2 Nanotube Arrays Meidan Ye, Jiaojiao Gong, Yuekun Lai, Changjian Lin,*,

More information

CHEM 171 EXAMINATION 1. October 9, Dr. Kimberly M. Broekemeier. NAME: Key

CHEM 171 EXAMINATION 1. October 9, Dr. Kimberly M. Broekemeier. NAME: Key CHEM 171 EXAMINATION 1 October 9, 008 Dr. Kimberly M. Broekemeier NAME: Key I A II A III B IV B V B VI B VII B VIII I B II B III A IV A V A VI A VII A inert gase s 1 H 1.008 Li.941 11 Na.98 19 K 9.10 7

More information

CHEM 10123/10125, Exam 2

CHEM 10123/10125, Exam 2 CHEM 10123/10125, Exam 2 March 7, 2012 (50 minutes) Name (please print) Please box your answers, and remember that significant figures, phases (for chemical equations), and units do count! 1. (13 points)

More information

CHEM 130 Exp. 8: Molecular Models

CHEM 130 Exp. 8: Molecular Models CHEM 130 Exp. 8: Molecular Models In this lab, we will learn and practice predicting molecular structures from molecular formulas. The Periodic Table of the Elements IA 1 H IIA IIIA IVA VA VIA VIIA 3 5

More information

Chem 112, Fall 05 Exam 2a

Chem 112, Fall 05 Exam 2a Name: YOU MUST: Put your name and student ID on the bubble sheet correctly. Put all your answers on the bubble sheet. Please sign the statement on the last page of the exam. Please make sure your exam

More information

TRU Chemistry Contest Chemistry 12 May 21, 2003 Time: 90 minutes

TRU Chemistry Contest Chemistry 12 May 21, 2003 Time: 90 minutes TRU Chemistry Contest Chemistry 12 May 21, 2003 Time: 90 minutes Last Name First name School Teacher Please follow the instructions below. We will send your teacher a report on your performance. Top performers

More information

CHEMICAL COMPOUNDS MOLECULAR COMPOUNDS

CHEMICAL COMPOUNDS MOLECULAR COMPOUNDS 48 CHEMICAL COMPOUNDS - Dalton's theory does not mention this, but there is more than one way for atoms to come together to make chemical compounds! - There are TWO common kinds of chemical compound, classified

More information

All chemical bonding is based on the following relationships of electrostatics: 2. Each period on the periodic table

All chemical bonding is based on the following relationships of electrostatics: 2. Each period on the periodic table UNIT VIII ATOMS AND THE PERIODIC TABLE 25 E. Chemical Bonding 1. An ELECTROSTATIC FORCE is All chemical bonding is based on the following relationships of electrostatics: The greater the distance between

More information

Chapter 12 The Atom & Periodic Table- part 2

Chapter 12 The Atom & Periodic Table- part 2 Chapter 12 The Atom & Periodic Table- part 2 Electrons found outside the nucleus; negatively charged Protons found in the nucleus; positive charge equal in magnitude to the electron s negative charge Neutrons

More information

CHEMICAL COMPOUNDS. - Dalton's theory does not mention this, but there is more than one way for atoms to come together to make chemical compounds!

CHEMICAL COMPOUNDS. - Dalton's theory does not mention this, but there is more than one way for atoms to come together to make chemical compounds! 69 CHEMICAL COMPOUNDS - Dalton's theory does not mention this, but there is more than one way for atoms to come together to make chemical compounds! - There are TWO common kinds of chemical compound, classified

More information

Experiment Three. Lab two: Parts 2B and 3. Halogens used in Parts 2 and 3. Lab one: Parts 1 and 2A. Halogens (Family VIIA) used in Parts 2 and 3

Experiment Three. Lab two: Parts 2B and 3. Halogens used in Parts 2 and 3. Lab one: Parts 1 and 2A. Halogens (Family VIIA) used in Parts 2 and 3 Experiment Three Lab one: Parts 1 and 2A Lab two: Parts 2B and 3 1 1A 1 H 1s 1 2 IIA 3 Li 2s 1 1 1 Na 3s 1 1 9 K 4s 1 3 7 Rb 5s 1 5 5 Cs 6s 1 8 7 Fr 7s 1 4 Be 2s 2 1 2 Mg 3s 2 3 IIIB 4 IVB 5 VB 6 VIB 7

More information

Lecture 6 - Bonding in Crystals

Lecture 6 - Bonding in Crystals Lecture 6 onding in Crystals inding in Crystals (Kittel Ch. 3) inding of atoms to form crystals A crystal is a repeated array of atoms Why do they form? What are characteristic bonding mechanisms? How

More information

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism Periodic Properties Atomic & Ionic Radius Energy Electron Affinity We want to understand the variations in these properties in terms of electron configurations. The Periodic Table Elements in a column

More information

Halogens HALOGENS. Parts 2A and 2B. Chem : Feb. 19, 20 and March 3. Compare the properties and reactivity of the halogens and halides

Halogens HALOGENS. Parts 2A and 2B. Chem : Feb. 19, 20 and March 3. Compare the properties and reactivity of the halogens and halides Chem. 125-126: Feb. 19, 20 and March 3 Experiment 3 Session 2 (Three hour lab) Complete Experiment 3 Parts 2B and 3 Complete team report Complete discussion presentation Parts 2A and 2B Compare the properties

More information

Chem 51, Spring 2015 Exam 8 (Chp 8) Use your Scantron to answer Questions There is only one answer for each Question. Questions are 2 pt each.

Chem 51, Spring 2015 Exam 8 (Chp 8) Use your Scantron to answer Questions There is only one answer for each Question. Questions are 2 pt each. Chem 51, Spring 2015 Exam 8 (Chp 8) Name 120 pt Use your Scantron to answer Questions 1-32. There is only one answer for each Question. Questions are 2 pt each. CHP 8.1 Solutions are Mixtures 1. A saturated

More information

E5 Lewis Acids and Bases: lab 2. Session two lab Parts 2B, 3, and 4. Session one lab Parts 1and 2A. Aquo Complex Ions

E5 Lewis Acids and Bases: lab 2. Session two lab Parts 2B, 3, and 4. Session one lab Parts 1and 2A. Aquo Complex Ions E5 Lewis Acids and Bases: lab 2 Session one lab Parts 1and 2A Session two lab Parts 2B, 3, and 4 Part 2B. Complexation, Structure and Periodicity Compare the reactivity of aquo complex ions containing

More information

Scientific report 2016 January September. Designing composite nanoarchitectures for hydrogen production and environmental depollution

Scientific report 2016 January September. Designing composite nanoarchitectures for hydrogen production and environmental depollution Scientific report 2016 January September Designing composite nanoarchitectures for hydrogen production and environmental depollution Synthesis of the spherical Pt nanoparticles We have chosen to synthesize

More information

Monolithic Cells for Solar Fuels

Monolithic Cells for Solar Fuels Electronic Supplementary Material (ESI) for Chemical Society Reviews. This journal is The Royal Society of Chemistry 2014 Monolithic Cells for Solar Fuels Jan Rongé, Tom Bosserez, David Martel, Carlo Nervi,

More information

Electronic Supplementary Information (ESI) Tunable Phase and Visible-Light Photocatalytic Activity

Electronic Supplementary Information (ESI) Tunable Phase and Visible-Light Photocatalytic Activity Electronic Supplementary Information (ESI) Metallic-Zinc Assistant Synthesis of Ti 3+ Self-Doped TiO 2 with Tunable Phase and Visible-Light Photocatalytic Activity Zhaoke Zheng, a Baibiao Huang,* a Xiaodong

More information

VIIIA H PREDICTING CHARGE

VIIIA H PREDICTING CHARGE 58 IA PREDICTING CHARGE VIIIA H IIA IIIA IVA VA VIA VIIA You can reliably determine the charge using our method for Groups IA, IIA, IIIB, Aluminum, and the Group VA, VIA, and VIIA NONMETALS Li Be B C N

More information

VIIIA He IIA IIIA IVA VA VIA VIIA. Li Be B C N O F Ne. Na Mg VIB VIIB VIIIB IB IIB S. K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br

VIIIA He IIA IIIA IVA VA VIA VIIA. Li Be B C N O F Ne. Na Mg VIB VIIB VIIIB IB IIB S. K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br 188 THE FIRST TWO PERIODIC TRENDS IN A NUTSHELL LARGER IONIZATION ENERGY SMALLER RADIUS IA H IIA IIIA IVA VA VIA VIIA VIIIA He Li Be B C N O F Ne Na Mg IIIB IVB VB Al Si P VIB VIIB VIIIB IB IIB S Cl Ar

More information

E5 Lewis Acids and Bases: lab 2. Session two lab Parts 2B, 3, and 4. Session one lab Parts 1and 2A. Aquo Complex Ions. Aquo Complex Ion Reactions

E5 Lewis Acids and Bases: lab 2. Session two lab Parts 2B, 3, and 4. Session one lab Parts 1and 2A. Aquo Complex Ions. Aquo Complex Ion Reactions E5 Lewis Acids and Bases: lab 2 Session one lab Parts 1and 2A Part 2B. Complexation, Structure and Periodicity Compare the reactivity of aquo complex ions containing pre-transition, transition, and post-transition

More information

Periodic Table. - Mendeleev was able to predict the properties of previously unknown elements using his "periodic law" Modern periodic table

Periodic Table. - Mendeleev was able to predict the properties of previously unknown elements using his periodic law Modern periodic table 74 Periodic Table - Mendeleev (1869): --- When atoms are arranged in order of their atomic weight, some of their chemical and physical properties repeat at regular intervals (periods) --- Some of the physical

More information

Atomic weight: This is a decimal number, but for radioactive elements it is replaced with a number in parenthesis.

Atomic weight: This is a decimal number, but for radioactive elements it is replaced with a number in parenthesis. 47 Blocks on the periodic table 11 Sodium 22.99 Atomic number: This is always a whole number. The periodic table is arranged by atomic number! Element symbol: A one or two letter abbreviation for the name

More information

Chem Exam 1. September 26, Dr. Susan E. Bates. Name 9:00 OR 10:00

Chem Exam 1. September 26, Dr. Susan E. Bates. Name 9:00 OR 10:00 Chem 1711 Exam 1 September 26, 2013 Dr. Susan E. Bates Name 9:00 OR 10:00 N A = 6.022 x 10 23 mol 1 I A II A III B IV B V B VI B VII B VIII I B II B III A IV A V A VI A VII A inert gases 1 H 1.008 3 Li

More information

February 20, Joe Cerniglia The International Group for Historic Aircraft Recovery (TIGHAR) Job Number: S0CHG688. Dear Joe:

February 20, Joe Cerniglia The International Group for Historic Aircraft Recovery (TIGHAR) Job Number: S0CHG688. Dear Joe: February 20, 2012 Joe Cerniglia The International Group for Historic Aircraft Recovery (TIGHAR) Subject: ICP-MS Report Job Number: S0CHG688 Dear Joe: Please find enclosed the procedure report for the analysis

More information

Earth Materials I Crystal Structures

Earth Materials I Crystal Structures Earth Materials I Crystal Structures Isotopes same atomic number, different numbers of neutrons, different atomic mass. Ta ble 1-1. Su mmar y of quantu m num bers Name Symbol Values Principal n 1, 2,

More information

[ ]:543.4(075.8) 35.20: ,..,..,.., : /... ;. 2-. ISBN , - [ ]:543.4(075.8) 35.20:34.

[ ]:543.4(075.8) 35.20: ,..,..,.., : /... ;. 2-. ISBN , - [ ]:543.4(075.8) 35.20:34. .. - 2-2009 [661.87.+661.88]:543.4(075.8) 35.20:34.2373-60..,..,..,..,.. -60 : /... ;. 2-. : -, 2008. 134. ISBN 5-98298-299-7 -., -,,. - «,, -, -», - 550800,, 240600 «-», -. [661.87.+661.88]:543.4(075.8)

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance Fan Dong *a, Yanjuan

More information

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101. Physical Chemistry II Lab CHEM 4644 spring 2017 final exam KEY 5 questions, 3 points each, 15 points total possible h = 6.626 10-34 J s c = 3.00 10 8 m/s 1 GHz = 10 9 s -1. B= h 8π 2 I ν= 1 2 π k μ 6 P

More information

(IJIRSE) International Journal of Innovative Research in Science & Engineering ISSN (Online)

(IJIRSE) International Journal of Innovative Research in Science & Engineering ISSN (Online) Synthesis, Size Characterization and Photocatalytic Activities of Zinc Ferrites and Cobalt Ferrites Nanoparticles Using Oxidative Degradations of Methylene Blue, Crystal Violet and Alizarin Red s in Aqueous

More information

(please print) (1) (18) H IIA IIIA IVA VA VIA VIIA He (2) (13) (14) (15) (16) (17)

(please print) (1) (18) H IIA IIIA IVA VA VIA VIIA He (2) (13) (14) (15) (16) (17) CHEM 10113, Quiz 3 September 28, 2011 Name (please print) All equations must be balanced and show phases for full credit. Significant figures count, show charges as appropriate, and please box your answers!

More information

M10/4/CHEMI/SPM/ENG/TZ2/XX+ CHEMISTRY. Wednesday 12 May 2010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

M10/4/CHEMI/SPM/ENG/TZ2/XX+ CHEMISTRY. Wednesday 12 May 2010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES M10/4/CHEMI/SPM/ENG/TZ/XX+ 106116 CHEMISTRY standard level Paper 1 Wednesday 1 May 010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES Do not open this examination paper until instructed to do so. Answer

More information

Guide to the Extended Step-Pyramid Periodic Table

Guide to the Extended Step-Pyramid Periodic Table Guide to the Extended Step-Pyramid Periodic Table William B. Jensen Department of Chemistry University of Cincinnati Cincinnati, OH 452201-0172 The extended step-pyramid table recognizes that elements

More information

HANDOUT SET GENERAL CHEMISTRY I

HANDOUT SET GENERAL CHEMISTRY I HANDOUT SET GENERAL CHEMISTRY I Periodic Table of the Elements 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 IA VIIIA 1 2 H He 1.00794 IIA IIIA IVA VA VIA VIIA 4.00262 3 Li 6.941 11 Na 22.9898

More information

CHEM 251 (Fall-2003) Final Exam (100 pts)

CHEM 251 (Fall-2003) Final Exam (100 pts) CEM 251 (Fall-2003) Final Exam (100 pts) Name: -------------------------------------------------------------------------------, SSN -------------------------------- LAST NAME, First (Circle the alphabet

More information

8. Relax and do well.

8. Relax and do well. CHEM 1515.001 Name Exam II John II. Gelder TA's Name March 8, 2001 Lab Section INSTRUCTIONS: 1. This examination consists of a total of 8 different pages. The last three pages include a periodic table,

More information

... but using electron configurations to describe how aluminum bromide forms is a bit cumbersome! Can we simplify the picture a bit?

... but using electron configurations to describe how aluminum bromide forms is a bit cumbersome! Can we simplify the picture a bit? 193... but using electron configurations to describe how aluminum bromide forms is a bit cumbersome! Can we simplify the picture a bit? LEWIS NOTATION / ELECTRON-DOT NOTATION - Lewis notation represents

More information

Photodecomposition of Water Catalyzed by Zr- and Ti-MCM-41

Photodecomposition of Water Catalyzed by Zr- and Ti-MCM-41 ESO 25(6) #7759 Energy Sources, 25:591 596, 2003 Copyright 2003 Taylor & Francis 0090-8312/03 $12.00 +.00 DOI: 10.1080/00908310390195651 Photodecomposition of Water Catalyzed by Zr- and Ti-MCM-41 S.-H.

More information

25 Mn Ni Co Rh Fe Ru Os Uns (262) Une (266) 195.

25 Mn Ni Co Rh Fe Ru Os Uns (262) Une (266) 195. 1 Chem 64 Solutions to Problem Set #1, REVIEW 1. AO n l m 1s 1 0 0 2s 2 0 0 2p 2 1 1,0,1 3d 3 2 2, 1,0,1,2 4d 4 2 2, 1,0,1,2 4f 4 3 3, 2, 1,0,1,2,3 2. Penetration relates to the radial probability distribution

More information

CHEM 172 EXAMINATION 1. January 15, 2009

CHEM 172 EXAMINATION 1. January 15, 2009 CHEM 17 EXAMINATION 1 January 15, 009 Dr. Kimberly M. Broekemeier NAME: Circle lecture time: 9:00 11:00 Constants: c = 3.00 X 10 8 m/s h = 6.63 X 10-34 J x s J = kg x m /s Rydberg Constant = 1.096776 x

More information