Applications of the dual integral formulation in conjunction with fast multipole method in large-scale problems for 2D exterior acoustics

Size: px
Start display at page:

Download "Applications of the dual integral formulation in conjunction with fast multipole method in large-scale problems for 2D exterior acoustics"

Transcription

1 Enginring Analysis with Boundary Elmnts 8 (00) 8 09 wwwlsvircom/locat/nganabound Applications of th dual intgral formulation in conjunction with fast multipol mthod in larg-scal problms for D xtrior acoustics JT Chn*, KH Chn Dpartmnt of Harbor and Rivr Enginring, National Taiwan Ocan Univrsity, Klung, Taiwan, ROC Rcivd 1 Sptmbr 00; rvisd March 00; accptd 1 April 00 Abstract In this papr, w solv th larg-scal problm for xtrior acoustics by mploying th concpt of fast multipol mthod (FMM) to acclrat th construction of influnc matrix in th dual boundary lmnt mthod (DBEM) By adopting th addition thorm, th four rnls in th dual formulation ar xpandd into dgnrat rnls, which sparat th fild point and sourc point Th sparabl tchniqu can promot th fficincy in dtrmining th cofficints in a similar way of th fast Fourir transform ovr th Fourir transform Th sourc point matrics dcomposd in th four influnc matrics ar similar to ach othr or only som combinations Thr ar many zros or th sam influnc cofficints in th fild point matrics dcomposd in th four influnc matrics, which can avoid calculating rpatdly th sam trms Th sparabl tchniqu rducs th numbr of floating-point oprations from OðN Þ to OðN log a ðnþþ; whr N is numbr of lmnts and a is a small constant indpndnt of N: To spd up th convrgnc in constructing th influnc matrix, th cntr of multipol is dsignd to locat on th cntr of local coordinat for ach boundary lmnt This approach nhancs convrgnc by collocating multipols on ach cntr of th sourc lmnt Th singular and hyprsingular intgrals ar transformd into th summability of divrgnt sris and rgular intgrals Finally, th FMM is shown to rduc CPU tim and mmory rquirmnt thus nabling us apply BEM to solv for larg-scal problms Fiv momnt FMM formulation was found to b sufficint for convrgnc Th rsults ar compard wll with thos of FEM, convntional BEM and analytical solutions and it shows th accuracy and fficincy of th FMM whn compard with th convntional BEM q 00 Elsvir Ltd All rights rsrvd Kywords: Fast multipol mthod; Larg-scal problm; Extrior acoustics; Dual boundary lmnt mthod; Hyprsingular quation; Divrgnt sris 1 Introduction Th boundary lmnt mthod, somtims rfrrd to as th boundary intgral quation mthod, is now stablishing a position as an actual altrnativ to th FEM in many filds of nginring It is ncssary to discrtiz th boundary only instad of th domain, which tas a fwr tim for on-dimnsion rduction in msh gnration Th dual boundary lmnt mthod (DBEM), or so-calld th dual boundary intgral quation mthod dvlopd by Hong and Chn [1,0], is particularly suitabl for th problms with a dgnrat boundary Th dual formulation also plays important rols in som othr problms, g th cornr problm [1], adaptiv BEM [,], th spurious ignvalu of intrior problm [1,1], th fictitious frquncy of * Corrsponding author Tl: þ x10/1; fax: þ addrss: jtchn@mailntoudutw (JT Chn) xtrior problm [,10,11,1], and th dgnrat scal problm [8,9] Thr is considrabl intrst in many applications for th solution of Hlmholtz quation, whn th wav lngth is short or th wav numbr is larg aftr comparing with th siz of boundary, and it is so-calld th larg-scal problm such as th scattring of high frquncy acoustics, Stos flows, molcular dynamics and lctromagntic-wav problms Howvr, th applications of BEM wr limitd in small-scal problms [1,1,,,9,0,,] For larg-scal problms, w nd to modl such problms with a larg numbr ðnþ of boundary lmnts to accuratly rprsnt th gomtry and th solution variation which may not b solvd using a dstop computr Th complxity proportional of th convntional BEM is N and it is xpnsiv in th largscal problm, but th finit lmnt mthod (FEM) is N bcaus of its bandd cofficint matrix [0] Multidomain approach [18] or approximat thoris such as 09-99/0/$ - s front mattr q 00 Elsvir Ltd All rights rsrvd doi:10101/s09-99(0)001-x

2 8 JT Chn, KH Chn / Enginring Analysis with Boundary Elmnts 8 (00) 8 09 th thoris of plats and shlls hav bn mployd to solv th problm using th paralll computrs Whn th siz of th influnc matrix by using BEM is so larg that its storag and solution by Gaussian limination may caus problms for dstop computr Thus, th siz of influnc matrix bcoms th limiting factor that largscal problms can b solvd with a particular computr BEM with itrativ solvrs has bn mployd to dal with th problm [,8] Th major computational cost of th itrativ mthods lis in th matrix vctor multiplication To improv th fficincy in numrical computation of th dual BEM, w will adopt th fast multipol mthod (FMM) to acclrat th spd of calculation This is du to th larg domain and full influnc matrix, and it tas a lot of CPU tim and mmory spac to obtain th influnc matrix To ovrcom th disadvantags, th FMM will b shown to rduc CPU tim and mmory rquirmnt from xponntial ordr to logarithmic ordr thus nabling us apply BEM to rally solv for larg-scal problms Th FMM was initially introducd by Rohlin [] Applications of FMM for BEM analysis hav bn usd by many rsarchrs in various filds of scinc and nginring [,,,,] W will adopt th concpt of FMM to acclrat th calculation of influnc matrix in th dual BEM By adopting th addition thorm, th four rnls in th dual formulation ar xpandd into dgnrat rnls whr th fild point and sourc point ar sparatd Th sparabl tchniqu can promot th fficincy in dtrmining th cofficints as shown in Fig 1, in a similar way of th fast Fourir transform (FFT) ovr th Fourir transform (FT) Th sourc point matrics dcomposd in th four influnc matrics ar similar to ach othr or only som combinations Thr ar many zros or th sam influnc cofficints in th fild point matrics dcomposd in th four influnc matrics Thrfor, w can avoid calculating rpatdly th sam trms Th sparabl tchniqu rducs th numbr of floatingpoint oprations from OððNÞ Þ to OðN log a ðnþþ: To acclrat th convrgnc in constructing th influnc matrix, th cntr of multipol is dsignd to locat on th cntr of ach boundary lmnt Th singular and hyprsingular intgrals ar transformd into th summability of divrgnt sris and rgular intgrals In this papr, th acoustic scattring of gnral structur with th Numann s boundary condition will b considrd Th Burton and Millr formulation by combining th dual boundary intgral quations will b utilizd to solv th xtrior acoustic problms for all wav numbrs in ordr to ovrcom th problm of fictitious frquncy Finally, th CPU tim and mmory rquirmnt will b calculatd using th FMM for th larg-scal problm Th numrical rsults will b compard with thos of convntional DBEM and analytical solutions Mathmatical formulation 1 Hlmholtz quation in xtrior acoustics Lt D, D d b an unboundd rgion, whr d is th numbr of spac dimnsions, d can b 1, or Th boundary of th domain D; dnotd by B; is intrnal and assumd picwis smooth Th outward unit vctor normal to B is dnotd by n: W assum that th boundary, B; admits th partition [,] B ¼ B g < B h ; ð1þ B ¼ B g > B h ; whr B g is th ssntial boundary with spcifid potntial and B h is th natural boundary with spcifid normal drivativ of potntial W intnd to study th ffcts of small disturbanc to a givn bacground flow in such a rgion, undr th usual assumptions that lads to th quations of acoustics Harmonic analysis lads to a boundary-valu problm for th Hlmholtz quation (or rducd wav quation): Find u in th xtrior domain, th spatial componnt for th acoustic prssur or vlocity potntial [,], such that LuðxÞ ¼f ; x in D; ðþ uðxþ ¼g; x on B g ; ðþ uðxþ ¼ ih; x on B n h ; ðþ lim R 1 ðd1þ u R!1 R iu ¼ 0; R at infinity; ðþ whr Lu U u þ u is th Hlmholtz oprator, is th Laplacian oprator and $ 0 is th wav numbr; and in particular u= n U u n is th normal flux and is th gradint oprator; i ¼ 1; R is th distanc from th origin to th fild point In th linarizd quations of motion, vlocity gradints produc a comprssion of th acoustic mdium and prssur gradints ar rlatd to acclration Thus, if th dpndnt variabl is, g th acoustic prssur, thn th Numann boundary condition Eq () rprsnts a prscribd vlocity distribution on that portion of th wt surfac, whr h is proportional to th vlocity and th prsnc of i is a consqunc of diffrntiation with rspct to tim Numann boundary conditions ar thrfor vry common in physical situations that ntail radiation, and in th modl problms and dmonstrativ xampls that ar subsquntly considrd w mphasiz boundary conditions of this typ It is notd that th analysis is valid for any combination of boundary conditions on th wt surfac for th boundary-valu problm Eqs () (), and by no mans is it limitd to Numann problms For scattring problms, a fixd rigid objct is rprsntd by a homognous Numann boundary condition, oftn rfrrd to as a hard scattr Convrsly, th homognous Dirichlt boundary condition, an appropriat rprsntation ðþ

3 JT Chn, KH Chn / Enginring Analysis with Boundary Elmnts 8 (00) Fig 1 Comparison of th schm in th calculation of influnc cofficints by using th convntional BEM and th FMM

4 88 JT Chn, KH Chn / Enginring Analysis with Boundary Elmnts 8 (00) 8 09 of a sit of prssur rlas, is trmd a soft scattr An impdanc boundary condition is a linar combination of th two [,] Th govrning quation for an xtrior acoustic problm is th Hlmholtz quation as follows ð þ Þuðx 1 ; x Þ¼0; ðx 1 ; x Þ [ D; ðþ whr f in Eq () is zro (no sourcs), and is th wav numbr, which is th angular frquncy ovr th spd of sound Th boundary conditions can b ithr th Numann or Dirichlt typ Eq () stms from th Sommrfld radiation condition which allows only solutions with outgoing wavs at infinity to b admittd This boundary condition implis an intgral form, th Rllich Sommrfld radiation condition u ðb1 R iu db ¼ 0; ð8þ whr B 1 is th surfac of a sphr with an infinit radius Th radiation condition rquirs nrgy flux at infinity to b positiv, thrby guaranting that th solution to th boundary-valu problm in Eqs () () is uniqu Appropriat rprsntation of this condition is crucial to th rliability of any numrical formulation of th problm In this sction, th statmnt of problm follows th papr by Stwart and Hughs [] sinc thy prsnt a typical formulation Dual boundary intgral formulation Th first quation of th dual boundary intgral quations for th domain point can b drivd from th Grn s third idntity ð puð~xþ ¼ B ð Tð~s; ~xþuð~sþdbð~sþ Uð~s; ~xþ uð~sþ dbð~sþ; B n ~s ~x [ D; ð9þ whr ~x is th fild point ð~x ¼ðx; yþþ; ~s is th sourc point, and Uð~s; ~xþ ¼ pi ðl~s ~xlþ; ð10þ Hð1Þ 0 in which 0 ðl~s ~xlþ is th first ind zroth ordr Hanl function, and Tð~s; ~xþ is dfind by Uð~s; ~xþ Tð~s; ~xþ ; ; ð11þ n ~s in which n ~s dnots th normal vctor at th boundary point ~s; and Uð~s; ~xþ is th fundamntal solution which satisfis Uð~x; ~sþþ Uð~x; ~sþ ¼pdð~x ~sþ; ~x [ D: ð1þ In Eq (1), dð~x ~sþ is th Dirac-dlta function Aftr taing normal drivativ with rspct to Eq (9), th scond quation of th dual boundary intgral quations for th domain point is drivd p uð~xþ ð ð ¼ Mð~s; ~xþuð~sþdbð~sþ Lð~s; ~xþ uð~sþ dbð~sþ; n ~x B B n ~s ~x [ D; ð1þ whr Lð~s; ~xþ ; Uð~s; ~xþ n ~x ; ð1þ Mð~s; ~xþ ; Uð~s; ~xþ ; ð1þ n ~x n ~s in which n ~x rprsnts th normal vctor of ~x: Th xplicit forms for th four rnl functions ar shown in Tabl 1 Th boundary conditions can b ithr th Numann or Dirichlt typ By moving th point x to th boundary, th dual quations for th boundary points ar ð puð~xþ¼cpv Tð~s; ~xþuð~sþdbð~sþ B ð ð1þ RPV Uð~s; ~xþtð~sþdbð~sþ; ~x [ B; B Tabl 1 Th proprtis of th rnl functions for th Hlmhotz quation Krnl Kð~s; ~xþ Uð~s; ~xþ iphð1þ 0 ðlrþ Tð~s; ~xþ ilp Hð1Þ 1 ðlrþ y in i r Lð~s; ~xþ ilp Hð1Þ 1 ðlrþ y i n i r Mð~s; ~xþ ilp l ðlrþ r y i y j n i n j þ Hð1Þ 1 ðlrþ n r i n i Ordr of singularity Oðln rþ wa Oð1=rÞ strong Oð1=rÞ strong Oð1=r Þ hyprsingular Symmtry Uð~s; ~xþ ¼Uð~x; ~sþ Tð~s; ~xþ ¼Lð~x; ~sþ Lð~s; ~xþ ¼Tð~x; ~sþ Mð~s; ~xþ ¼Mð~x; ~sþ Dnsity function yð~sþ u= n u u= n u Potntial typ Singl layr Doubl layr Normal drivativ Normal drivativ of doubl layr Ð of singl layr Kð~s; ~xþyð~sþdbð~sþ Continuous Discontinuous Discontinuous Psudo-continuous continuity across boundary Jump valu No jump pu pð u= nþ No jump Principal valu Rimann Cauchy Cauchy Hadamard Whr Hn ð1þ ðlrþ is first ind of th nth ordr Hanl function, n i dnots th ith componnts of normal vctor on x; rspctivly

5 ð ð ptð~xþ¼hpv Mð~s; ~xþuð~sþdbð~sþ CPV Lð~s; ~xþtð~sþdbð~sþ; B B ~x [ B; ð1þ whr CPV; RPV and HPV dnot th Cauchy principal valu, th Rimann principal valu and th Hadamard principal valu, tð~sþ¼ uð~sþ= n ~s ; B dnots th boundary nclosing D: Th linar algbraic quations discrtizd from th dual boundary intgral quations can b writtn as ½TŠ{u} ¼½UŠ{t}; ð18þ ½MŠ{u} ¼½LŠ{t}; ð19þ whr {u} and {t} ar th boundary potntial and flux, rspctivly Th influnc cofficints of th four squar matrics ½UŠ; ½TŠ; ½LŠ and ½MŠ can b rprsntd as ð U pq ¼ RPV Uðs q ;x p ÞdBðs q Þ; B q ð0þ ð T pq ¼ pd pq þ CPV Tðs q ;x p ÞdBðs q Þ; ð1þ B q ð L pq ¼ pd pq þ CPV Lðs q ;x p ÞdBðs q Þ; B q ðþ ð M pq ¼ HPV Mðs q ;x p ÞdBðs q Þ; B q ðþ whr th subscript p dnots th labl on collocation point, B q dnots th qth lmnt and d pq ¼ 1 if p ¼ q; othrwis it is zro In ordr to ovrcom th problm of fictitious frquncy, th Burton and Millr formulation [] is mployd by combining th dual quations as follows ½TŠþ i ½MŠ {u} ¼ ½UŠþ i ½LŠ {t}: ðþ For all wav numbrs, Eq () can wor wll [] Expanding th four rnls using th multipol xpansion mthod By adopting th addition thorm, th four rnls in th dual formulation ar xpandd into dgnrat rnls which sparat th fild point and sourc point [1] Th rnl function, Uð~s; ~xþ; can b xpandd into Uð~s; ~xþ¼ X >< C m ð~xþr m ð~sþ¼ JT Chn, KH Chn / Enginring Analysis with Boundary Elmnts 8 (00) >: U i ¼ pi U ¼ pi and a ¼ cos 1 ð~s ~pþð~x ~pþ lð~s ~pþllð~x ~pþl : ðþ Th dfinition stch of th coordinat is shown in Fig Th contour plot of potntial for th U rnl can b shown in Fig (a) for th sris form using th dgnrat rnl in Eq () and Fig (b) for th closd-form fundamntal solution of Eq (10) Th rnl function, Tð~s; ~xþ; can b xpandd into Tð~s;~xÞ¼ X1 C m ð~xþ½r m ð~sþ n s Š whr 8 >< ¼ >: ( Hm ð1þ ðl~s ~plþ 1 m J m ðl~x ~plþ cosðmaþ n s þhm ð1þ ðl~s ~plþ cosðmaþ ) ; l~s ~pll~x ~pl; n s T i ¼ pi T ¼ pi 1 m Hm ð1þ ðl~x ~plþ J mðl~s ~plþ n s ; cosðmaþþj m ðl~s ~plþ cosðmaþ n s l~x ~pll~s ~pl; J m ðl~s ~plþ n s ¼ ½J m1ðl~s ~plþj mþ1 ðl~s ~plþš ð8þ ðs ip i Þn i ; ð9þ l~s ~pl Hm ð1þ ðl~s ~plþ ¼ n ~s ½Hð1Þ m1ðl~s ~plþhð1þ mþ1ðl~s ~plþš ðs ip i Þn i ; ð0þ l~s ~pl cosðmaþ ¼msinðmaÞða n i n i Þ; ð1þ s in which n i is th ith componnt of th normal vctor at ~s and a 1 ¼ 1 ðs p Þ ðx 1 p 1 Þðs 1 p 1 Þðs p Þðx p Þ sinðaþ l~s ~pl ; l~x ~pl ðþ 1 m J m ðl~x ~plþ m ðl~s ~plþcosðmaþ; l~s ~pl l~x ~pl; 1 m m ðl~x ~plþj m ðl~s ~plþcosðmaþ; l~x ~pl l~s ~pl; ðþ whr i ¼ 1; J m ðsþ is th first ind mth ordr Bssl function, ~p is th cntr of multipol ( 1 m ¼ 1; m ¼ 0 ) ; ðþ ; m 0 a ¼ 1 ðs 1 p 1 Þ ðx p Þðs 1 p 1 Þðs p Þðx 1 p 1 Þ sinðaþ l~s ~pl ; l~x ~pl ðþ By substituting Eqs (9) (1) into Eq (8), w hav

6 90 JT Chn, KH Chn / Enginring Analysis with Boundary Elmnts 8 (00) >< Tð~s; ~xþ >: T i ¼ pi T ¼ pi Fig Th dfinition stch of th coordinat, coordinat transformation and th position for th cntr of multipol 1 m J m ðl~x ~plþ ½Hð1Þ m1ðl~s ~plþ Hð1Þ mþ1 ðl~s ~plþš ðs i p i Þn i cosðmaþþhm ð1þ ðl~s ~plþ l~s ~pl ½m sinðmaþða i n i ÞŠ ; l~s ~pl l~x ~pl; 1 m Hm ð1þ ðl~x ~plþ ½J m1ðl~s ~plþ J mþ1 ðl~s ~plþš ðs i p i Þn i cosðmaþþj l~s m ðl~s ~plþ ~pl ½m sinðmaþða i n i ÞŠ ; l~x ~pl l~s ~pl: ðþ

7 JT Chn, KH Chn / Enginring Analysis with Boundary Elmnts 8 (00) Fig Th contour plot of potntial for U rnl (a) Dgnrat rnl of Eq (), (b) Closd-form fundamntal solution of Eq (10) Th rnl function, Lð~s; ~xþ; can b xpandd into Lð~s; ~xþ ¼ X1 8 >< ¼ >: ½C m ð~xþ n x ŠR m ð~sþ L i ¼ pi L ¼ pi 1 m Hm ð1þ J ðl~s ~plþ m ðl~x ~plþ cosðmaþþj n m ðl~x ~plþ cosðmaþ ; x n x l~s ~pl l~x ~pl; ( Hm ð1þ ðl~x ~plþ 1 m J m ðl~s ~plþ cosðmaþþhm ð1þ ðl~x ~plþ cosðmaþ ) ; n x n x l~x ~pl l~s ~pl; ðþ

8 9 JT Chn, KH Chn / Enginring Analysis with Boundary Elmnts 8 (00) 8 09 whr J m ðl~x ~plþ ¼ n x ½J m1ðl~x ~plþj mþ1 ðl~x ~plþš ðx ip i Þn i ; l~x ~pl ðþ Hm ð1þ ðl~x ~plþ ¼ n x ½Hð1Þ m1 ðl~x~plþhð1þ mþ1 ðl~x~plþšðx ip i Þn i ; l~x ~pl ðþ cosðmaþ ¼msinðmaÞðb n i n i Þ; ð8þ x in which n i is th ith componnt of th normal vctor at ~x and b 1 ¼ 1 ðs 1 p 1 Þðx p Þ ðs p Þðx 1 p 1 Þðx p Þ sinðaþ l~x ~pl ; l~s ~pl ð9þ b ¼ 1 ðs p Þðx 1 p 1 Þ ðs 1 p 1 Þðx 1 p 1 Þðx p Þ sinðaþ l~x ~pl : l~s ~pl ð0þ By substituting Eqs () (8) into Eq (), w hav 8 >< Lð~s; ~xþ >: L i ¼ pi whr cosðmaþ n x n s ¼ ½msinðmaÞa in i Š n x ¼a i n i ½msinðmaÞŠ n x þðmsinðmaþþ a in i n x ¼a i n i ½m cosðmaþb i n i Šþ½msinðmaÞŠ ( " ðs n p Þ n 1 1 l~s~pl ðx 1p 1 Þn # 1 x p ðx p Þ " ðs þn 1 p 1 Þðs p Þ n 1 l~s~pl ðx 1p 1 Þn #) 1 x p ðx p Þ : ðþ By substituting Eqs (9) (1), () (8) and () into Eq (), w hav 1 m Hm ð1þ ðl~s ~plþ ½J m1ðl~x ~plþ J mþ1 ðl~x ~plþš ðx i p i Þn i cosðmaþþj l~x m ðl~x ~plþ ~pl ½m sinðmaþðb i n i ÞŠ ; l~s ~pl l~x ~pl; L ¼ pi 1 m J m ðl~s ~plþ ½Hð1Þ m1ðl~x ~plþ Hð1Þ mþ1 ðl~x ~plþš ðx i p i Þn i l~x ~pl ½m sinðmaþðb i n i ÞŠ ; l~x ~pl l~s ~pl: cosðmaþþ m ðl~x ~plþ ð1þ Th rnl function, Mð~s; ~xþ; can b xpandd into 8 M i ¼ pi Mð~s; ~xþ ¼ X1 >< ½C m ð~xþ n x Š½R m ð~sþ n s Š¼ >: m ðl~s ~plþ J 1 m ðl~x ~plþ m cosðmaþ n s n x þj m ðl~x ~plþ cosðmaþ ( þ 1 n m Hm ð1þ J ðl~s ~plþ m ðl~x ~plþ cosðmaþ x n x n s ) þj m ðl~x ~plþ cosðmaþ ; l~s ~pl l~x ~pl; n x n s M ¼ pi cosðmaþ n x ( J 1 m ðl~s ~plþ Hm ð1þ ðl~x ~plþ m cosðmaþþhm ð1þ ðl~x ~plþ n s n x ) þ 1 m J m ðl~s ~plþ ( Hm ð1þ ðl~x ~plþ cosðmaþ n x n s ) þhm ð1þ ðl~x ~plþ cosðmaþ ; l~x ~pl l~s ~pl; n x n s ðþ

9 8 M i ¼ pi 1 m ðhð1þ m1ðl~s ~plþ Hð1Þ mþ1 ðl~s ~plþþ ðs ( i p i Þn i l~s ~pl >< l~s ~pl l~x ~pl; Mð~s; ~xþ M ¼ pi 1 m ðj m1ðl~s ~plþ J mþ1 ðl~s ~plþþ ðs ( " i p i Þn i l~s ~pl >: ðx i p i Þn i l~x ~pl " J m1 ðl~x ~plþ J mþ1 ðl~x ~plþ ( cosðmaþþj m ðl~x ~plþ½m sinðmaþðb i n i ÞŠ þ 1 m Hm ð1þ ðl~s ~plþ ðj m1ðl~x ~plþ J mþ1 ðl~x ~plþþ ðx i p i Þn i ½m sinðmaþða l~x i n i ÞŠ þ J m ðl~x ~plþ½a i n i ðm cosðmaþb i n i Þþðm sinðmaþþ ~pl " " # " # #) n 1 þ n ; ðs p Þ n 1 l~s ~pl ðx 1 p 1 Þn 1 x p ðx p Þ ðx i p i Þn i l~x ~pl ðs 1 p 1 Þðs p Þ n 1 l~s ~pl ðx 1 p 1 Þn 1 x p ðx p Þ Hð1Þ m1 ðl~x ~plþ Hð1Þ mþ1 ðl~x ~plþ ( cosðmaþþhm ð1þ ðl~x ~plþ½m sinðmaþðb i n i ÞŠ þ 1 m J m ðl~s ~plþ ðhð1þ m1ðl~x ~plþ mþ1 ðl~x ~plþþ ðx " i p i Þn i ½m sinðmaþða l~x i n i ÞŠ þ Hm ð1þ ðl~x ~plþ a i n i ðm cosðmaþb i n i Þþðm sinðmaþþ ~pl " " ðs n p Þ n 1 1 l~s ~pl ðx 1 p 1 Þn # " 1 ðs x p ðx p Þ þ n 1 p 1 Þðs p Þ n 1 l~s ~pl ðx!###) 1 p 1 Þn 1 x p ðx p ; l~x ~pl l~s ~pl: JT Chn, KH Chn / Enginring Analysis with Boundary Elmnts 8 (00) ðþ Dual boundary lmnt formulation in conjunction with th FMM By mploying th constant lmnt schm aftr coordinat transformation and moving th cntr of multipol ð~pþ to th cntr of local coordinat on ach boundary lmnt as shown in Fig, ach lmnt of th influnc matrics can b obtaind as follows 1 U rnl For th rgular intgral ði jþ; w hav (a) r i;j 0:l j whr r i;j is th distanc btwn th collocation point on ith plmnt s ffiffiffiffiffiffiffiffi cntr and th jth sourc lmnt s cntr, r i;j ¼ x r þ y r ; x r and y r ar th coordinats of collocation point aftr translation and rotation, l j is th lngth of th jth sourc lmnt Th multipol momnt R m;j is th valu rlatd to th sourc point coordinat and Ci;j;m 1 is th valu rlatd to th fild point coordinat as shown blow: Ci;j;m 1 ¼ pi 1 m m ðr i;jþcosðmaþ; ðþ R m;j ¼ n¼0 J mþnþ1 Þ: ðþ (b) r i;j, 0:l j U i;j ¼ U ds ¼ pi 0:l j J m ðlslþds 0:l j ¼ pi ¼ X1 C 1 i;j;mr m;j ; 1 m m ðr i;jþcosðmaþ 1 m m ðr i;jþcosðmaþ! J mþnþ1 Þ n¼0 ðþ ðr i;j U i;j ¼ U i ðr i;j dsþ U dsþ U i ds 0:l j r i;j r i;j ¼ pi 1 m m ðr i;jþcosðmaþ pi n¼0 J mþnþ1 ðr i;j Þ 1 m J m ðr i;j ÞcosðmaÞ m ðlslþds: r i;j! ð8þ For th waly singular intgral ði ¼ jþ; w rgulariz th intgral by mans of partial intgration and limiting procss ððx r ; y r Þ¼ð0; ÞÞ as follows

10 9 JT Chn, KH Chn / Enginring Analysis with Boundary Elmnts 8 (00) 8 09 ð U i;i ¼ lim U i ð ds þ U ds þ U i ds!0 0:l j ¼ pi ( 1 m n¼1 m ðþcosðpþ X J mþnþ1 ðþþ pi!) 1 m J m ðþcosðpþ Hm ð1þ ðlslþds n¼0 ¼ 0 þ pi! ð0:l J j 0ðÞ 0 ðlslþds ¼ pi ¼ ip 0 l l þ 1 0:l j 0:l j 0 ðlslþds þ ð 0 ðlslþds! ðlslþlsldsþ; ð9þ whr ð lim!0 ð 0 ðlslþds ¼ lim!0 i lnðsþds ¼ 0: p ð0þ T rnl For th rgular intgral ði jþ; w hav (a) r i;j 0:l For th strongly singular intgral ði¼jþ; w rgulariz th intgral by mans of partial intgration, limiting procss and th idntitis from th gnralizd function as shown blow [19] sin m p ¼ p m : ðþ m¼1 W can obtain th intgral as follows T i;j ¼ T ds ¼ pi 0:l j ¼ pi X1 pi 1 m ð0:l m ðr j i;jþcosðmaþ 0:l j ½J m1ðlslþ J mþ1 ðlslþš ð0:l mþ1 ðr j i;jþðm þ 1Þsinððm þ 1ÞaÞ mþ1 ðr i;jþðm þ 1Þsinððm þ 1ÞaÞ m þ J mþ1 ðlslþ 0:l j lsl s 0 þ 0 ð1þ ds lsl 0:l j ½J m ðlslþþj mþ ðlslþšds ¼ C i;j;m½r m;j þ R ðmþ1þ;j Š; ds ð1þ whr C i;j;m¼pi (b) r i;j,0:l mþ1 ðr i;jþðmþ1þsinððmþ1þaþ mþ : ðþ ðr i;j T i;j ¼ T i ðr i;s ds þ T ds þ T i ds ¼ pi X1 ðr mþ1 ðr i;j i;jþðm þ 1Þsinððm þ 1ÞaÞ 0:l j r i;j r i;j r i;j þ pi X1 J mþ1 ðr i;j Þðm þ 1Þsinððm þ 1ÞaÞðÞ r i;j mþ1 ðlslþ lsl ds ¼ pi X1 ðr i;j ½J m þ m ðlslþþj mþ ðlslþšds þ pi X1 J mþ1 ðr i;j Þðm þ 1Þsinððm þ 1ÞaÞðÞ r i;j þ mþ ðlslþšds: J mþ1 ðlslþ ds lsl mþ1 ðr i;jþðm þ 1Þsinððm þ 1ÞaÞ m þ r i;j ½ m ðlslþ ðþ

11 JT Chn, KH Chn / Enginring Analysis with Boundary Elmnts 8 (00) ð T i;i ¼ T i ð ds þ T ds þ T i ds ¼ pi X1 0:l j þ pi X1 p ð ffi J mþ1 ðþðm þ 1Þsin ðm þ 1Þ p 1 X1 ds ¼ sm ð1þ m m þ 1 þ X1 mþ1 ðr i;jþðm þ 1Þsin ðm þ 1Þ p ð ð0:lj ð1þ m m þ 1 ¼ X1 mþ1 ðlslþ ds ¼ X1 lsl sin m p þ X1 m m¼1 m¼1 ð1þ m mþ1 ð sin m p m 0 J mþ1 ðlslþ ds lsl s m ds þ X1 ¼ p; ð1þ m mþ1 ðþ whr limj mþ1 ðþ!0 ¼ pffi lim!0 pffi mþ1 ðlslþ lsl ds ðmþ1þðþ mþ1 mþ1 ðmþ1þ! mþ1 ðlslþ lsl L rnl For th rgular intgral ði jþ; w hav (a) r i;j 0:l L i;j ¼ L ds ¼ pi 0:l j whr ds¼0: 1 m ½Hð1Þ m1 ðr i;jþ mþ1 ðr i;jþš x ð0:l i n j i cosðmaþ J r m ðlslþds i;j 0:l j pi 1 m m ðr i;jþðmþsinðmaþ y r n 1 x r n r i;j J m ðlslþds ¼ X1 0:l j C i;j;m ¼ pi 1 m ( C i;j;mr m;j ; ½Hð1Þ m1 ðr i;jþ mþ1 ðr i;jþš x i n i r i;j ðþ ðþ cosðmaþþ m ðr i;jþðmþsinðmaþ y r n 1 x r n ri;j : ð8þ (b) r i;j, 0:l L i;j ¼ ðr i;j ¼ pi 0:l j L i dsþ ðr i;j r i;j L dsþ r i;j L i ds 1 m ½Hð1Þ m1 ðr i;jþ mþ1 ðr i;jþš x i n i r i;j cosðmaþ J m ðlslþds pi 0:l j y r n 1 x ð0:l r n j ri;j J m ðlslþds pi 0:l j ) 1 m m ðr i;jþðmþsinðmaþ 1 m ½J m1ðr i;j Þ J mþ1 ðr i;j ÞŠ x! ð0:l i n j i cosðmaþ m r ðlsldsþ i;j r i;j pi 1 m J m ðr i;j ÞðmÞsinðmaÞ y r n 1 x r n m!: ðlslþds ð9þ r i;j r i;j For th strongly singular intgral ði¼jþ; w rgulariz th intgral by mans of partial intgration and limiting procss as follows ð L i;i ¼ L i ð dsþ L dsþ L i ds 0:l j ¼ pi 1 m ½Hð1Þ m1 ðllþhð1þ mþ1 ðllþšð1þm ð J m ðlslþdsþ pi! J mþ1 ðllþšð1þ m m ðlslþds ¼ X1 ð1þ m ð m¼1 mþ1 0 m¼1 s m dsþ X1 1 m ½J m1ðllþ m¼1 p ffi ð1þ m m1ð m¼1 s m ds ¼ X1 ð1þ m X1 ð1þ m mþ1 1m m¼1 m¼1 ¼ X1 sinðm p Þ 1 X1 sinðm p Þ ¼p; m m whr lim!0 ½J m1ðllþj mþ1 ðllþš pffi Hð1Þ m ðlslþds¼0: M rnl For th rgular intgral ði jþ; w hav (a) r i;j 0:l M i;j ¼ M ds ¼ pi 0:l j whr ðþ ½Hð1Þ m ðr i;jþ mþ ðr i;jþš x i n i r i;j ½ðm þ 1Þsinððm þ 1ÞaÞŠ J m ðlslþ 0:l j lsl ds þ pi ðm þ 1Þcosððm þ 1ÞaÞ y r n 1 x r n r i;j J m ðlslþ 0:l j lsl ds ¼ X1 ðþ mþ1 ðr i;jþ C i;j;m½r m;j þ R ðmþ1þ;j Š; ð0þ ð1þ ðþ

12 9 JT Chn, KH Chn / Enginring Analysis with Boundary Elmnts 8 (00) 8 09 Ci;j;m ¼ pi ri;j ðm þ 1Þ y r n 1 x r n r i;j ( ðr i;jþ½ m ðr i;jþ mþ ðr i;jþš x i n i sinððm þ 1ÞaÞþ mþ1 r ðr i;jþðm þ 1Þcosððm þ 1ÞaÞ i;j ) : ðþ (b) r i;j, 0:l ðr i;j M i;j ¼ M i ðr i;j ds þ M ds þ M i ds ¼ pi 0:l j r i;j r i;j ri;j þ mþ1 ðr i;jþðm þ 1Þcosððm þ 1ÞaÞy r n 1 x r n For th hyprsingular intgral ði ¼ jþ; w rgulariz th intgral by mans of partial intgration, limiting procss and using th idntitis from th gnralizd function as shown blow [19] ð1þ m ¼ 1 : ðþ ðm þ 1Þ ðr i;jþ½ m ðr i;jþ mþ ðr i;jþšx i n i sinððm þ 1ÞaÞ m þ ðr i;j r i;j ½J m ðlslþþj mþ ðlslþšds þ pi r i;j ðr i;jþ½j m ðr i;j Þ J mþ ðr i;j ÞŠx i n i sinððm þ 1ÞaÞþJ mþ1 ðr i;j Þðm þ 1Þcosððm þ 1ÞaÞy r n 1 x r n ½ m m þ ðlslþþhð1þ mþ ðlslþšds: r i;j W can obtain th intgral as follows: ( ð M i;i ¼ M i ð ds þ M ds þ M i ds ¼ ip 0:l j ) mþ1 ðlslþ lsl ds þ X1 m¼1 #) þ 1 ðlslþlslds 0:l þ #) þ 1 ðlslþlslds 0:l ðm þ 1Þð1Þ m ¼ ip 1 mþ m¼1 ð 0 ð1þ m1 þ l ip It is intrsting to find that R m;j trm is mbddd in th formula of th four influnc matrics of Eqs (), (1), () and () Construction of th four influnc matrics By using Eqs () and (1), th algbraic systm UT quation of th dual boundary intgral formulation in Eq (18) can b rwrittn as 1 ðlslþ ds þ X1 J lsl m ðþðm þ 1Þð1Þ m m¼1 s m ds ¼ ip ( " l 1 þ l 0 ð1þ m ¼ ip ( " l 1 þ 0 ðm þ 1Þ l ðþ U i;i: ðþ 8 0 C1;;mðR m; þ R ðmþ1þ; Þ C1;N;mðR 98 9 m;n þ R ðmþ1þ;n Þ u 1 C;1;mðR m;1 þ R ðmþ1þ;1 Þ 0 C;N;mðR >< m;n þ R ðmþ1þ;n Þ >= >< u >= þ pi >: >; >: CN;1;mðR m;1 þ R ðmþ1þ;1 Þ CN;;mðR m; þ R ðmþ1þ; Þ 0 u >; N 8 0 C1;;mR 1 m; C1;N;mR m;n t 1 ¼ X1 C;1;mR 1 m;1 0 C;N;mR 1 >< m;n >= >< t >= þ½diagðu i;i ÞŠ : ðþ >: >; >: CN;1;mR 1 m;1 CN;;mR 1 m; 0 t >; N

13 JT Chn, KH Chn / Enginring Analysis with Boundary Elmnts 8 (00) By using Eqs () and (), th algbraic systm of th LM quation of th dual boundary intgral formulation of Eq (19) can b rwrittn as 8 0 C1;;mðR m; þ R ðmþ1þ; Þ C1;N;mðR 98 9 m;n þ R ðmþ1þ;n Þ u 1 C;1;mðR m;1 þ R ðmþ1þ;1 Þ 0 C;N;mðR >< m;n þ R ðmþ1þ;n Þ >= >< u >= þ½diagðm i;i ÞŠ >: >; >: CN;1;mðR m;1 þ R ðmþ1þ;1 Þ CN;;mðR m; þ R ðmþ1þ; Þ 0 u >; N 8 0 C1;;mR m; C1;N;mR 98 9 m;n t 1 ¼ X1 C;1;mR m;1 0 C;N;mR >< m;n >= >< t >= þ p½iš : ð8þ >: >; >: CN;1;mR m;1 CN;;mR m; 0 t >; N whr I is th unit matrix By adopting th M þ 1 trms in th sris sum, th four influnc matrics can b rwrittn as R 0;1 0 0 C1;;0 1 C1;;1 1 C 1 1;;M C;1;0 1 C;1;1 1 C;1;M 1 R 1; ½UŠ ¼ þ CN;1;0 1 CN;1;1 1 CN;1;M 1 N ðmþ1þ R M;1 0 0 ðmþ1þ N CN;;0 1 CN;;1 1 CN;;M 1 0 R 0; 0 C1;N;0 1 C1;N;1 1 C 1 1;N;M 0 0 R 0;N 0 R 1; 0 C;N;0 1 C;N;1 1 C 1 ;N;M 0 0 R 1;N þ þ 0 R M; R M;N ðmþ1þ N þ½diagðu i;i ÞŠ N N ; C;1;0 C;1;1 C;1;M ½TŠ¼ CN;1;0 CN;1;1 CN;1;M 0 ðr 0; þr 1; Þ 0 0 ðr 1; þr ; Þ 0 0 ðr M; þr ðmþ1þ; Þ 0 N ðmþ1þ ðmþ1þ N N ðmþ1þ ðr 0;1 þr 1;1 Þ 0 0 C1;;0 C1;;1 C 1;;M ðr 1;1 þr ;1 Þ þ ðr M;1 þr ðmþ1þ;1 Þ 0 0 ðmþ1þ N CN;;0 CN;;1 CN;;M C1;N;0 C1;N;1 C1;N;M 00 ðr 0;N þr 1;N Þ C;N;0 C;N;1 C;N;M 00 ðr 1;N þr ;N Þ þ þ ðr M;N þr ðmþ1þ;n Þ N ðmþ1þ N ðmþ1þ N ðmþ1þ ðmþ1þ N ðmþ1þ N ð9þ þp½iš; ð0þ

14 98 JT Chn, KH Chn / Enginring Analysis with Boundary Elmnts 8 (00) C;1;0 C;1;1 C;1;M ½LŠ ¼ CN;1;0 CN;1;1 CN;1;M C1;;0 C1;;1 C1;;M þ CN;;0 CN;;1 CN;;M N ðmþ1þ N ðmþ1þ R 0;1 0 0 R 1;1 0 0 R M; R 0; 0 0 R 1; 0 0 R M; 0 ðmþ1þ N : ðmþ1þ N C1;N;0 C1;N;1 C 1;N;M 0 0 R 0;N C;N;0 C;N;1 C;N;M 0 0 R 1;N þ þ þp½iš; N ðmþ1þ 0 0 R M;N ðmþ1þ N ðr 0;1 þ R 1;1 Þ 0 0 C;1;0 C;1;1 C;1;M ðr 1;1 þ R ;1 Þ 0 0 ½MŠ ¼ : CN;1;0 CN;1;1 CN;1;M N ðmþ1þ ðr M;1 þ R ðmþ1þ;1 Þ 0 0 ðmþ1þ N C1;;0 C1;;1 C1;;M 0 ðr 0; þ R 1; Þ ðr 1; þ R ; Þ 0 þ CN;;0 CN;;1 CN;;M 0 ðr M; þ R ðmþ1þ; Þ 0 N ðmþ1þ C1;N;0 C1;N;1 C 1;N;M C;N;0 C;N;1 C;N;M þ þ N ðmþ1þ : ðmþ1þ N 0 0 ðr 0;N þ R 1;N Þ 0 0 ðr 1;N þ R ;N Þ 0 0 ðr M;N þ R ðmþ1þ;n Þ ðmþ1þ N þ½diagðm i;i ÞŠ N N : ð1þ ðþ It is intrsting that th four influnc matrics in th dual BEM ar all composd of th fild point matrics and th sourc point matrics Th sparabl tchniqu can promot th fficincy in dtrming th influnc cofficints Th sourc point matrics of ½UŠ ar all th sam with ½LŠ; whil th sourc point matrics of ½TŠ ar all th sam with ½MŠ: Bsids, many influnc cofficints in th sourc point matrics of ½TŠ and ½MŠ hav th sam valu with ½UŠ and ½LŠ; or with only som combinations Thr ar many zros or th sam influnc cofficints in th fild point matrics dcomposd in th four influnc matrics Thrfor, w can avoid calculating rpatdly th sam trm Th sparabl tchniqu rducs th numbr of floating-point oprations from OðN Þ to OðN log a ðnþþ: Thus, larg computation tim savings ar achivd and mmory rquirmnts ar rducd, thus nabling us apply BEM to solv larg-scal problms Illustrativ xampls To dmonstrat th validity of th dual intgral formulation in conjunction with th FMM, two xampls for scattring problm by an infinit cylindr with radius ðaþ subjct to th Numann boundary condition ar givn as follows

15 JT Chn, KH Chn / Enginring Analysis with Boundary Elmnts 8 (00) Fig Th scattring problm for a cylindr with th Numann boundary condition Exampl 1 Th radius, a; is m and th wav numbr of incidnt wav, ; is p: In th Exampl 1, w solv th problm by applying th LU dcomposition in th dvlopd program and compar with th analytical solution and th convntional dual BEM Th problm was chosn bcaus th analytical solution is nown [,] It is thrfor a good modl problm to tst th accuracy of DBEM by mploying th concpt of FMM Th xampl is shown in Fig and th analytical solution is uðr; uþ ¼ J0 X1 0ðaÞ 0 0 ðaþ Hð1Þ 0 ðrþ i n n¼1 J 0 nðaþ Hn ð1þ0 ðaþ n ðrþcosðnuþ; ðþ whr i ¼ 1: Fig shows th contour plots of th ralpart solutions for th cas of a ¼ 0p: Th unnown boundary solutions of scattring fild using th boundary msh of 100 lmnts, RðuÞ and ImðuÞ; ar plottd in Figs and and 800 lmnts in Figs 8 and 9 Solution using th uniform msh rfinmnt of 800 lmnts convrgs to th xact solution By adopting only four momnt FMM formulation, th rsults ar compard wll with thos of FEM, convntional BEM and analytical solutions Comparison of rror norms for th FMM rsults vrsus diffrnt trms in th sris is shown in Fig 10 Fig 11 shows th rror norms against diffrnt mshs Only a fw trms in th FMM can rach within th rror tolranc Comparison of CPU tim using th FMM with diffrnt trms ar plottd in Fig 1 Fig 1 shows th CPU tim vrsus diffrnt mshs Th trnd of CPU tim in proportional to N and N log : N is found for th convntional BEM and th FMM, rspctivly Exampl Th radius, a; is 0 m and th wav numbr of incidnt wav, ; is p Fig 1 shows th contour plots of th ral-part solutions for th cas of a ¼ 0p: Th unnown boundary solution of scattring fild using th msh of 00 lmnts, RðuÞ and ImðuÞ; ar plottd in Figs 1 and 1 and in Figs 1 and 18 using 1100 lmnts Solution using th uniform msh rfinmnt of 1100 lmnts convrgs to th xact solution By adopting Fig Th contour plot of th ral-part solutions in th cas 1 (a) Exact solution, (b) FMM rsults ðm ¼ Þ: only thr momnt FMM formulation, th rsults ar compard wll with thos of FEM, convntional BEM and analytical solutions Comparison of rror norms for th FMM rsults vrsus diffrnt trms in th sris is shown in Fig 19 Fig 0 shows th rror norms against diffrnt mshs Only a fw trms in th FMM can rach within th rror tolranc Comparison of CPU tim using th FMM with diffrnt trms ar plottd in Fig 1 Fig shows th CPU tim vrsus diffrnt mshs Th FMM can rduc CPU tim thus nabling us apply BEM to solv for

16 00 JT Chn, KH Chn / Enginring Analysis with Boundary Elmnts 8 (00) 8 09 Fig Th boundary solution of th scattring fild using 100 boundary lmnts, RðuÞ; for th cas 1 (a) UT quation of FMM ðm ¼ Þ; (b) LM quation of FMM ðm ¼ Þ; (c) Burton and Millr mthod of FMM ðm ¼ Þ: Fig Th boundary solution of scattring fild using 100 boundary lmnts, ImðuÞ; for th cas 1 (a) UT quation of FMM ðm ¼ Þ; (b) LM quation of FMM ðm ¼ Þ; (c) Burton and Millr mthod of FMM ðm ¼ Þ:

17 JT Chn, KH Chn / Enginring Analysis with Boundary Elmnts 8 (00) Fig 8 Th boundary solution of scattring fild using 800 boundary lmnts, RðuÞ; for th cas 1 (a) UT quation of FMM ðm ¼ Þ; (b) LM quation of FMM ðm ¼ Þ; (c) Burton and Millr mthod of FMM ðm ¼ Þ: Fig 9 Th boundary solution of scattring fild using 800 boundary lmnts, ImðuÞ; for th cas 1 (a) UT quation of FMM ðm ¼ Þ; (b) LM quation of FMM ðm ¼ Þ; (c) Burton and Millr mthod of FMM ðm ¼ Þ:

18 0 JT Chn, KH Chn / Enginring Analysis with Boundary Elmnts 8 (00) 8 09 Fig 10 Comparison of th rror norms for th FMM rsults vrsus M in th sris for th cas 1 (a) UT quation (b) LM quation (c) Burton and Millr mthod Fig 11 Comparison of th rror norms for th FMM ðm ¼ Þ and th convntional BEM rsults vrsus numbr of lmnts for th cas 1 (a) UT quation, (b) LM quation, (c) Burton and Millr mthod

19 JT Chn, KH Chn / Enginring Analysis with Boundary Elmnts 8 (00) Fig 1 CPU tim by using th FMM vrsus M in th sris for th cas 1 Fig 1 CPU tim by using th FMM ðm ¼ Þ and th convntional DBEM vrsus numbr of lmnts for th cas 1

20 0 JT Chn, KH Chn / Enginring Analysis with Boundary Elmnts 8 (00) 8 09 Fig 1 Th contour plot of th ral-part solutions in th cas (a) Exact solution, (b) FMM rsults ðm ¼ Þ:

21 JT Chn, KH Chn / Enginring Analysis with Boundary Elmnts 8 (00) Fig 1 Th boundary solution of scattring fild using 00 boundary lmnts, RðuÞ; for th cas (a) UT quation of FMM ðm ¼ Þ; (b) LM quation of FMM ðm ¼ Þ; (c) Burton and Millr mthod of FMM ðm ¼ Þ: Fig 1 Th boundary solution of scattring fild using 00 boundary lmnts, ImðuÞ; for th cas (a) UT quation of FMM ðm ¼ Þ; (b) LM quation of FMM ðm ¼ Þ; (c) Burton and Millr mthod of FMM ðm ¼ Þ:

22 0 JT Chn, KH Chn / Enginring Analysis with Boundary Elmnts 8 (00) 8 09 Fig 1 Th boundary solution of scattring fild using 100 boundary lmnts, RðuÞ; for cas (a) UT quation of FMM ðm ¼ Þ; (b) LM quation of FMM ðm ¼ Þ; (c) Burton and Millr mthod of FMM ðm ¼ Þ: Fig 18 Th boundary solution of scattring fild using 100 boundary lmnts, ImðuÞ; for th cas (a) UT quation of FMM ðm ¼ Þ; (b) LM quation of FMM ðm ¼ Þ; (c) Burton and Millr mthod of FMM ðm ¼ Þ:

23 JT Chn, KH Chn / Enginring Analysis with Boundary Elmnts 8 (00) Fig 19 Comparison of th rror norms for th FMM rsults vrsus M in th sris for th cas (a) UT quation, (b) LM quation, (c) Burton and Millr mthod Fig 0 Comparison of th rror norms for th FMM ðm ¼ Þ and th convntional BEM rsults vrsus numbr of lmnts for th cas (a) UT quation, (b) LM quation, (c) Burton and Millr mthod

24 08 JT Chn, KH Chn / Enginring Analysis with Boundary Elmnts 8 (00) 8 09 Millr formulation by combining th dual boundary intgral quations was utilizd to solv th xtrior acoustic problms for all wav numbrs in ordr to ovrcom th problm of fictitious frquncy Two illustrativ xampls hav bn succssfully dmonstratd by using th FMM for DBEM formulation in th xtrior acoustic problms containing a larg-scal scattr Th numrical rsults wr compard wll with thos of convntional DBEM and analytical solutions Only a fw trms in FMM can rach within th rror tolranc In addition, th CPU tim was rducd in comparison with BEM without mploying FMM concpt Acnowldgmnts Fig 1 CPU tim by using th FMM vrsus M in th sris for th cas Financial support from th National Scinc Council, Grant No NSC E and Wu, Ta-You Award for National Taiwan Ocan Univrsity to th first author, and th Sinotch Foundation for Rsarch and Dvlopmnt to th scond author ar gratfully acnowldgd Rfrncs Fig CPU tim by using th FMM ðm ¼ Þ and th convntional DBEM vrsus numbr of lmnts for th cas a larg-scal problm Th sam trnd of CPU tim in comparison with Fig 1 is obsrvd Conclusions In this papr, th four rnls in th dual formulation wr xpandd into dgnrat rnls whr th fild point and sourc point wr sparatd Th sparabl tchniqu promotd th fficincy in dtrmining th influnc cofficints Th singular and hyprsingular intgrals hav bn transformd into th summability of divrgnt sris and rgular intgrals Th Burton and [1] Abramowitz M, Stgun IA Handboo of mathmatical functions with formulation, graphs and mathmatical tabls Nw Yor: Dovr; 19 [] Amini S, Profit ATJ Analysis of th truncation rrors in th fast multipol mthod for scattring problms J Comput Appl Math 000; 11: 0 [] Amini S, Profit ATJ Analysis of a diagonal form of th fast multipol algorithm for scattring thory BIT Numr Math 1999;9(): 8 0 [] Amini S On th choic of th coupling paramtr in boundary intgral formulation for th xtrior acoustic problm Applic Anal 1990;: 9 [] Burton AJ, Millr GF Th application of intgral quation mthods to numrical solution of som xtrior boundary valu problms Proc R Soc Lond, Sr A 191;:01 10 [] Chn IL, Chn JT, Liang MT Analytical study and numrical xprimnts for radiation and scattring problms using th CHIEF mthod J Sound Vib 001;8():809 8 [] Chn JT, Chn KH, Chn CT Adaptiv boundary lmnt mthod of tim-harmonic xtrior acoustic problms in two dimnsions Comput Mth Appl Mch Engng 00;191:1 [8] Chn JT, Kuo SR, Lin GH Analytical study and numrical xprimnts for dgnrat scal problms in th boundary lmnt mthod for two-dimnsional lasticity Int J Numr Mth Engng 00;:19 81 [9] Chn JT, Lin JH, Kuo SR, Chiu YP Analytical study and numrical xprimnts for dgnrat scal problms in boundary lmnt mthod using dgnrat rnls and circulants Engng Anal Bound Elm 001;(9):819 8 [10] Chn JT, Chn CT, Chn KH, Chn IL On fictitious frquncis using dual BEM for nouniform radiation problms of a cylindr Mch Rs Commun 000;():8 90 [11] Chn JT, Liang MT, Chn IL, Chyuan SW, Chn KH Dual boundary lmnt analysis of wav scattring from singularitis Wav Motion 1999;0: 81

25 JT Chn, KH Chn / Enginring Analysis with Boundary Elmnts 8 (00) [1] Chn JT, Kuo SR, Chn KH A nonsingular formulation for th Hlmholtz ignproblms of a circular domain J Chin Inst Engng 1999;():9 9 [1] Chn JT Rcnt dvlopmnt of dual BEM in acoustic problms In: Onat E, Idlsohn SR, ditors Kynot lctur Procdings of th Fourth World Congrss on Computational Mchanics, Argntina, 10; 1998 [1] Chn JT, Chn KH Dual intgral formulation for dtrmining th acoustic mods of a two-dimnsional cavity with a dgnrat boundary Engng Anal Bound Elm 1998;1():10 1 [1] Chn JT, Hong H-K Dual boundary intgral quations at a cornr using contour approach around singularity Adv Engng Softwar 199;1():19 8 [1] Chn JT, Hong H-K Boundary lmnt mthod, nd d Taipi: Nw World Prss; 199 in Chins [1] Chn YH, Chw WC, Zroug S Fast multipol mthod as an fficint solvr for D lastic wav surfac intgral quations Comput Mch 199;0:9 0 [18] Crmrs L, Fyf KR, Sas P A variabl ordr infinit lmnt for multi-domain boundary lmnt modlling of acoustic radiation and scattring Appl Acoust 000;9():18 0 [19] Gl fand IM, Shilov GE Gnralizd functions Nw Yor: Acadmic Prss; 19 [0] Hong H-K, Chn JT Drivations of intgral quations of lasticity J Engng Mch (ASCE) 1988;11():108 [1] Harari I, Barbon PE, Slavutin M, Shalom R Boundary infinit lmnts for th Hlmholtz quation in xtrior domains Int J Numr Mth Engng 1998;1:110 1 [] Harari I, Hughs TJR A cost comparison of boundary lmnt and finit lmnt mthods for problms of tim-harmonic structural acoustics Comput Mth Appl Mch Engng 199;9: 10 [] Harari I, Barbon PE, Montgomry JM Finit lmnt formulations for xtrior problms: application to hybrid mthods, non-rflcting boundary conditions and infinit lmnts Int J Numr Mth Engng 199;0:91 80 [] Liang MT, Chn JT, Yang SS Error stimation for boundary lmnt mthod Engng Anal Bound Elm 1999;: [] Martin O, Laszlo H, Stffn M Analysis of intrior and xtrior sound filds using itrativ boundary lmnt solvrs J Acoust Soc Am 001;110():19 9 [] Mcnny A An adaptation of th fast multipol mthod for valuating layr potntials in two dimnsions Comput Math Applic 199;1(1): [] Michl AT, Nourddin A Efficint valuation of th acoustic radiation using multipol xpansion Int J Numr Mth Engng 1999;:8 [8] Michl AT, Nourddin A A novl acclration mthod for th variational boundary lmnt approach basd on multipol xpansion Int J Numr Mth Engng 1998;: [9] Nishimura N, Yoshida K-I, Kobayashi S A fast multipol boundary intgral quation mthod for crac problms in D Engng Anal Bound Elm 1999;:9 10 [0] Nishimura N Fast multipol acclratd boundary intgral quation mthods Appl Mch Rv 00;():1 [1] Rhr JJ, Albrs RC Scattring-matrix formulation of curvd-wav multipl-scattring thory: application to X-ray-absorption fin structur Am Phys Soc 1990;1(1):819 9 [] Ricardo EM Th multipol xpansion: a nw loo J Sound Vib 000; ():90 11 [] Rohlin V Rapid solution of intgral quations of scattring thory in two dimnsions J Comput Phys 1990;8:1 9 [] Rohlin V Rapid solution of classical potntial thory J Comput Phys 198;0:18 0 [] Stwart JR, Hughs TJR h-adaptiv finit lmnt computation of tim-harmonic xtrior acoustics problms in two dimnsion Comput Mth Appl Mch Engng 199;1: 89 [] Taahashi T, Kobayashi S, Nishimura N Fast multipol BEM simulation of ovrcoring in an improvd conical-nd borhol strain masurmnt mthod Mchanics and nginring Bijing, China: Tsinghua Univrsity Prss; 1999 p 10 1, In Honor of Profssor Qinghua Du s 80th Annivrsary [] Yoshida K-I, Nishimura N, Kobayashi S Application of fast multipol Galrin boundary intgral quation mthod to crac problms in D Int J Numr Mth Engng 001;0: [8] Young DL, Tsai CC, Eldho TI Solution of Stos flow using an itrativ DRBEM basd on compactly-supportd, positiv-dfinit radial basis function Comput Math Applic 00;:0 19

Finite element discretization of Laplace and Poisson equations

Finite element discretization of Laplace and Poisson equations Finit lmnt discrtization of Laplac and Poisson quations Yashwanth Tummala Tutor: Prof S.Mittal 1 Outlin Finit Elmnt Mthod for 1D Introduction to Poisson s and Laplac s Equations Finit Elmnt Mthod for 2D-Discrtization

More information

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis Middl East Tchnical Univrsity Dpartmnt of Mchanical Enginring ME Introduction to Finit Elmnt Analysis Chaptr 5 Two-Dimnsional Formulation Ths nots ar prpard by Dr. Cünyt Srt http://www.m.mtu.du.tr/popl/cunyt

More information

Homotopy perturbation technique

Homotopy perturbation technique Comput. Mthods Appl. Mch. Engrg. 178 (1999) 257±262 www.lsvir.com/locat/cma Homotopy prturbation tchniqu Ji-Huan H 1 Shanghai Univrsity, Shanghai Institut of Applid Mathmatics and Mchanics, Shanghai 272,

More information

10. The Discrete-Time Fourier Transform (DTFT)

10. The Discrete-Time Fourier Transform (DTFT) Th Discrt-Tim Fourir Transform (DTFT Dfinition of th discrt-tim Fourir transform Th Fourir rprsntation of signals plays an important rol in both continuous and discrt signal procssing In this sction w

More information

Dynamic Modelling of Hoisting Steel Wire Rope. Da-zhi CAO, Wen-zheng DU, Bao-zhu MA *

Dynamic Modelling of Hoisting Steel Wire Rope. Da-zhi CAO, Wen-zheng DU, Bao-zhu MA * 17 nd Intrnational Confrnc on Mchanical Control and Automation (ICMCA 17) ISBN: 978-1-6595-46-8 Dynamic Modlling of Hoisting Stl Wir Rop Da-zhi CAO, Wn-zhng DU, Bao-zhu MA * and Su-bing LIU Xi an High

More information

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis Middl East Tchnical Univrsity Dpartmnt of Mchanical Enginring ME 43 Introduction to Finit Elmnt Analysis Chaptr 3 Computr Implmntation of D FEM Ths nots ar prpard by Dr. Cünyt Srt http://www.m.mtu.du.tr/popl/cunyt

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

Hydrogen Atom and One Electron Ions

Hydrogen Atom and One Electron Ions Hydrogn Atom and On Elctron Ions Th Schrödingr quation for this two-body problm starts out th sam as th gnral two-body Schrödingr quation. First w sparat out th motion of th cntr of mass. Th intrnal potntial

More information

Derivation of Eigenvalue Matrix Equations

Derivation of Eigenvalue Matrix Equations Drivation of Eignvalu Matrix Equations h scalar wav quations ar φ φ η + ( k + 0ξ η β ) φ 0 x y x pq ε r r whr for E mod E, 1, y pq φ φ x 1 1 ε r nr (4 36) for E mod H,, 1 x η η ξ ξ n [ N ] { } i i i 1

More information

3 Finite Element Parametric Geometry

3 Finite Element Parametric Geometry 3 Finit Elmnt Paramtric Gomtry 3. Introduction Th intgral of a matrix is th matrix containing th intgral of ach and vry on of its original componnts. Practical finit lmnt analysis rquirs intgrating matrics,

More information

16. Electromagnetics and vector elements (draft, under construction)

16. Electromagnetics and vector elements (draft, under construction) 16. Elctromagntics (draft)... 1 16.1 Introduction... 1 16.2 Paramtric coordinats... 2 16.3 Edg Basd (Vctor) Finit Elmnts... 4 16.4 Whitny vctor lmnts... 5 16.5 Wak Form... 8 16.6 Vctor lmnt matrics...

More information

Sliding Mode Flow Rate Observer Design

Sliding Mode Flow Rate Observer Design Sliding Mod Flow Rat Obsrvr Dsign Song Liu and Bin Yao School of Mchanical Enginring, Purdu Univrsity, Wst Lafaytt, IN797, USA liu(byao)@purdudu Abstract Dynamic flow rat information is ndd in a lot of

More information

1 Isoparametric Concept

1 Isoparametric Concept UNIVERSITY OF CALIFORNIA BERKELEY Dpartmnt of Civil Enginring Spring 06 Structural Enginring, Mchanics and Matrials Profssor: S. Govindj Nots on D isoparamtric lmnts Isoparamtric Concpt Th isoparamtric

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpnCoursWar http://ocw.mit.du 5.80 Small-Molcul Spctroscopy and Dynamics Fall 008 For information about citing ths matrials or our Trms of Us, visit: http://ocw.mit.du/trms. Lctur # 3 Supplmnt Contnts

More information

Division of Mechanics Lund University MULTIBODY DYNAMICS. Examination Name (write in block letters):.

Division of Mechanics Lund University MULTIBODY DYNAMICS. Examination Name (write in block letters):. Division of Mchanics Lund Univrsity MULTIBODY DYNMICS Examination 7033 Nam (writ in block lttrs):. Id.-numbr: Writtn xamination with fiv tasks. Plas chck that all tasks ar includd. clan copy of th solutions

More information

Einstein Rosen inflationary Universe in general relativity

Einstein Rosen inflationary Universe in general relativity PRAMANA c Indian Acadmy of Scincs Vol. 74, No. 4 journal of April 2010 physics pp. 669 673 Einstin Rosn inflationary Univrs in gnral rlativity S D KATORE 1, R S RANE 2, K S WANKHADE 2, and N K SARKATE

More information

2008 AP Calculus BC Multiple Choice Exam

2008 AP Calculus BC Multiple Choice Exam 008 AP Multipl Choic Eam Nam 008 AP Calculus BC Multipl Choic Eam Sction No Calculator Activ AP Calculus 008 BC Multipl Choic. At tim t 0, a particl moving in th -plan is th acclration vctor of th particl

More information

Symmetric centrosymmetric matrix vector multiplication

Symmetric centrosymmetric matrix vector multiplication Linar Algbra and its Applications 320 (2000) 193 198 www.lsvir.com/locat/laa Symmtric cntrosymmtric matrix vctor multiplication A. Mlman 1 Dpartmnt of Mathmatics, Univrsity of San Francisco, San Francisco,

More information

DIFFERENTIAL EQUATION

DIFFERENTIAL EQUATION MD DIFFERENTIAL EQUATION Sllabus : Ordinar diffrntial quations, thir ordr and dgr. Formation of diffrntial quations. Solution of diffrntial quations b th mthod of sparation of variabls, solution of homognous

More information

One Dimensional State Space Approach to Thermoelastic Interactions with Viscosity

One Dimensional State Space Approach to Thermoelastic Interactions with Viscosity 7 IJSRST Volum 3 Issu 8 Print ISSN: 395-6 Onlin ISSN: 395-6X Thmd Sction: Scincand Tchnology On Dimnsional Stat Spac Approach to Thrmolastic Intractions with Viscosity Kavita Jain Rnu Yadav Dpartmnt of

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

AS 5850 Finite Element Analysis

AS 5850 Finite Element Analysis AS 5850 Finit Elmnt Analysis Two-Dimnsional Linar Elasticity Instructor Prof. IIT Madras Equations of Plan Elasticity - 1 displacmnt fild strain- displacmnt rlations (infinitsimal strain) in matrix form

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS

COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS COMPUTTIONL NUCLER THERML HYDRULICS Cho, Hyoung Kyu Dpartmnt of Nuclar Enginring Soul National Univrsity CHPTER4. THE FINITE VOLUME METHOD FOR DIFFUSION PROBLEMS 2 Tabl of Contnts Chaptr 1 Chaptr 2 Chaptr

More information

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals.

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals. Chaptr 7 Th Hydrogn Atom Background: W hav discussd th PIB HO and th nrgy of th RR modl. In this chaptr th H-atom and atomic orbitals. * A singl particl moving undr a cntral forc adoptd from Scott Kirby

More information

ABEL TYPE THEOREMS FOR THE WAVELET TRANSFORM THROUGH THE QUASIASYMPTOTIC BOUNDEDNESS

ABEL TYPE THEOREMS FOR THE WAVELET TRANSFORM THROUGH THE QUASIASYMPTOTIC BOUNDEDNESS Novi Sad J. Math. Vol. 45, No. 1, 2015, 201-206 ABEL TYPE THEOREMS FOR THE WAVELET TRANSFORM THROUGH THE QUASIASYMPTOTIC BOUNDEDNESS Mirjana Vuković 1 and Ivana Zubac 2 Ddicatd to Acadmician Bogoljub Stanković

More information

CHAPTER 1. Introductory Concepts Elements of Vector Analysis Newton s Laws Units The basis of Newtonian Mechanics D Alembert s Principle

CHAPTER 1. Introductory Concepts Elements of Vector Analysis Newton s Laws Units The basis of Newtonian Mechanics D Alembert s Principle CHPTER 1 Introductory Concpts Elmnts of Vctor nalysis Nwton s Laws Units Th basis of Nwtonian Mchanics D lmbrt s Principl 1 Scinc of Mchanics: It is concrnd with th motion of matrial bodis. odis hav diffrnt

More information

u 3 = u 3 (x 1, x 2, x 3 )

u 3 = u 3 (x 1, x 2, x 3 ) Lctur 23: Curvilinar Coordinats (RHB 8.0 It is oftn convnint to work with variabls othr than th Cartsian coordinats x i ( = x, y, z. For xampl in Lctur 5 w mt sphrical polar and cylindrical polar coordinats.

More information

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields Lctur 37 (Schrödingr Equation) Physics 6-01 Spring 018 Douglas Filds Rducd Mass OK, so th Bohr modl of th atom givs nrgy lvls: E n 1 k m n 4 But, this has on problm it was dvlopd assuming th acclration

More information

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA NE APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA Mirca I CÎRNU Ph Dp o Mathmatics III Faculty o Applid Scincs Univrsity Polithnica o Bucharst Cirnumirca @yahoocom Abstract In a rcnt papr [] 5 th indinit intgrals

More information

Another view for a posteriori error estimates for variational inequalities of the second kind

Another view for a posteriori error estimates for variational inequalities of the second kind Accptd by Applid Numrical Mathmatics in July 2013 Anothr viw for a postriori rror stimats for variational inqualitis of th scond kind Fi Wang 1 and Wimin Han 2 Abstract. In this papr, w giv anothr viw

More information

Elements of Statistical Thermodynamics

Elements of Statistical Thermodynamics 24 Elmnts of Statistical Thrmodynamics Statistical thrmodynamics is a branch of knowldg that has its own postulats and tchniqus. W do not attmpt to giv hr vn an introduction to th fild. In this chaptr,

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

EXST Regression Techniques Page 1

EXST Regression Techniques Page 1 EXST704 - Rgrssion Tchniqus Pag 1 Masurmnt rrors in X W hav assumd that all variation is in Y. Masurmnt rror in this variabl will not ffct th rsults, as long as thy ar uncorrlatd and unbiasd, sinc thy

More information

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0 unction Spacs Prrquisit: Sction 4.7, Coordinatization n this sction, w apply th tchniqus of Chaptr 4 to vctor spacs whos lmnts ar functions. Th vctor spacs P n and P ar familiar xampls of such spacs. Othr

More information

Construction of Mimetic Numerical Methods

Construction of Mimetic Numerical Methods Construction of Mimtic Numrical Mthods Blair Prot Thortical and Computational Fluid Dynamics Laboratory Dltars July 17, 013 Numrical Mthods Th Foundation on which CFD rsts. Rvolution Math: Accuracy Stability

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condnsd Mattr Physics pcific hat M.P. Vaughan Ovrviw Ovrviw of spcific hat Hat capacity Dulong-Ptit Law Einstin modl Dby modl h Hat Capacity Hat capacity h hat capacity of a systm hld at

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

A Sub-Optimal Log-Domain Decoding Algorithm for Non-Binary LDPC Codes

A Sub-Optimal Log-Domain Decoding Algorithm for Non-Binary LDPC Codes Procdings of th 9th WSEAS Intrnational Confrnc on APPLICATIONS of COMPUTER ENGINEERING A Sub-Optimal Log-Domain Dcoding Algorithm for Non-Binary LDPC Cods CHIRAG DADLANI and RANJAN BOSE Dpartmnt of Elctrical

More information

Difference -Analytical Method of The One-Dimensional Convection-Diffusion Equation

Difference -Analytical Method of The One-Dimensional Convection-Diffusion Equation Diffrnc -Analytical Mthod of Th On-Dimnsional Convction-Diffusion Equation Dalabav Umurdin Dpartmnt mathmatic modlling, Univrsity of orld Economy and Diplomacy, Uzbistan Abstract. An analytical diffrncing

More information

Calculation of Morse Potential Parameters of bcc Crystals and Application to Anharmonic Interatomic Effective Potential, Local Force Constant

Calculation of Morse Potential Parameters of bcc Crystals and Application to Anharmonic Interatomic Effective Potential, Local Force Constant VNU Journal of Scinc: Mathmatics Physics, Vol. 31, No. 3 (15) 3-3 Calculation of Mors Potntial Paramtrs of bcc Crystals and Application to Anharmonic Intratomic Effctiv Potntial, Local Forc Constant Nguyn

More information

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Construction of asymmetric orthogonal arrays of strength three via a replacement method isid/ms/26/2 Fbruary, 26 http://www.isid.ac.in/ statmath/indx.php?modul=prprint Construction of asymmtric orthogonal arrays of strngth thr via a rplacmnt mthod Tian-fang Zhang, Qiaoling Dng and Alok Dy

More information

Direct Approach for Discrete Systems One-Dimensional Elements

Direct Approach for Discrete Systems One-Dimensional Elements CONTINUUM & FINITE ELEMENT METHOD Dirct Approach or Discrt Systms On-Dimnsional Elmnts Pro. Song Jin Par Mchanical Enginring, POSTECH Dirct Approach or Discrt Systms Dirct approach has th ollowing aturs:

More information

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation. Lur 7 Fourir Transforms and th Wav Euation Ovrviw and Motivation: W first discuss a fw faturs of th Fourir transform (FT), and thn w solv th initial-valu problm for th wav uation using th Fourir transform

More information

MATH 1080 Test 2-SOLUTIONS Spring

MATH 1080 Test 2-SOLUTIONS Spring MATH Tst -SOLUTIONS Spring 5. Considr th curv dfind by x = ln( 3y + 7) on th intrval y. a. (5 points) St up but do not simplify or valuat an intgral rprsnting th lngth of th curv on th givn intrval. =

More information

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002 3.4 Forc Analysis of Linkas An undrstandin of forc analysis of linkas is rquird to: Dtrmin th raction forcs on pins, tc. as a consqunc of a spcifid motion (don t undrstimat th sinificanc of dynamic or

More information

ELECTRON-MUON SCATTERING

ELECTRON-MUON SCATTERING ELECTRON-MUON SCATTERING ABSTRACT Th lctron charg is considrd to b distributd or xtndd in spac. Th diffrntial of th lctron charg is st qual to a function of lctron charg coordinats multiplid by a four-dimnsional

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

(Upside-Down o Direct Rotation) β - Numbers

(Upside-Down o Direct Rotation) β - Numbers Amrican Journal of Mathmatics and Statistics 014, 4(): 58-64 DOI: 10593/jajms0140400 (Upsid-Down o Dirct Rotation) β - Numbrs Ammar Sddiq Mahmood 1, Shukriyah Sabir Ali,* 1 Dpartmnt of Mathmatics, Collg

More information

ME469A Numerical Methods for Fluid Mechanics

ME469A Numerical Methods for Fluid Mechanics ME469A Numrical Mthods for Fluid Mchanics Handout #5 Gianluca Iaccarino Finit Volum Mthods Last tim w introducd th FV mthod as a discrtization tchniqu applid to th intgral form of th govrning quations

More information

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers: APPM 6 Final 5 pts) Spring 4. 6 pts total) Th following parts ar not rlatd, justify your answrs: a) Considr th curv rprsntd by th paramtric quations, t and y t + for t. i) 6 pts) Writ down th corrsponding

More information

Mathematics. Complex Number rectangular form. Quadratic equation. Quadratic equation. Complex number Functions: sinusoids. Differentiation Integration

Mathematics. Complex Number rectangular form. Quadratic equation. Quadratic equation. Complex number Functions: sinusoids. Differentiation Integration Mathmatics Compl numbr Functions: sinusoids Sin function, cosin function Diffrntiation Intgration Quadratic quation Quadratic quations: a b c 0 Solution: b b 4ac a Eampl: 1 0 a= b=- c=1 4 1 1or 1 1 Quadratic

More information

Full Waveform Inversion Using an Energy-Based Objective Function with Efficient Calculation of the Gradient

Full Waveform Inversion Using an Energy-Based Objective Function with Efficient Calculation of the Gradient Full Wavform Invrsion Using an Enrgy-Basd Objctiv Function with Efficint Calculation of th Gradint Itm yp Confrnc Papr Authors Choi, Yun Sok; Alkhalifah, ariq Ali Citation Choi Y, Alkhalifah (217) Full

More information

Higher-Order Discrete Calculus Methods

Higher-Order Discrete Calculus Methods Highr-Ordr Discrt Calculus Mthods J. Blair Prot V. Subramanian Ralistic Practical, Cost-ctiv, Physically Accurat Paralll, Moving Msh, Complx Gomtry, Slid 1 Contxt Discrt Calculus Mthods Finit Dirnc Mimtic

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 0 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat th

More information

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter WHEN THE CRAMÉR-RAO INEQUALITY PROVIDES NO INFORMATION STEVEN J. MILLER Abstract. W invstigat a on-paramtr family of probability dnsitis (rlatd to th Parto distribution, which dscribs many natural phnomna)

More information

That is, we start with a general matrix: And end with a simpler matrix:

That is, we start with a general matrix: And end with a simpler matrix: DIAGON ALIZATION OF THE STR ESS TEN SOR INTRO DUCTIO N By th us of Cauchy s thorm w ar abl to rduc th numbr of strss componnts in th strss tnsor to only nin valus. An additional simplification of th strss

More information

Procdings of IC-IDC0 ( and (, ( ( and (, and (f ( and (, rspctivly. If two input signals ar compltly qual, phas spctra of two signals ar qual. That is

Procdings of IC-IDC0 ( and (, ( ( and (, and (f ( and (, rspctivly. If two input signals ar compltly qual, phas spctra of two signals ar qual. That is Procdings of IC-IDC0 EFFECTS OF STOCHASTIC PHASE SPECTRUM DIFFERECES O PHASE-OLY CORRELATIO FUCTIOS PART I: STATISTICALLY COSTAT PHASE SPECTRUM DIFFERECES FOR FREQUECY IDICES Shunsu Yamai, Jun Odagiri,

More information

Dynamic response of a finite length euler-bernoulli beam on linear and nonlinear viscoelastic foundations to a concentrated moving force

Dynamic response of a finite length euler-bernoulli beam on linear and nonlinear viscoelastic foundations to a concentrated moving force Journal of Mchanical Scinc and Tchnology 2 (1) (21) 1957~1961 www.springrlink.com/contnt/1738-9x DOI 1.17/s1226-1-7-x Dynamic rspons of a finit lngth ulr-brnoulli bam on linar and nonlinar viscolastic

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July ISSN Intrnational Journal of Scintific & Enginring Rsarch, Volum 6, Issu 7, July-25 64 ISSN 2229-558 HARATERISTIS OF EDGE UTSET MATRIX OF PETERSON GRAPH WITH ALGEBRAI GRAPH THEORY Dr. G. Nirmala M. Murugan

More information

FEM FOR HEAT TRANSFER PROBLEMS دانشگاه صنعتي اصفهان- دانشكده مكانيك

FEM FOR HEAT TRANSFER PROBLEMS دانشگاه صنعتي اصفهان- دانشكده مكانيك FEM FOR HE RNSFER PROBLEMS 1 Fild problms Gnral orm o systm quations o D linar stady stat ild problms: For 1D problms: D D g Q y y (Hlmholtz quation) d D g Q d Fild problms Hat transr in D in h h ( D D

More information

2.3 Matrix Formulation

2.3 Matrix Formulation 23 Matrix Formulation 43 A mor complicatd xampl ariss for a nonlinar systm of diffrntial quations Considr th following xampl Exampl 23 x y + x( x 2 y 2 y x + y( x 2 y 2 (233 Transforming to polar coordinats,

More information

Classical Magnetic Dipole

Classical Magnetic Dipole Lctur 18 1 Classical Magntic Dipol In gnral, a particl of mass m and charg q (not ncssarily a point charg), w hav q g L m whr g is calld th gyromagntic ratio, which accounts for th ffcts of non-point charg

More information

Coupled Pendulums. Two normal modes.

Coupled Pendulums. Two normal modes. Tim Dpndnt Two Stat Problm Coupld Pndulums Wak spring Two normal mods. No friction. No air rsistanc. Prfct Spring Start Swinging Som tim latr - swings with full amplitud. stationary M +n L M +m Elctron

More information

Analysis of potential flow around two-dimensional body by finite element method

Analysis of potential flow around two-dimensional body by finite element method Vol. 7(2), pp. 9-22, May, 2015 DOI: 10.5897/JMER2014.0342 rticl Numbr: 20E80053033 ISSN 2141 2383 Copyright 2015 uthor(s) rtain th copyright of this articl http://www.acadmicjournals.org/jmer Journal of

More information

Properties of Phase Space Wavefunctions and Eigenvalue Equation of Momentum Dispersion Operator

Properties of Phase Space Wavefunctions and Eigenvalue Equation of Momentum Dispersion Operator Proprtis of Phas Spac Wavfunctions and Eignvalu Equation of Momntum Disprsion Oprator Ravo Tokiniaina Ranaivoson 1, Raolina Andriambololona 2, Hanitriarivo Rakotoson 3 raolinasp@yahoo.fr 1 ;jacqulinraolina@hotmail.com

More information

Two Products Manufacturer s Production Decisions with Carbon Constraint

Two Products Manufacturer s Production Decisions with Carbon Constraint Managmnt Scinc and Enginring Vol 7 No 3 pp 3-34 DOI:3968/jms9335X374 ISSN 93-34 [Print] ISSN 93-35X [Onlin] wwwcscanadant wwwcscanadaorg Two Products Manufacturr s Production Dcisions with Carbon Constraint

More information

Exercise 1. Sketch the graph of the following function. (x 2

Exercise 1. Sketch the graph of the following function. (x 2 Writtn tst: Fbruary 9th, 06 Exrcis. Sktch th graph of th following function fx = x + x, spcifying: domain, possibl asymptots, monotonicity, continuity, local and global maxima or minima, and non-drivability

More information

Derangements and Applications

Derangements and Applications 2 3 47 6 23 Journal of Intgr Squncs, Vol. 6 (2003), Articl 03..2 Drangmnts and Applications Mhdi Hassani Dpartmnt of Mathmatics Institut for Advancd Studis in Basic Scincs Zanjan, Iran mhassani@iasbs.ac.ir

More information

Higher order derivatives

Higher order derivatives Robrto s Nots on Diffrntial Calculus Chaptr 4: Basic diffrntiation ruls Sction 7 Highr ordr drivativs What you nd to know alrady: Basic diffrntiation ruls. What you can larn hr: How to rpat th procss of

More information

Differential Equations

Differential Equations UNIT I Diffrntial Equations.0 INTRODUCTION W li in a world of intrrlatd changing ntitis. Th locit of a falling bod changs with distanc, th position of th arth changs with tim, th ara of a circl changs

More information

Data Assimilation 1. Alan O Neill National Centre for Earth Observation UK

Data Assimilation 1. Alan O Neill National Centre for Earth Observation UK Data Assimilation 1 Alan O Nill National Cntr for Earth Obsrvation UK Plan Motivation & basic idas Univariat (scalar) data assimilation Multivariat (vctor) data assimilation 3d-Variational Mthod (& optimal

More information

Mor Tutorial at www.dumblittldoctor.com Work th problms without a calculator, but us a calculator to chck rsults. And try diffrntiating your answrs in part III as a usful chck. I. Applications of Intgration

More information

Large Scale Topology Optimization Using Preconditioned Krylov Subspace Recycling and Continuous Approximation of Material Distribution

Large Scale Topology Optimization Using Preconditioned Krylov Subspace Recycling and Continuous Approximation of Material Distribution Larg Scal Topology Optimization Using Prconditiond Krylov Subspac Rcycling and Continuous Approximation of Matrial Distribution Eric d Sturlr*, Chau L**, Shun Wang***, Glaucio Paulino** * Dpartmnt of Mathmatics,

More information

Inference Methods for Stochastic Volatility Models

Inference Methods for Stochastic Volatility Models Intrnational Mathmatical Forum, Vol 8, 03, no 8, 369-375 Infrnc Mthods for Stochastic Volatility Modls Maddalna Cavicchioli Cá Foscari Univrsity of Vnic Advancd School of Economics Cannargio 3, Vnic, Italy

More information

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012 Th van dr Waals intraction D. E. Sopr 2 Univrsity of Orgon 20 pril 202 Th van dr Waals intraction is discussd in Chaptr 5 of J. J. Sakurai, Modrn Quantum Mchanics. Hr I tak a look at it in a littl mor

More information

Rational Approximation for the one-dimensional Bratu Equation

Rational Approximation for the one-dimensional Bratu Equation Intrnational Journal of Enginring & Tchnology IJET-IJES Vol:3 o:05 5 Rational Approximation for th on-dimnsional Bratu Equation Moustafa Aly Soliman Chmical Enginring Dpartmnt, Th British Univrsity in

More information

Quasi-Classical States of the Simple Harmonic Oscillator

Quasi-Classical States of the Simple Harmonic Oscillator Quasi-Classical Stats of th Simpl Harmonic Oscillator (Draft Vrsion) Introduction: Why Look for Eignstats of th Annihilation Oprator? Excpt for th ground stat, th corrspondnc btwn th quantum nrgy ignstats

More information

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches. Subjct Chmistry Papr No and Titl Modul No and Titl Modul Tag 8/ Physical Spctroscopy / Brakdown of th Born-Oppnhimr approximation. Slction ruls for rotational-vibrational transitions. P, R branchs. CHE_P8_M

More information

On the irreducibility of some polynomials in two variables

On the irreducibility of some polynomials in two variables ACTA ARITHMETICA LXXXII.3 (1997) On th irrducibility of som polynomials in two variabls by B. Brindza and Á. Pintér (Dbrcn) To th mmory of Paul Erdős Lt f(x) and g(y ) b polynomials with intgral cofficints

More information

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH.

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH. C:\Dallas\0_Courss\03A_OpSci_67\0 Cgh_Book\0_athmaticalPrliminaris\0_0 Combath.doc of 8 COPUTER GENERATED HOLOGRAS Optical Scincs 67 W.J. Dallas (onday, April 04, 005, 8:35 A) PART I: CHAPTER TWO COB ATH

More information

Complex Powers and Logs (5A) Young Won Lim 10/17/13

Complex Powers and Logs (5A) Young Won Lim 10/17/13 Complx Powrs and Logs (5A) Copyright (c) 202, 203 Young W. Lim. Prmission is grantd to copy, distribut and/or modify this documnt undr th trms of th GNU Fr Documntation Licns, Vrsion.2 or any latr vrsion

More information

Introduction to the Fourier transform. Computer Vision & Digital Image Processing. The Fourier transform (continued) The Fourier transform (continued)

Introduction to the Fourier transform. Computer Vision & Digital Image Processing. The Fourier transform (continued) The Fourier transform (continued) Introduction to th Fourir transform Computr Vision & Digital Imag Procssing Fourir Transform Lt f(x) b a continuous function of a ral variabl x Th Fourir transform of f(x), dnotd by I {f(x)} is givn by:

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

Slide 1. Slide 2. Slide 3 DIGITAL SIGNAL PROCESSING CLASSIFICATION OF SIGNALS

Slide 1. Slide 2. Slide 3 DIGITAL SIGNAL PROCESSING CLASSIFICATION OF SIGNALS Slid DIGITAL SIGAL PROCESSIG UIT I DISCRETE TIME SIGALS AD SYSTEM Slid Rviw of discrt-tim signals & systms Signal:- A signal is dfind as any physical quantity that varis with tim, spac or any othr indpndnt

More information

Collisions between electrons and ions

Collisions between electrons and ions DRAFT 1 Collisions btwn lctrons and ions Flix I. Parra Rudolf Pirls Cntr for Thortical Physics, Unirsity of Oxford, Oxford OX1 NP, UK This rsion is of 8 May 217 1. Introduction Th Fokkr-Planck collision

More information

Finite Element Models for Steady Flows of Viscous Incompressible Fluids

Finite Element Models for Steady Flows of Viscous Incompressible Fluids Finit Elmnt Modls for Stad Flows of Viscous Incomprssibl Fluids Rad: Chaptr 10 JN Rdd CONTENTS Govrning Equations of Flows of Incomprssibl Fluids Mid (Vlocit-Prssur) Finit Elmnt Modl Pnalt Function Mthod

More information

A. T. Sornborger a a Department of Mathematics and Faculty of Engineering,

A. T. Sornborger a a Department of Mathematics and Faculty of Engineering, This articl was downloadd by: [Univrsity of California Davis] On: 29 May 2013, At: 13:57 Publishr: Taylor & Francis Informa Ltd Rgistrd in England and Wals Rgistrd Numbr: 1072954 Rgistrd offic: Mortimr

More information

Ewald s Method Revisited: Rapidly Convergent Series Representations of Certain Green s Functions. Vassilis G. Papanicolaou 1

Ewald s Method Revisited: Rapidly Convergent Series Representations of Certain Green s Functions. Vassilis G. Papanicolaou 1 wald s Mthod Rvisitd: Rapidly Convrgnt Sris Rprsntations of Crtain Grn s Functions Vassilis G. Papanicolaou 1 Suggstd Running Had: wald s Mthod Rvisitd Complt Mailing Addrss of Contact Author for offic

More information

MAE4700/5700 Finite Element Analysis for Mechanical and Aerospace Design

MAE4700/5700 Finite Element Analysis for Mechanical and Aerospace Design MAE4700/5700 Finit Elmnt Analysis for Mchanical and Arospac Dsign Cornll Univrsity, Fall 2009 Nicholas Zabaras Matrials Procss Dsign and Control Laboratory Sibly School of Mchanical and Arospac Enginring

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 07 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat

More information

Evaluating Reliability Systems by Using Weibull & New Weibull Extension Distributions Mushtak A.K. Shiker

Evaluating Reliability Systems by Using Weibull & New Weibull Extension Distributions Mushtak A.K. Shiker Evaluating Rliability Systms by Using Wibull & Nw Wibull Extnsion Distributions Mushtak A.K. Shikr مشتاق عبذ الغني شخير Univrsity of Babylon, Collg of Education (Ibn Hayan), Dpt. of Mathmatics Abstract

More information

Introduction to the quantum theory of matter and Schrödinger s equation

Introduction to the quantum theory of matter and Schrödinger s equation Introduction to th quantum thory of mattr and Schrödingr s quation Th quantum thory of mattr assums that mattr has two naturs: a particl natur and a wa natur. Th particl natur is dscribd by classical physics

More information

Supplementary Materials

Supplementary Materials 6 Supplmntary Matrials APPENDIX A PHYSICAL INTERPRETATION OF FUEL-RATE-SPEED FUNCTION A truck running on a road with grad/slop θ positiv if moving up and ngativ if moving down facs thr rsistancs: arodynamic

More information

Intro to Nuclear and Particle Physics (5110)

Intro to Nuclear and Particle Physics (5110) Intro to Nuclar and Particl Physics (5110) March 09, 009 Frmi s Thory of Bta Dcay (continud) Parity Violation, Nutrino Mass 3/9/009 1 Final Stat Phas Spac (Rviw) Th Final Stat lctron and nutrino wav functions

More information

TOPOLOGY DESIGN OF STRUCTURE LOADED BY EARTHQUAKE. Vienna University of Technology

TOPOLOGY DESIGN OF STRUCTURE LOADED BY EARTHQUAKE. Vienna University of Technology Bluchr Mchanical Enginring Procdings May 2014, vol. 1, num. 1 www.procdings.bluchr.com.br/vnto/10wccm TOPOLOGY DESIG OF STRUCTURE LOADED BY EARTHQUAKE P. Rosko 1 1 Cntr of Mchanics and Structural Dynamics,

More information

APPROXIMATION THEORY, II ACADEMIC PRfSS. INC. New York San Francioco London. J. T. aden

APPROXIMATION THEORY, II ACADEMIC PRfSS. INC. New York San Francioco London. J. T. aden Rprintd trom; APPROXIMATION THORY, II 1976 ACADMIC PRfSS. INC. Nw York San Francioco London \st. I IITBRID FINIT L}ffiNT }ffithods J. T. adn Som nw tchniqus for dtrmining rror stimats for so-calld hybrid

More information

On the Hamiltonian of a Multi-Electron Atom

On the Hamiltonian of a Multi-Electron Atom On th Hamiltonian of a Multi-Elctron Atom Austn Gronr Drxl Univrsity Philadlphia, PA Octobr 29, 2010 1 Introduction In this papr, w will xhibit th procss of achiving th Hamiltonian for an lctron gas. Making

More information