The Knowledge Gradient for Sequential Decision Making with Stochastic Binary Feedbacks

Size: px
Start display at page:

Download "The Knowledge Gradient for Sequential Decision Making with Stochastic Binary Feedbacks"

Transcription

1 The Knowledge Gradient for Sequential Decision Making with Stochastic Binary Feedbacks Yingfei Wang, Chu Wang and Warren B. Powell Princeton University Yingfei Wang Optimal Learning Methods June 22, / 21

2 Sequential Decision Problems M discrete alternatives Unknow truth µ x Each time n, the learner chooses an alternative x n, receives reward W n x n. offline objective max E π [µ x N ] online objective max E π N 1 n=0 [µ x n] Overview Numerous Communities Multi-armed bandits Ranking and selection Stochastic search Control theory... Various Applications Recommendations: ads, news Packet routing Revenue management Laboratory experiments guidance:... Yingfei Wang Optimal Learning Methods June 22, / 21

3 Applications with binary outputs Revenue management: whether or not a customer books a room. Health analytics: success (patient does not need to return for more treatment) or failure (patient does need followup care). Production of single or double-walled nanotubes: controllable parameters: catalyst, laser power, Hydrogen, pressure, temperature, Ar/CO2, ethylene etc. Yingfei Wang Optimal Learning Methods June 22, / 21

4 Applications with binary outputs Revenue management: whether or not a customer books a room. Health analytics: success (patient does not need to return for more treatment) or failure (patient does need followup care). Production of single or double-walled nanotubes: controllable parameters: catalyst, laser power, Hydrogen, pressure, temperature, Ar/CO2, ethylene etc. Single Wall Double Wall Yingfei Wang Optimal Learning Methods June 22, / 21

5 Outline 1 Sequential Decision Problems with Binary Outputs 2 The Knowledge Gradient Policy 3 Experimental Results Yingfei Wang Optimal Learning Methods June 22, / 21

6 Sequential Decision Problems with Binary Outputs 1 Sequential Decision Problems with Binary Outputs Model Bayesian linear classification and Laplace approximation 2 The Knowledge Gradient Policy 3 Experimental Results Yingfei Wang Optimal Learning Methods June 22, / 21

7 Sequential Decision Problems with Binary Outputs Model Model A finite set of alternatives x X = {x 1,..., x M }. Binary outcome y { 1, +1} with unknown probability p(y = +1 x). Goal: given a limited budget N, choose the measurement policy (x 0,..., x N 1 ) and the implementation decision that maximizes p(y = +1 x). Generalized linear model for modeling probability p(y = +1 x, w) = σ(w T x), where σ(a) = 1 1+exp( a) or σ(a) = Φ(a) = a N (s 0, 12 )ds. Yingfei Wang Optimal Learning Methods June 22, / 21

8 Sequential Decision Problems with Binary Outputs Bayesian linear classification and Laplace approximation Logistic and probit regression Training set D = {(x i, y i )} n i=1 Likelihood p(d w) = n i=1 σ(y i w T x i ). ŵ = arg min w n i=1 log(σ(y i w T x i )). Bayesian logistic and probit regression p(w D) = 1 Z p(d w)p(w) p(w) n i=1 σ(y i w T x i ). Extend to leverage for sequential model updates: p(w D 0 ) x 0,y 1 p(w D 1 ) x 1,y 2 p(w D 2 ) Exact Bayesian inference for linear classifier is intractable. Monte Carlo sampling or analytic approximations to the posterior: Laplace approximation. Yingfei Wang Optimal Learning Methods June 22, / 21

9 Sequential Decision Problems with Binary Outputs Bayesian linear classification and Laplace approximation Laplace approximation Ψ(w) = log p(d w) + log p(w). Second-order Taylor expansion to Ψ around its MAP (maximum a posteriori) solution ŵ = arg max w Ψ(w): Ψ(w) Ψ(ŵ) 1 2 (w ŵ)t H(w ŵ), H = 2 Ψ(w) w=ŵ. Laplace approximation to the posterior p(w D) N (w ŵ, H 1 ). Yingfei Wang Optimal Learning Methods June 22, / 21

10 Sequential Decision Problems with Binary Outputs Bayesian linear classification and Laplace approximation Online Bayesian linear classification based on Laplace approximation Extend to leverage for sequential model updates: Laplace approximated posterior serves as prior for the next available data. p(w j ) = N ( w j m 0 j, (q0 j ) 1) (m n j, qn j ) {x n,y n+1 } (m n+1 j, q n+1 j ) ˆt := 2 log σ(y i w T f 2 i x) f =ŵ T x m n+1 = arg max w 1 2 q n+1 j = q n j ˆtx 2 j d qi n (w i mi n ) 2 + log(σ(yw T x)) i=1 Yingfei Wang Optimal Learning Methods June 22, / 21

11 Sequential Decision Problems with Binary Outputs Bayesian linear classification and Laplace approximation Online Bayesian linear classification based on Laplace approximation arg max w 1 2 d q i (w i m i ) 2 + log(σ(yw T x)). i=1 1-dimensional bisection method: Set Ψ/ w i = 0. Define p as p := σ (yw T x) σ(yw T x). Then we have w i = m i + yp x i q i. p = σ (p d i=1 x i 2/q i + ym T x) σ(p d i=1 x i 2/q i + ym T x). The equation has a unique solution in interval [0, σ (ym T x)/σ(ym T x)]. Yingfei Wang Optimal Learning Methods June 22, / 21

12 The Knowledge Gradient Policy 1 Sequential Decision Problems with Binary Outputs 2 The Knowledge Gradient Policy Knowledge Gradient Policy for Lookup Table Model Knowledge Gradient Policy for Linear Bayesian Classification 3 Experimental Results Yingfei Wang Optimal Learning Methods June 22, / 21

13 The Knowledge Gradient Policy Characteristics of our problems Expensive experiments. Small samples. Requiring that we learn from our decisions as quickly as possible. Yingfei Wang Optimal Learning Methods June 22, / 21

14 The Knowledge Gradient Policy Knowledge Gradient Policy for Lookup Table Model Knowledge gradient policy for lookup table model [3] M discrete alternatives, unknow truth µ x, W x = µ x + ɛ µ x F n N (θ n x, σ n x ) Knowledge state S n = (θ n, σ n ), V (s) = max x θ x ν KG x (S n ) = E[V ( S n+1 (x) ) V (S n )] = E[max θ n+1 x x (x) max θ n x x S n ]. The Knowledge Gradient (KG) policy X KG (S n ) = arg max x ν KG x (S n ). Change which produces a change in the decision. Change in estimate of value of alternative 5 due to measurement. Yingfei Wang Optimal Learning Methods June 22, / 21

15 The Knowledge Gradient Policy Knowledge Gradient Policy for Linear Bayesian Classification Knowledge gradient policy for linear Bayesian classification belief model y x w Bernoulli(σ(w T x)) w j F n N (m n j, (qn j ) 1 ) Knowledge state S n = (m n, q n ) V ( s ) = max x p(y x = +1 x, s) ν KG x (S n ) = E [ V ( S n+1 (x, y) ) V (S n ) S n] = E [ max p ( y x x = +1 x, S n+1 (x, y) ) max p(y x x = +1 x, S n ) S n] The Knowledge Gradient (KG) policy X KG (S n ) = arg max x ν KG x (S n ). The knowledge gradient policy can work with any choice of link function σ( ) and approximation procedures by adjusting the transition function S n+1 (x, ) accordingly. Online learning [7]: X OLKG (S n ) = arg max x p(y = +1 x, S n ) + (N n)ν KG x (S n ). Yingfei Wang Optimal Learning Methods June 22, / 21

16 Experimental Results 1 Sequential Decision Problems with Binary Outputs 2 The Knowledge Gradient Policy 3 Experimental Results Behavior of the KG policy Comparison with other Policies Yingfei Wang Optimal Learning Methods June 22, / 21

17 Experimental Results Behavior of the KG policy Sampling behavior of the KG policy x 2 0 x 2 0 x x 1 x 1 x x 2 0 x 2 0 x x 1 x 1 x 1 Yingfei Wang Optimal Learning Methods June 22, / 21

18 Experimental Results Behavior of the KG policy Absolute class distribution error x x x x x Figure: Absolute distribution error. Yingfei Wang Optimal Learning Methods June 22, / 21

19 Experimental Results Comparison with other Policies Competing policies random sampling (Random) a myopic method that selects the most uncertain instance each step (MostUncertain) discriminative batch-mode active learning (Disc) [4] with batch size set to 1 expected improvement (EI) [8] with an initial fit of 5 examples Thompson sampling (TS) [2] UCB on the latent function w T x (UCB) [6] Metric Opportunity Cost (OC) OC := max x X p(y = +1 x, w ) p(y = +1 x N+1, w ). Yingfei Wang Optimal Learning Methods June 22, / 21

20 Opportunity Cost Opportunity Cost Experimental Results Opportunity Cost Opportunity Cost Comparison with other Policies Opportunity Cost Opportunity Cost Comparison with other Policies 0.3 EI UCB TS 0.25 Random MostUncertain Disc 0.2 KG EI 0.5 EI UCB UCB TS TS Random 0.4 Random MostUncertain MostUncertain Disc Disc KG KG #Iterations (a) sonar #Iterations (b) glass identification #Iterations (c) blood transfusion EI UCB TS Random MostUncertain Disc KG EI UCB TS Random MostUncertain Disc KG EI UCB TS Random MostUncertain Disc KG #Iterations (d) survival #Iterations (e) breast cancer (wpbc) #Iterations (f) planning relax Figure: Opportunity cost on UCI. Yingfei Wang Optimal Learning Methods June 22, / 21

21 Experimental Results Comparison with other Policies Thank you! Questions? Yingfei Wang Optimal Learning Methods June 22, / 21

22 Reference Xavier Boyen and Daphne Koller. Tractable inference for complex stochastic processes. In Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence, pages Morgan Kaufmann Publishers Inc., Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. In Advances in neural information processing systems, pages , Peter I Frazier, Warren B Powell, and Savas Dayanik. A knowledge-gradient policy for sequential information collection. SIAM Journal on Control and Optimization, 47(5): , Yuhong Guo and Dale Schuurmans. Discriminative batch mode active learning. In Advances in neural information processing systems, pages , Steffen L Lauritzen. Propagation of probabilities, means, and variances in mixed graphical association models. Journal of the American Statistical Association, 87(420): , Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web, pages ACM, Yingfei Wang Optimal Learning Methods June 22, / 21

23 Reference Ilya O Ryzhov, Warren B Powell, and Peter I Frazier. The knowledge gradient algorithm for a general class of online learning problems. Operations Research, 60(1): , Matthew Tesch, Jeff Schneider, and Howie Choset. Expensive function optimization with stochastic binary outcomes. In Proceedings of The 30th International Conference on Machine Learning, pages , Yingfei Wang Optimal Learning Methods June 22, / 21

The Knowledge Gradient for Sequential Decision Making with Stochastic Binary Feedbacks

The Knowledge Gradient for Sequential Decision Making with Stochastic Binary Feedbacks 3 4 5 6 7 8 9 3 4 5 6 7 8 9 3 4 5 6 7 8 9 3 3 3 33 34 35 36 37 38 39 4 4 4 43 44 45 46 47 48 49 5 5 5 53 54 The Knowledge Gradient for Sequential Decision Making with Stochastic Binary Feedbacks Abstract

More information

Optimal Learning for Sequential Decision Making for Expensive Cost Functions with Stochastic Binary Feedbacks

Optimal Learning for Sequential Decision Making for Expensive Cost Functions with Stochastic Binary Feedbacks arxiv:179.516v1 [stat.ml] 13 Sep 17 Optimal Learning for Sequential Decision Making for Expensive Cost Functions with Stochastic Binary Feedbacks Yingfei Wang Chu Wang Warren Powell Abstract We consider

More information

Bayesian Active Learning With Basis Functions

Bayesian Active Learning With Basis Functions Bayesian Active Learning With Basis Functions Ilya O. Ryzhov Warren B. Powell Operations Research and Financial Engineering Princeton University Princeton, NJ 08544, USA IEEE ADPRL April 13, 2011 1 / 29

More information

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) =

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) = Until now we have always worked with likelihoods and prior distributions that were conjugate to each other, allowing the computation of the posterior distribution to be done in closed form. Unfortunately,

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Logistic Regression Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574

More information

Bayesian Contextual Multi-armed Bandits

Bayesian Contextual Multi-armed Bandits Bayesian Contextual Multi-armed Bandits Xiaoting Zhao Joint Work with Peter I. Frazier School of Operations Research and Information Engineering Cornell University October 22, 2012 1 / 33 Outline 1 Motivating

More information

Multi-Attribute Bayesian Optimization under Utility Uncertainty

Multi-Attribute Bayesian Optimization under Utility Uncertainty Multi-Attribute Bayesian Optimization under Utility Uncertainty Raul Astudillo Cornell University Ithaca, NY 14853 ra598@cornell.edu Peter I. Frazier Cornell University Ithaca, NY 14853 pf98@cornell.edu

More information

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io Machine Learning Lecture 4: Regularization and Bayesian Statistics Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 207 Overfitting Problem

More information

The knowledge gradient method for multi-armed bandit problems

The knowledge gradient method for multi-armed bandit problems The knowledge gradient method for multi-armed bandit problems Moving beyond inde policies Ilya O. Ryzhov Warren Powell Peter Frazier Department of Operations Research and Financial Engineering Princeton

More information

Bayesian Deep Learning

Bayesian Deep Learning Bayesian Deep Learning Mohammad Emtiyaz Khan AIP (RIKEN), Tokyo http://emtiyaz.github.io emtiyaz.khan@riken.jp June 06, 2018 Mohammad Emtiyaz Khan 2018 1 What will you learn? Why is Bayesian inference

More information

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception LINEAR MODELS FOR CLASSIFICATION Classification: Problem Statement 2 In regression, we are modeling the relationship between a continuous input variable x and a continuous target variable t. In classification,

More information

On the robustness of a one-period look-ahead policy in multi-armed bandit problems

On the robustness of a one-period look-ahead policy in multi-armed bandit problems Procedia Computer Science Procedia Computer Science 00 (2010) 1 10 On the robustness of a one-period look-ahead policy in multi-armed bandit problems Ilya O. Ryzhov a, Peter Frazier b, Warren B. Powell

More information

Lecture : Probabilistic Machine Learning

Lecture : Probabilistic Machine Learning Lecture : Probabilistic Machine Learning Riashat Islam Reasoning and Learning Lab McGill University September 11, 2018 ML : Many Methods with Many Links Modelling Views of Machine Learning Machine Learning

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Linear and logistic regression

Linear and logistic regression Linear and logistic regression Guillaume Obozinski Ecole des Ponts - ParisTech Master MVA Linear and logistic regression 1/22 Outline 1 Linear regression 2 Logistic regression 3 Fisher discriminant analysis

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Linear Classification

Linear Classification Linear Classification Lili MOU moull12@sei.pku.edu.cn http://sei.pku.edu.cn/ moull12 23 April 2015 Outline Introduction Discriminant Functions Probabilistic Generative Models Probabilistic Discriminative

More information

Bayesian Logistic Regression

Bayesian Logistic Regression Bayesian Logistic Regression Sargur N. University at Buffalo, State University of New York USA Topics in Linear Models for Classification Overview 1. Discriminant Functions 2. Probabilistic Generative

More information

Overfitting, Bias / Variance Analysis

Overfitting, Bias / Variance Analysis Overfitting, Bias / Variance Analysis Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 8, 207 / 40 Outline Administration 2 Review of last lecture 3 Basic

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

Outline Lecture 2 2(32)

Outline Lecture 2 2(32) Outline Lecture (3), Lecture Linear Regression and Classification it is our firm belief that an understanding of linear models is essential for understanding nonlinear ones Thomas Schön Division of Automatic

More information

The connection of dropout and Bayesian statistics

The connection of dropout and Bayesian statistics The connection of dropout and Bayesian statistics Interpretation of dropout as approximate Bayesian modelling of NN http://mlg.eng.cam.ac.uk/yarin/thesis/thesis.pdf Dropout Geoffrey Hinton Google, University

More information

Planning by Probabilistic Inference

Planning by Probabilistic Inference Planning by Probabilistic Inference Hagai Attias Microsoft Research 1 Microsoft Way Redmond, WA 98052 Abstract This paper presents and demonstrates a new approach to the problem of planning under uncertainty.

More information

Expectation Propagation for Approximate Bayesian Inference

Expectation Propagation for Approximate Bayesian Inference Expectation Propagation for Approximate Bayesian Inference José Miguel Hernández Lobato Universidad Autónoma de Madrid, Computer Science Department February 5, 2007 1/ 24 Bayesian Inference Inference Given

More information

Reading Group on Deep Learning Session 1

Reading Group on Deep Learning Session 1 Reading Group on Deep Learning Session 1 Stephane Lathuiliere & Pablo Mesejo 2 June 2016 1/31 Contents Introduction to Artificial Neural Networks to understand, and to be able to efficiently use, the popular

More information

I D I A P. Online Policy Adaptation for Ensemble Classifiers R E S E A R C H R E P O R T. Samy Bengio b. Christos Dimitrakakis a IDIAP RR 03-69

I D I A P. Online Policy Adaptation for Ensemble Classifiers R E S E A R C H R E P O R T. Samy Bengio b. Christos Dimitrakakis a IDIAP RR 03-69 R E S E A R C H R E P O R T Online Policy Adaptation for Ensemble Classifiers Christos Dimitrakakis a IDIAP RR 03-69 Samy Bengio b I D I A P December 2003 D a l l e M o l l e I n s t i t u t e for Perceptual

More information

Counterfactual Model for Learning Systems

Counterfactual Model for Learning Systems Counterfactual Model for Learning Systems CS 7792 - Fall 28 Thorsten Joachims Department of Computer Science & Department of Information Science Cornell University Imbens, Rubin, Causal Inference for Statistical

More information

Introduction Generalization Overview of the main methods Resources. Pattern Recognition. Bertrand Thirion and John Ashburner

Introduction Generalization Overview of the main methods Resources. Pattern Recognition. Bertrand Thirion and John Ashburner Definitions Classification and Regression Curse of Dimensionality Some key concepts Definitions Classification and Regression Curse of Dimensionality supervised learning: The data comes with additional

More information

Variational Bayesian Logistic Regression

Variational Bayesian Logistic Regression Variational Bayesian Logistic Regression Sargur N. University at Buffalo, State University of New York USA Topics in Linear Models for Classification Overview 1. Discriminant Functions 2. Probabilistic

More information

Machine Learning Basics Lecture 7: Multiclass Classification. Princeton University COS 495 Instructor: Yingyu Liang

Machine Learning Basics Lecture 7: Multiclass Classification. Princeton University COS 495 Instructor: Yingyu Liang Machine Learning Basics Lecture 7: Multiclass Classification Princeton University COS 495 Instructor: Yingyu Liang Example: image classification indoor Indoor outdoor Example: image classification (multiclass)

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Linear Regression Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574 1

More information

Bayesian Active Learning With Basis Functions

Bayesian Active Learning With Basis Functions Bayesian Active Learning With Basis Functions Ilya O. Ryzhov and Warren B. Powell Operations Research and Financial Engineering Princeton University Princeton, NJ 08544 Abstract A common technique for

More information

Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm

Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm Qiang Liu and Dilin Wang NIPS 2016 Discussion by Yunchen Pu March 17, 2017 March 17, 2017 1 / 8 Introduction Let x R d

More information

Logistic Regression. Machine Learning Fall 2018

Logistic Regression. Machine Learning Fall 2018 Logistic Regression Machine Learning Fall 2018 1 Where are e? We have seen the folloing ideas Linear models Learning as loss minimization Bayesian learning criteria (MAP and MLE estimation) The Naïve Bayes

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Artificial Intelligence: what have we seen so far? Machine Learning and Bayesian Inference

Artificial Intelligence: what have we seen so far? Machine Learning and Bayesian Inference Machine Learning and Bayesian Inference Dr Sean Holden Computer Laboratory, Room FC6 Telephone extension 6375 Email: sbh@cl.cam.ac.uk www.cl.cam.ac.uk/ sbh/ Artificial Intelligence: what have we seen so

More information

Machine Learning Tom M. Mitchell Machine Learning Department Carnegie Mellon University. September 20, 2012

Machine Learning Tom M. Mitchell Machine Learning Department Carnegie Mellon University. September 20, 2012 Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University September 20, 2012 Today: Logistic regression Generative/Discriminative classifiers Readings: (see class website)

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning Tobias Scheffer, Niels Landwehr Remember: Normal Distribution Distribution over x. Density function with parameters

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Gaussian and Linear Discriminant Analysis; Multiclass Classification

Gaussian and Linear Discriminant Analysis; Multiclass Classification Gaussian and Linear Discriminant Analysis; Multiclass Classification Professor Ameet Talwalkar Slide Credit: Professor Fei Sha Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 13, 2015

More information

Robustness of the Contextual Bandit Algorithm to A Physical Activity Motivation Effect

Robustness of the Contextual Bandit Algorithm to A Physical Activity Motivation Effect Robustness of the Contextual Bandit Algorithm to A Physical Activity Motivation Effect Xige Zhang April 10, 2016 1 Introduction Technological advances in mobile devices have seen a growing popularity in

More information

Thompson Sampling for Contextual Combinatorial Bandits

Thompson Sampling for Contextual Combinatorial Bandits Thompson Sampling for Contextual Combinatorial Bandits Yingfei Wang Department of Computer Science, Princeton University Princeton, NJ 08540, USA yingfei@cs.princeton.edu Jianhui Chen Yahoo Labs 701 First

More information

An Introduction to Statistical and Probabilistic Linear Models

An Introduction to Statistical and Probabilistic Linear Models An Introduction to Statistical and Probabilistic Linear Models Maximilian Mozes Proseminar Data Mining Fakultät für Informatik Technische Universität München June 07, 2017 Introduction In statistical learning

More information

Least Squares Regression

Least Squares Regression CIS 50: Machine Learning Spring 08: Lecture 4 Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may not cover all the

More information

Predictive Variance Reduction Search

Predictive Variance Reduction Search Predictive Variance Reduction Search Vu Nguyen, Sunil Gupta, Santu Rana, Cheng Li, Svetha Venkatesh Centre of Pattern Recognition and Data Analytics (PRaDA), Deakin University Email: v.nguyen@deakin.edu.au

More information

Alireza Shafaei. Machine Learning Reading Group The University of British Columbia Summer 2017

Alireza Shafaei. Machine Learning Reading Group The University of British Columbia Summer 2017 s s Machine Learning Reading Group The University of British Columbia Summer 2017 (OCO) Convex 1/29 Outline (OCO) Convex Stochastic Bernoulli s (OCO) Convex 2/29 At each iteration t, the player chooses

More information

Neural Network Training

Neural Network Training Neural Network Training Sargur Srihari Topics in Network Training 0. Neural network parameters Probabilistic problem formulation Specifying the activation and error functions for Regression Binary classification

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Chapter 1. Introduction Shuai Huang April 21, 2014 Outline 1 What is Machine Learning? 2 Curve Fitting 3 Probability Theory 4 Model Selection 5 The curse of dimensionality

More information

Robust Monte Carlo Methods for Sequential Planning and Decision Making

Robust Monte Carlo Methods for Sequential Planning and Decision Making Robust Monte Carlo Methods for Sequential Planning and Decision Making Sue Zheng, Jason Pacheco, & John Fisher Sensing, Learning, & Inference Group Computer Science & Artificial Intelligence Laboratory

More information

MODULE -4 BAYEIAN LEARNING

MODULE -4 BAYEIAN LEARNING MODULE -4 BAYEIAN LEARNING CONTENT Introduction Bayes theorem Bayes theorem and concept learning Maximum likelihood and Least Squared Error Hypothesis Maximum likelihood Hypotheses for predicting probabilities

More information

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu Logistic Regression Review 10-601 Fall 2012 Recitation September 25, 2012 TA: Selen Uguroglu!1 Outline Decision Theory Logistic regression Goal Loss function Inference Gradient Descent!2 Training Data

More information

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework HT5: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Maximum Likelihood Principle A generative model for

More information

Naïve Bayes classification

Naïve Bayes classification Naïve Bayes classification 1 Probability theory Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. Examples: A person s height, the outcome of a coin toss

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 305 Part VII

More information

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation.

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation. CS 189 Spring 2015 Introduction to Machine Learning Midterm You have 80 minutes for the exam. The exam is closed book, closed notes except your one-page crib sheet. No calculators or electronic items.

More information

Machine Learning Basics Lecture 2: Linear Classification. Princeton University COS 495 Instructor: Yingyu Liang

Machine Learning Basics Lecture 2: Linear Classification. Princeton University COS 495 Instructor: Yingyu Liang Machine Learning Basics Lecture 2: Linear Classification Princeton University COS 495 Instructor: Yingyu Liang Review: machine learning basics Math formulation Given training data x i, y i : 1 i n i.i.d.

More information

Linear Classification. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington

Linear Classification. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington Linear Classification CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 Example of Linear Classification Red points: patterns belonging

More information

Stochastic Gradient Descent

Stochastic Gradient Descent Stochastic Gradient Descent Machine Learning CSE546 Carlos Guestrin University of Washington October 9, 2013 1 Logistic Regression Logistic function (or Sigmoid): Learn P(Y X) directly Assume a particular

More information

Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm

Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm Saba Q. Yahyaa, Madalina M. Drugan and Bernard Manderick Vrije Universiteit Brussel, Department of Computer Science, Pleinlaan 2, 1050 Brussels,

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 2: Bayesian Basics https://people.orie.cornell.edu/andrew/orie6741 Cornell University August 25, 2016 1 / 17 Canonical Machine Learning

More information

Probabilistic Machine Learning. Industrial AI Lab.

Probabilistic Machine Learning. Industrial AI Lab. Probabilistic Machine Learning Industrial AI Lab. Probabilistic Linear Regression Outline Probabilistic Classification Probabilistic Clustering Probabilistic Dimension Reduction 2 Probabilistic Linear

More information

Machine Learning for NLP

Machine Learning for NLP Machine Learning for NLP Linear Models Joakim Nivre Uppsala University Department of Linguistics and Philology Slides adapted from Ryan McDonald, Google Research Machine Learning for NLP 1(26) Outline

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 295-P, Spring 213 Prof. Erik Sudderth Lecture 11: Inference & Learning Overview, Gaussian Graphical Models Some figures courtesy Michael Jordan s draft

More information

Estimation Considerations in Contextual Bandits

Estimation Considerations in Contextual Bandits Estimation Considerations in Contextual Bandits Maria Dimakopoulou Zhengyuan Zhou Susan Athey Guido Imbens arxiv:1711.07077v4 [stat.ml] 16 Dec 2018 Abstract Contextual bandit algorithms are sensitive to

More information

ECE 5984: Introduction to Machine Learning

ECE 5984: Introduction to Machine Learning ECE 5984: Introduction to Machine Learning Topics: Classification: Logistic Regression NB & LR connections Readings: Barber 17.4 Dhruv Batra Virginia Tech Administrativia HW2 Due: Friday 3/6, 3/15, 11:55pm

More information

On the robustness of a one-period look-ahead policy in multi-armed bandit problems

On the robustness of a one-period look-ahead policy in multi-armed bandit problems Procedia Computer Science 00 (200) (202) 0 635 644 International Conference on Computational Science, ICCS 200 Procedia Computer Science www.elsevier.com/locate/procedia On the robustness of a one-period

More information

Part 1: Expectation Propagation

Part 1: Expectation Propagation Chalmers Machine Learning Summer School Approximate message passing and biomedicine Part 1: Expectation Propagation Tom Heskes Machine Learning Group, Institute for Computing and Information Sciences Radboud

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 25: Markov Chain Monte Carlo (MCMC) Course Review and Advanced Topics Many figures courtesy Kevin

More information

Machine Learning. Bayesian Regression & Classification. Marc Toussaint U Stuttgart

Machine Learning. Bayesian Regression & Classification. Marc Toussaint U Stuttgart Machine Learning Bayesian Regression & Classification learning as inference, Bayesian Kernel Ridge regression & Gaussian Processes, Bayesian Kernel Logistic Regression & GP classification, Bayesian Neural

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University February 2, 2015 Today: Logistic regression Generative/Discriminative classifiers Readings: (see class website)

More information

Study Notes on the Latent Dirichlet Allocation

Study Notes on the Latent Dirichlet Allocation Study Notes on the Latent Dirichlet Allocation Xugang Ye 1. Model Framework A word is an element of dictionary {1,,}. A document is represented by a sequence of words: =(,, ), {1,,}. A corpus is a collection

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Linear Classifiers. Blaine Nelson, Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Linear Classifiers. Blaine Nelson, Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Linear Classifiers Blaine Nelson, Tobias Scheffer Contents Classification Problem Bayesian Classifier Decision Linear Classifiers, MAP Models Logistic

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Online Learning

More information

Counterfactual Evaluation and Learning

Counterfactual Evaluation and Learning SIGIR 26 Tutorial Counterfactual Evaluation and Learning Adith Swaminathan, Thorsten Joachims Department of Computer Science & Department of Information Science Cornell University Website: http://www.cs.cornell.edu/~adith/cfactsigir26/

More information

Logistic Regression. Robot Image Credit: Viktoriya Sukhanova 123RF.com

Logistic Regression. Robot Image Credit: Viktoriya Sukhanova 123RF.com Logistic Regression These slides were assembled by Eric Eaton, with grateful acknowledgement of the many others who made their course materials freely available online. Feel free to reuse or adapt these

More information

Algorithmisches Lernen/Machine Learning

Algorithmisches Lernen/Machine Learning Algorithmisches Lernen/Machine Learning Part 1: Stefan Wermter Introduction Connectionist Learning (e.g. Neural Networks) Decision-Trees, Genetic Algorithms Part 2: Norman Hendrich Support-Vector Machines

More information

Non-Gaussian likelihoods for Gaussian Processes

Non-Gaussian likelihoods for Gaussian Processes Non-Gaussian likelihoods for Gaussian Processes Alan Saul University of Sheffield Outline Motivation Laplace approximation KL method Expectation Propagation Comparing approximations GP regression Model

More information

Machine Learning and Bayesian Inference

Machine Learning and Bayesian Inference Machine Learning and Bayesian Inference Dr Sean Holden Computer Laboratory, Room FC6 Telephone extension 63725 Email: sbh11@cl.cam.ac.uk www.cl.cam.ac.uk/ sbh11/ Copyright c Sean Holden 22-17. 1 Artificial

More information

Learning Gaussian Process Models from Uncertain Data

Learning Gaussian Process Models from Uncertain Data Learning Gaussian Process Models from Uncertain Data Patrick Dallaire, Camille Besse, and Brahim Chaib-draa DAMAS Laboratory, Computer Science & Software Engineering Department, Laval University, Canada

More information

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability Probability theory Naïve Bayes classification Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. s: A person s height, the outcome of a coin toss Distinguish

More information

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Christos Dimitrakakis Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands

More information

Using Gaussian Processes for Variance Reduction in Policy Gradient Algorithms *

Using Gaussian Processes for Variance Reduction in Policy Gradient Algorithms * Proceedings of the 8 th International Conference on Applied Informatics Eger, Hungary, January 27 30, 2010. Vol. 1. pp. 87 94. Using Gaussian Processes for Variance Reduction in Policy Gradient Algorithms

More information

Generative v. Discriminative classifiers Intuition

Generative v. Discriminative classifiers Intuition Logistic Regression Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University September 24 th, 2007 1 Generative v. Discriminative classifiers Intuition Want to Learn: h:x a Y X features

More information

Reinforcement Learning as Classification Leveraging Modern Classifiers

Reinforcement Learning as Classification Leveraging Modern Classifiers Reinforcement Learning as Classification Leveraging Modern Classifiers Michail G. Lagoudakis and Ronald Parr Department of Computer Science Duke University Durham, NC 27708 Machine Learning Reductions

More information

The Multi-Arm Bandit Framework

The Multi-Arm Bandit Framework The Multi-Arm Bandit Framework A. LAZARIC (SequeL Team @INRIA-Lille) ENS Cachan - Master 2 MVA SequeL INRIA Lille MVA-RL Course In This Lecture A. LAZARIC Reinforcement Learning Algorithms Oct 29th, 2013-2/94

More information

Machine Learning (CS 567) Lecture 2

Machine Learning (CS 567) Lecture 2 Machine Learning (CS 567) Lecture 2 Time: T-Th 5:00pm - 6:20pm Location: GFS118 Instructor: Sofus A. Macskassy (macskass@usc.edu) Office: SAL 216 Office hours: by appointment Teaching assistant: Cheol

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Iain Murray murray@cs.toronto.edu CSC255, Introduction to Machine Learning, Fall 28 Dept. Computer Science, University of Toronto The problem Learn scalar function of

More information

DEPARTMENT OF COMPUTER SCIENCE AUTUMN SEMESTER MACHINE LEARNING AND ADAPTIVE INTELLIGENCE

DEPARTMENT OF COMPUTER SCIENCE AUTUMN SEMESTER MACHINE LEARNING AND ADAPTIVE INTELLIGENCE Data Provided: None DEPARTMENT OF COMPUTER SCIENCE AUTUMN SEMESTER 204 205 MACHINE LEARNING AND ADAPTIVE INTELLIGENCE hour Please note that the rubric of this paper is made different from many other papers.

More information

Outline. Supervised Learning. Hong Chang. Institute of Computing Technology, Chinese Academy of Sciences. Machine Learning Methods (Fall 2012)

Outline. Supervised Learning. Hong Chang. Institute of Computing Technology, Chinese Academy of Sciences. Machine Learning Methods (Fall 2012) Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Linear Models for Regression Linear Regression Probabilistic Interpretation

More information

Linear Models for Classification

Linear Models for Classification Linear Models for Classification Oliver Schulte - CMPT 726 Bishop PRML Ch. 4 Classification: Hand-written Digit Recognition CHINE INTELLIGENCE, VOL. 24, NO. 24, APRIL 2002 x i = t i = (0, 0, 0, 1, 0, 0,

More information

Introduction to Machine Learning

Introduction to Machine Learning How o you estimate p(y x)? Outline Contents Introuction to Machine Learning Logistic Regression Varun Chanola April 9, 207 Generative vs. Discriminative Classifiers 2 Logistic Regression 2 3 Logistic Regression

More information

The Bayes Point Machine for Computer-User Frustration Detection via PressureMouse

The Bayes Point Machine for Computer-User Frustration Detection via PressureMouse The Bayes Point Machine for Computer-User Frustration Detection via PressureMouse Yuan Qi Cambridge, MA, 2139 yuanqi@media.mit.edu Carson Reynolds Cambridge, MA, 2139 carsonr@media.mit.edu Rosalind W.

More information

6.867 Machine Learning

6.867 Machine Learning 6.867 Machine Learning Problem Set 2 Due date: Wednesday October 6 Please address all questions and comments about this problem set to 6867-staff@csail.mit.edu. You will need to use MATLAB for some of

More information

Bayesian Learning (II)

Bayesian Learning (II) Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning (II) Niels Landwehr Overview Probabilities, expected values, variance Basic concepts of Bayesian learning MAP

More information

Parallel Bayesian Global Optimization, with Application to Metrics Optimization at Yelp

Parallel Bayesian Global Optimization, with Application to Metrics Optimization at Yelp .. Parallel Bayesian Global Optimization, with Application to Metrics Optimization at Yelp Jialei Wang 1 Peter Frazier 1 Scott Clark 2 Eric Liu 2 1 School of Operations Research & Information Engineering,

More information

Machine Learning Overview

Machine Learning Overview Machine Learning Overview Sargur N. Srihari University at Buffalo, State University of New York USA 1 Outline 1. What is Machine Learning (ML)? 2. Types of Information Processing Problems Solved 1. Regression

More information

Black-box α-divergence Minimization

Black-box α-divergence Minimization Black-box α-divergence Minimization José Miguel Hernández-Lobato, Yingzhen Li, Daniel Hernández-Lobato, Thang Bui, Richard Turner, Harvard University, University of Cambridge, Universidad Autónoma de Madrid.

More information

Machine Learning 2017

Machine Learning 2017 Machine Learning 2017 Volker Roth Department of Mathematics & Computer Science University of Basel 21st March 2017 Volker Roth (University of Basel) Machine Learning 2017 21st March 2017 1 / 41 Section

More information

Probabilistic numerics for deep learning

Probabilistic numerics for deep learning Presenter: Shijia Wang Department of Engineering Science, University of Oxford rning (RLSS) Summer School, Montreal 2017 Outline 1 Introduction Probabilistic Numerics 2 Components Probabilistic modeling

More information

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes CSci 8980: Advanced Topics in Graphical Models Gaussian Processes Instructor: Arindam Banerjee November 15, 2007 Gaussian Processes Outline Gaussian Processes Outline Parametric Bayesian Regression Gaussian

More information