Discrete Mathematics with Applications MATH236

Size: px
Start display at page:

Download "Discrete Mathematics with Applications MATH236"

Transcription

1 Discrete Mathematics with Applications MATH236 Dr. Hung P. Tong-Viet School of Mathematics, Statistics and Computer Science University of KwaZulu-Natal Pietermaritzburg Campus Semester 1, 2013 Tong-Viet (UKZN) MATH236 Semester 1, / 17

2 Table of contents 1 Basic counting principles 2 Pigeonhole Principle Tong-Viet (UKZN) MATH236 Semester 1, / 17

3 Basic counting principles Generalized Multiplication Principle Theorem (Multiplication Principle) Let S be a set of k-tuples (s 1, s 2,, s k ) of objects in which: the first object s 1 comes from a set of size n 1 for each choice of s 1, there are n 2 choices for object s 2 for each choice of s 2, there are n 3 choices for object s 3 for each choice of s 3, there are n 4 choices for object s 4 and, in general, for each choice of s i, 1 i k 1, there are n i+1 choices for object s i+1. Then the number of k-tuples in the set S is n 1 n 2 n k. Tong-Viet (UKZN) MATH236 Semester 1, / 17

4 Basic counting principles The number of 4-digit odd numbers How many 4-digit odd numbers are there? Consider each number abcd as the tuple (a, b, c, d) such a number is odd if and only if d is odd, hence d {1, 3, 5, 7, 9} there are no other restriction on the remaining digits thus n 1 = 9 since a 0, the first digit is nonzero n 2 = n 3 = 10 and n 4 = 5 Then the number of 4-digit odd numbers is: = 4500 Tong-Viet (UKZN) MATH236 Semester 1, / 17

5 Basic counting principles The number of odd numbers less than 10, 000 How many odd numbers less than 10, 000 are there? We use Addition Principle and Multiplication Principle together For i {1, 2, 3, 4}, let N i be the set of all i-digit odd numbers We see that {N 1, N 2, N 3, N 4 } is a pairwise disjoint collection of sets By Addition Principle, the number of odd numbers less than 10, 000 is N 1 + N 2 + N 3 + N 4 Using the Multiplication Principle as in the previous example: n 1 = 5, n 2 = 9 5 = 45, n 3 = = 450 and n 4 = 4500 Then the number of odd numbers less than 10, 000 is: = 5000 Tong-Viet (UKZN) MATH236 Semester 1, / 17

6 Basic counting principles The number of k-tutples How many k-tuples can be chosen from a set of n elements if repetition is allowed? Consider the tuple (s 1, s 2,, s k ) in which each s i comes from a fixed set of n elements It is possible that s i = s j for some i j For each position in the k-tuple, we can choose any one of n different elements By the Multiplication Principle, there are n } n {{ n n} = n k such k-tuple k terms Tong-Viet (UKZN) MATH236 Semester 1, / 17

7 Basic counting principles Power sets If S is a set, then we let 2 S denote the set of all subsets of S, which is also called the power set of S Let S = {1, 2, 3} 2 S = {, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} Tong-Viet (UKZN) MATH236 Semester 1, / 17

8 Basic counting principles Cardinality of Power sets Theorem Let S be a finite set. Then 2 S = 2 S. Proof. Let n = S and write S = {x 1, x 2,, x n }. For each subset A S, associate an n-tuple (a 1, a 2,, a n ), where for i {1, 2,, n} we set a i = 1 if x i A and a i = 0 if x i A Clearly, each subset corresponds to exactly one S -tuple and each S -tuple corresponds to one subset It follows that the number of subsets is equal to the number of such n-tuples Since each position a i can take a value from the set {0, 1} of size 2 There are exactly 2 n such n-tuples so that 2 S = 2 S as wanted. Tong-Viet (UKZN) MATH236 Semester 1, / 17

9 Pigeonhole Principle Pigeonhole Principle The Pigeonhole Principle in its simplest form states that: Theorem (Pigeonhole Principle) If n + 1 objects are placed into n boxes, then at least one box contains at least two objects. Proof. Suppose to the contrary that each box contains at most one object This implies that there are at most n objects This is a contradiction. Tong-Viet (UKZN) MATH236 Semester 1, / 17

10 Illustration Pigeonhole Principle Tong-Viet (UKZN) MATH236 Semester 1, / 17

11 Pigeonhole Principle Pigeonhole Principle (cont.) Among 13 people, there are two who have their birthday in the same month There are 12 months, i.e., 12 boxes There are 13 = objects (people) Place these people into boxes By Pigeonhole Principle, there are at least two persons in the same hole That is, two persons have their birthday in the same month Tong-Viet (UKZN) MATH236 Semester 1, / 17

12 Pigeonhole Principle Pigeonhole Principle (cont.) Suppose we have n married couples. How many of the 2n people must be selected to guarantee that we have chosen at least one married couple? Construct n boxes, each box corresponds to one married couple When we choose someone, place that person into the box corresponding to the couple they are a member of The Pigeonhole Principle says that, once we ve chosen n + 1 people at least one box must contain 2 people, i.e., we ve chosen a married couple. Tong-Viet (UKZN) MATH236 Semester 1, / 17

13 Pigeonhole Principle Pigeonhole Principle (cont.) We choose 101 of the integers 1, 2,, 200. Show that among the integers chosen, there are two having the property that one is divisible by the other. Proof. There are 100 odd integers in S := {1, 2,, 200} Every integer in S can be written in the form n 2 k, where n is an odd integer between 1 and 199 If we choose 101 numbers in S, then by the Pigeonhole Principle, two of the numbers we ve chosen are of the form n 2 k 1 and n 2 k 2 WLOG, assume k 1 k 2. Then n 2 k 2 divides n 2 k 1 Tong-Viet (UKZN) MATH236 Semester 1, / 17

14 Pigeonhole Principle Pigeonhole Principle (cont.) Let S = {1, 2,, 8} be the set consisting of the first 8 positive integers. If 5 integers are selected from S, then at least one pair of the integers have a sum of 9. Proof. Let Y be the set consisting of pairs of integers that add up to 9 that is Y = {(1, 8), (2, 7), (3, 6), (4, 5)} Let X be any subset of S with X = 5 Place each element of X into a pair which it belongs to As there are 5 = integers but there are only 4 pairs By Pigeonhole Principle, there are two integers which belong to the same pair, i.e., their sum must be 9 Tong-Viet (UKZN) MATH236 Semester 1, / 17

15 Pigeonhole Principle Strong Pigeonhole Principle Theorem (Strong Pigeonhole Principle) Let n 1, n 2,, n k be positive integers. If n 1 + n n k k + 1 objects are placed into k boxes, then there is an integer i {1, 2,, k} such that the ith box contains at least n i objects. Tong-Viet (UKZN) MATH236 Semester 1, / 17

16 Pigeonhole Principle Strong Pigeonhole Principle (cont.) Proof. Suppose that this is not the case. Then for each i {1, 2,, k}, the ith box contains at most n i 1 objects Thus the total number of objects is at most (n 1 1) + (n 2 1) + + (n k 1) = n 1 + n n k k, which is a contradiction. Tong-Viet (UKZN) MATH236 Semester 1, / 17

17 Pigeonhole Principle Strong Pigeonhole Principle (cont.) Suppose that we choose n integers from the integers 1, 2,, n. Then at least one of the integers 1, 2,, n is chosen at least n + 1 times. Place n integers into n boxes marked from 1 to n depending on its value Since n = (n + 1) + (n + 1) + + (n + 1) n + 1, }{{} n terms the Strong Pigeonhole Principle implies that at least one box contains at least n + 1 objects that is, at least one of the integers 1, 2,, n is chosen at least n + 1 times Tong-Viet (UKZN) MATH236 Semester 1, / 17

Discrete Mathematics with Applications MATH236

Discrete Mathematics with Applications MATH236 Discrete Mathematics with Applications MATH236 Dr. Hung P. Tong-Viet School of Mathematics, Statistics and Computer Science University of KwaZulu-Natal Pietermaritzburg Campus Semester 1, 2013 Tong-Viet

More information

Discrete Mathematics with Applications MATH236

Discrete Mathematics with Applications MATH236 Discrete Mathematics with Applications MATH236 Dr. Hung P. Tong-Viet School of Mathematics, Statistics and Computer Science University of KwaZulu-Natal Pietermaritzburg Campus Semester 1, 2013 Tong-Viet

More information

CS 210 Foundations of Computer Science

CS 210 Foundations of Computer Science IIT Madras Dept. of Computer Science & Engineering CS 210 Foundations of Computer Science Debdeep Mukhopadhyay Counting-II Pigeonhole Principle If n+1 or more objects (pigeons) are placed into n boxes,

More information

CS Foundations of Computing

CS Foundations of Computing IIT KGP Dept. of Computer Science & Engineering CS 30053 Foundations of Computing Debdeep Mukhopadhyay Pigeon Hole Principle 1 Pigeonhole Principle If n+1 or more objects (pigeons) are placed into n boxes,

More information

Probability. Part 1 - Basic Counting Principles. 1. References. (1) R. Durrett, The Essentials of Probability, Duxbury.

Probability. Part 1 - Basic Counting Principles. 1. References. (1) R. Durrett, The Essentials of Probability, Duxbury. Probability Part 1 - Basic Counting Principles 1. References (1) R. Durrett, The Essentials of Probability, Duxbury. (2) L.L. Helms, Probability Theory with Contemporary Applications, Freeman. (3) J.J.

More information

6 CARDINALITY OF SETS

6 CARDINALITY OF SETS 6 CARDINALITY OF SETS MATH10111 - Foundations of Pure Mathematics We all have an idea of what it means to count a finite collection of objects, but we must be careful to define rigorously what it means

More information

Putnam Pigeonhole Principle October 25, 2005

Putnam Pigeonhole Principle October 25, 2005 Putnam Pigeonhole Principle October 5, 005 Introduction 1. If n > m pigeons are placed into m boxes, then there exists (at least) one box with at least two pigeons.. If n > m, then any function f : [n]

More information

Introduction to Decision Sciences Lecture 10

Introduction to Decision Sciences Lecture 10 Introduction to Decision Sciences Lecture 10 Andrew Nobel October 17, 2017 Mathematical Induction Given: Propositional function P (n) with domain N + Basis step: Show that P (1) is true Inductive step:

More information

Recursive Definitions

Recursive Definitions Recursive Definitions Example: Give a recursive definition of a n. a R and n N. Basis: n = 0, a 0 = 1. Recursion: a n+1 = a a n. Example: Give a recursive definition of n i=0 a i. Let S n = n i=0 a i,

More information

Number Theory and Counting Method. Divisors -Least common divisor -Greatest common multiple

Number Theory and Counting Method. Divisors -Least common divisor -Greatest common multiple Number Theory and Counting Method Divisors -Least common divisor -Greatest common multiple Divisors Definition n and d are integers d 0 d divides n if there exists q satisfying n = dq q the quotient, d

More information

Counting. Mukulika Ghosh. Fall Based on slides by Dr. Hyunyoung Lee

Counting. Mukulika Ghosh. Fall Based on slides by Dr. Hyunyoung Lee Counting Mukulika Ghosh Fall 2018 Based on slides by Dr. Hyunyoung Lee Counting Counting The art of counting is known as enumerative combinatorics. One tries to count the number of elements in a set (or,

More information

Notes. Combinatorics. Combinatorics II. Notes. Notes. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Spring 2006

Notes. Combinatorics. Combinatorics II. Notes. Notes. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Spring 2006 Combinatorics Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Spring 2006 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 4.1-4.6 & 6.5-6.6 of Rosen cse235@cse.unl.edu

More information

Solutions for Chapter Solutions for Chapter 17. Section 17.1 Exercises

Solutions for Chapter Solutions for Chapter 17. Section 17.1 Exercises Solutions for Chapter 17 403 17.6 Solutions for Chapter 17 Section 17.1 Exercises 1. Suppose A = {0,1,2,3,4}, B = {2,3,4,5} and f = {(0,3),(1,3),(2,4),(3,2),(4,2)}. State the domain and range of f. Find

More information

Lecture 8: Equivalence Relations

Lecture 8: Equivalence Relations Lecture 8: Equivalence Relations 1 Equivalence Relations Next interesting relation we will study is equivalence relation. Definition 1.1 (Equivalence Relation). Let A be a set and let be a relation on

More information

Definition: Let S and T be sets. A binary relation on SxT is any subset of SxT. A binary relation on S is any subset of SxS.

Definition: Let S and T be sets. A binary relation on SxT is any subset of SxT. A binary relation on S is any subset of SxS. 4 Functions Before studying functions we will first quickly define a more general idea, namely the notion of a relation. A function turns out to be a special type of relation. Definition: Let S and T be

More information

Lecture 3: Miscellaneous Techniques

Lecture 3: Miscellaneous Techniques Lecture 3: Miscellaneous Techniques Rajat Mittal IIT Kanpur In this document, we will take a look at few diverse techniques used in combinatorics, exemplifying the fact that combinatorics is a collection

More information

Lecture 4: Counting, Pigeonhole Principle, Permutations, Combinations Lecturer: Lale Özkahya

Lecture 4: Counting, Pigeonhole Principle, Permutations, Combinations Lecturer: Lale Özkahya BBM 205 Discrete Mathematics Hacettepe University http://web.cs.hacettepe.edu.tr/ bbm205 Lecture 4: Counting, Pigeonhole Principle, Permutations, Combinations Lecturer: Lale Özkahya Resources: Kenneth

More information

Discrete Mathematics 2007: Lecture 5 Infinite sets

Discrete Mathematics 2007: Lecture 5 Infinite sets Discrete Mathematics 2007: Lecture 5 Infinite sets Debrup Chakraborty 1 Countability The natural numbers originally arose from counting elements in sets. There are two very different possible sizes for

More information

Lecture 10: Everything Else

Lecture 10: Everything Else Math 94 Professor: Padraic Bartlett Lecture 10: Everything Else Week 10 UCSB 2015 This is the tenth week of the Mathematics Subject Test GRE prep course; here, we quickly review a handful of useful concepts

More information

Discrete Mathematics & Mathematical Reasoning Chapter 6: Counting

Discrete Mathematics & Mathematical Reasoning Chapter 6: Counting Discrete Mathematics & Mathematical Reasoning Chapter 6: Counting Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 39 Chapter Summary The Basics

More information

Discrete Probability

Discrete Probability Discrete Probability Counting Permutations Combinations r- Combinations r- Combinations with repetition Allowed Pascal s Formula Binomial Theorem Conditional Probability Baye s Formula Independent Events

More information

First Midterm Examination

First Midterm Examination 2015-2016 Fall Semester First Midterm Examination 1) 6 students will sit at a round table. Anıl, Sümeyye and Tahsin are in section 1 and Bora, İpek and Efnan are in section 2. They will sit such that nobody

More information

Basic Combinatorics. Math 40210, Section 01 Fall Homework 8 Solutions

Basic Combinatorics. Math 40210, Section 01 Fall Homework 8 Solutions Basic Combinatorics Math 4010, Section 01 Fall 01 Homework 8 Solutions 1.8.1 1: K n has ( n edges, each one of which can be given one of two colors; so Kn has (n -edge-colorings. 1.8.1 3: Let χ : E(K k

More information

Solutions to Homework Problems

Solutions to Homework Problems Solutions to Homework Problems November 11, 2017 1 Problems II: Sets and Functions (Page 117-118) 11. Give a proof or a counterexample of the following statements: (vi) x R, y R, xy 0; (x) ( x R, y R,

More information

6.8 The Pigeonhole Principle

6.8 The Pigeonhole Principle 6.8 The Pigeonhole Principle Getting Started Are there two leaf-bearing trees on Earth with the same number of leaves if we only consider the number of leaves on a tree at full bloom? Getting Started Are

More information

CSCI 150 Discrete Mathematics Homework 5 Solution

CSCI 150 Discrete Mathematics Homework 5 Solution CSCI 150 Discrete Mathematics Homework 5 Solution Saad Mneimneh Computer Science Hunter College of CUNY Problem 1: Happy Birthday (if it applies to you)! Based on the size of the class, there is approximately

More information

MATH 220 (all sections) Homework #12 not to be turned in posted Friday, November 24, 2017

MATH 220 (all sections) Homework #12 not to be turned in posted Friday, November 24, 2017 MATH 220 (all sections) Homework #12 not to be turned in posted Friday, November 24, 2017 Definition: A set A is finite if there exists a nonnegative integer c such that there exists a bijection from A

More information

Problems for Putnam Training

Problems for Putnam Training Problems for Putnam Training 1 Number theory Problem 1.1. Prove that for each positive integer n, the number is not prime. 10 1010n + 10 10n + 10 n 1 Problem 1.2. Show that for any positive integer n,

More information

Counting. Spock's dilemma (Walls and mirrors) call it C(n,k) Rosen, Chapter 5.1, 5.2, 5.3 Walls and Mirrors, Chapter 3 10/11/12

Counting. Spock's dilemma (Walls and mirrors) call it C(n,k) Rosen, Chapter 5.1, 5.2, 5.3 Walls and Mirrors, Chapter 3 10/11/12 Counting Rosen, Chapter 5.1, 5.2, 5.3 Walls and Mirrors, Chapter 3 Spock's dilemma (Walls and mirrors) n n planets in the solar system n can only visit k

More information

Math 461 B/C, Spring 2009 Midterm Exam 1 Solutions and Comments

Math 461 B/C, Spring 2009 Midterm Exam 1 Solutions and Comments Math 461 B/C, Spring 2009 Midterm Exam 1 Solutions and Comments 1. Suppose A, B and C are events with P (A) = P (B) = P (C) = 1/3, P (AB) = P (AC) = P (BC) = 1/4 and P (ABC) = 1/5. For each of the following

More information

Math 3361-Modern Algebra Lecture 08 9/26/ Cardinality

Math 3361-Modern Algebra Lecture 08 9/26/ Cardinality Math 336-Modern Algebra Lecture 08 9/26/4. Cardinality I started talking about cardinality last time, and you did some stuff with it in the Homework, so let s continue. I said that two sets have the same

More information

1 True/False. Math 10B with Professor Stankova Worksheet, Discussion #9; Thursday, 2/15/2018 GSI name: Roy Zhao

1 True/False. Math 10B with Professor Stankova Worksheet, Discussion #9; Thursday, 2/15/2018 GSI name: Roy Zhao Math 10B with Professor Stankova Worksheet, Discussion #9; Thursday, 2/15/2018 GSI name: Roy Zhao 1 True/False 1. True False When we solve a problem one way, it is not useful to try to solve it in a second

More information

CISC 1100: Structures of Computer Science

CISC 1100: Structures of Computer Science CISC 1100: Structures of Computer Science Chapter 2 Sets and Sequences Fordham University Department of Computer and Information Sciences Fall, 2010 CISC 1100/Fall, 2010/Chapter 2 1 / 49 Outline Sets Basic

More information

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION. (3k(k + 1) + 1), for n 1.

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION. (3k(k + 1) + 1), for n 1. Problem A1. Find the sum n (3k(k + 1) + 1), for n 1. k=0 The simplest way to solve this problem is to use the fact that the terms of the sum are differences of consecutive cubes: 3k(k + 1) + 1 = 3k 2 +

More information

A is a subset of (contained in) B A B iff x A = x B Socrates is a man. All men are mortal. A = B iff A B and B A. A B means A is a proper subset of B

A is a subset of (contained in) B A B iff x A = x B Socrates is a man. All men are mortal. A = B iff A B and B A. A B means A is a proper subset of B Subsets C-N Math 207 - Massey, 71 / 125 Sets A is a subset of (contained in) B A B iff x A = x B Socrates is a man. All men are mortal. A = B iff A B and B A x A x B A B means A is a proper subset of B

More information

Sets. Subsets. for any set A, A and A A vacuously true: if x then x A transitivity: A B, B C = A C N Z Q R C. C-N Math Massey, 72 / 125

Sets. Subsets. for any set A, A and A A vacuously true: if x then x A transitivity: A B, B C = A C N Z Q R C. C-N Math Massey, 72 / 125 Subsets Sets A is a subset of (contained in) B A B iff x A = x B Socrates is a man. All men are mortal. A = B iff A B and B A x A x B A B means A is a proper subset of B A B but A B, so x B x / A Illustrate

More information

DISCRETE MATH: FINAL REVIEW

DISCRETE MATH: FINAL REVIEW DISCRETE MATH: FINAL REVIEW DR. DANIEL FREEMAN 1) a. Does 3 = {3}? b. Is 3 {3}? c. Is 3 {3}? c. Is {3} {3}? c. Is {3} {3}? d. Does {3} = {3, 3, 3, 3}? e. Is {x Z x > 0} {x R x > 0}? 1. Chapter 1 review

More information

Homework 7 Solutions, Math 55

Homework 7 Solutions, Math 55 Homework 7 Solutions, Math 55 5..36. (a) Since a is a positive integer, a = a 1 + b 0 is a positive integer of the form as + bt for some integers s and t, so a S. Thus S is nonempty. (b) Since S is nonempty,

More information

MTHSC 3190 Section 2.9 Sets a first look

MTHSC 3190 Section 2.9 Sets a first look MTHSC 3190 Section 2.9 Sets a first look Definition A set is a repetition free unordered collection of objects called elements. Definition A set is a repetition free unordered collection of objects called

More information

Assignment #2 COMP 3200 Spring 2012 Prof. Stucki

Assignment #2 COMP 3200 Spring 2012 Prof. Stucki Assignment #2 COMP 3200 Spring 2012 Prof. Stucki 1) Construct deterministic finite automata accepting each of the following languages. In (a)-(c) the alphabet is = {0,1}. In (d)-(e) the alphabet is ASCII

More information

Introduction to Decision Sciences Lecture 11

Introduction to Decision Sciences Lecture 11 Introduction to Decision Sciences Lecture 11 Andrew Nobel October 24, 2017 Basics of Counting Product Rule Product Rule: Suppose that the elements of a collection S can be specified by a sequence of k

More information

CS 2336 Discrete Mathematics

CS 2336 Discrete Mathematics CS 2336 Discrete Mathematics Lecture 9 Sets, Functions, and Relations: Part I 1 What is a Set? Set Operations Identities Cardinality of a Set Outline Finite and Infinite Sets Countable and Uncountable

More information

MATH 402 : 2017 page 1 of 6

MATH 402 : 2017 page 1 of 6 ADMINISTRATION What? Math 40: Enumerative Combinatorics Who? Me: Professor Greg Smith You: students interested in combinatorics When and Where? lectures: slot 00 office hours: Tuesdays at :30 6:30 and

More information

Solutions to Assignment 1

Solutions to Assignment 1 Solutions to Assignment 1 Question 1. [Exercises 1.1, # 6] Use the division algorithm to prove that every odd integer is either of the form 4k + 1 or of the form 4k + 3 for some integer k. For each positive

More information

Jong C. Park Computer Science Division, KAIST

Jong C. Park Computer Science Division, KAIST Jong C. Park Computer Science Division, KAIST Today s Topics The Euclidean Algorithm The RSA Public-Key Cryptosystem Discrete Mathematics, 2008 2 Computer Science Division, KAIST Note If r = a mod b, then

More information

An Introduction to Combinatorics

An Introduction to Combinatorics Chapter 1 An Introduction to Combinatorics What Is Combinatorics? Combinatorics is the study of how to count things Have you ever counted the number of games teams would play if each team played every

More information

PGSS Discrete Math Solutions to Problem Set #4. Note: signifies the end of a problem, and signifies the end of a proof.

PGSS Discrete Math Solutions to Problem Set #4. Note: signifies the end of a problem, and signifies the end of a proof. PGSS Discrete Math Solutions to Problem Set #4 Note: signifies the end of a problem, and signifies the end of a proof. 1. Prove that for any k N, there are k consecutive composite numbers. (Hint: (k +

More information

This class will demonstrate the use of bijections to solve certain combinatorial problems simply and effectively.

This class will demonstrate the use of bijections to solve certain combinatorial problems simply and effectively. . Induction This class will demonstrate the fundamental problem solving technique of mathematical induction. Example Problem: Prove that for every positive integer n there exists an n-digit number divisible

More information

Attacks on hash functions. Birthday attacks and Multicollisions

Attacks on hash functions. Birthday attacks and Multicollisions Attacks on hash functions Birthday attacks and Multicollisions Birthday Attack Basics In a group of 23 people, the probability that there are at least two persons on the same day in the same month is greater

More information

Chapter 1 Math Set: a collection of objects. For example, the set of whole numbers is W = {0, 1, 2, 3, }

Chapter 1 Math Set: a collection of objects. For example, the set of whole numbers is W = {0, 1, 2, 3, } Chapter 1 Math 3201 1 Chapter 1: Set Theory: Organizing information into sets and subsets Graphically illustrating the relationships between sets and subsets using Venn diagrams Solving problems by using

More information

Mathematical Structures Combinations and Permutations

Mathematical Structures Combinations and Permutations Definitions: Suppose S is a (finite) set and n, k 0 are integers The set C(S, k) of k - combinations consists of all subsets of S that have exactly k elements The set P (S, k) of k - permutations consists

More information

Solutions to Practice Final

Solutions to Practice Final s to Practice Final 1. (a) What is φ(0 100 ) where φ is Euler s φ-function? (b) Find an integer x such that 140x 1 (mod 01). Hint: gcd(140, 01) = 7. (a) φ(0 100 ) = φ(4 100 5 100 ) = φ( 00 5 100 ) = (

More information

Selected Solutions to Even Problems, Part 3

Selected Solutions to Even Problems, Part 3 Selected Solutions to Even Problems, Part 3 March 14, 005 Page 77 6. If one selects 101 integers from among {1,,..., 00}, then at least two of these numbers must be consecutive, and therefore coprime (which

More information

Proof by Contradiction

Proof by Contradiction Proof by Contradiction MAT231 Transition to Higher Mathematics Fall 2014 MAT231 (Transition to Higher Math) Proof by Contradiction Fall 2014 1 / 12 Outline 1 Proving Statements with Contradiction 2 Proving

More information

Math 378 Spring 2011 Assignment 4 Solutions

Math 378 Spring 2011 Assignment 4 Solutions Math 3 Spring 2011 Assignment 4 Solutions Brualdi 6.2. The properties are P 1 : is divisible by 4. P 2 : is divisible by 6. P 3 : is divisible by. P 4 : is divisible by 10. Preparing to use inclusion-exclusion,

More information

The 2nd Texas A&M at Galveston Mathematics Olympiad. September 24, Problems & Solutions

The 2nd Texas A&M at Galveston Mathematics Olympiad. September 24, Problems & Solutions nd Math Olympiad Solutions Problem #: The nd Teas A&M at Galveston Mathematics Olympiad September 4, 00 Problems & Solutions Written by Dr. Lin Qiu A runner passes 5 poles in 30 seconds. How long will

More information

Multiple Choice Questions for Review

Multiple Choice Questions for Review Equivalence and Order Multiple Choice Questions for Review In each case there is one correct answer (given at the end of the problem set). Try to work the problem first without looking at the answer. Understand

More information

Counting Methods. CSE 191, Class Note 05: Counting Methods Computer Sci & Eng Dept SUNY Buffalo

Counting Methods. CSE 191, Class Note 05: Counting Methods Computer Sci & Eng Dept SUNY Buffalo Counting Methods CSE 191, Class Note 05: Counting Methods Computer Sci & Eng Dept SUNY Buffalo c Xin He (University at Buffalo) CSE 191 Discrete Structures 1 / 48 Need for Counting The problem of counting

More information

Counting. Math 301. November 24, Dr. Nahid Sultana

Counting. Math 301. November 24, Dr. Nahid Sultana Basic Principles Dr. Nahid Sultana November 24, 2012 Basic Principles Basic Principles The Sum Rule The Product Rule Distinguishable Pascal s Triangle Binomial Theorem Basic Principles Combinatorics: The

More information

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4 Do the following exercises from the text: Chapter (Section 3):, 1, 17(a)-(b), 3 Prove that 1 3 + 3 + + n 3 n (n + 1) for all n N Proof The proof is by induction on n For n N, let S(n) be the statement

More information

CSE 20 Discrete Math. Winter, January 24 (Day 5) Number Theory. Instructor: Neil Rhodes. Proving Quantified Statements

CSE 20 Discrete Math. Winter, January 24 (Day 5) Number Theory. Instructor: Neil Rhodes. Proving Quantified Statements CSE 20 Discrete Math Proving Quantified Statements Prove universal statement: x D, P(x)Q(x) Exhaustive enumeration Generalizing from the generic particular Winter, 2006 Suppose x is in D and P(x) Therefore

More information

CSE 20 DISCRETE MATH. Winter

CSE 20 DISCRETE MATH. Winter CSE 20 DISCRETE MATH Winter 2017 http://cseweb.ucsd.edu/classes/wi17/cse20-ab/ Today's learning goals Determine whether a relation is an equivalence relation by determining whether it is Reflexive Symmetric

More information

Math.3336: Discrete Mathematics. Cardinality of Sets

Math.3336: Discrete Mathematics. Cardinality of Sets Math.3336: Discrete Mathematics Cardinality of Sets Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu Fall 2018

More information

1 Predicates and Quantifiers

1 Predicates and Quantifiers 1 Predicates and Quantifiers We have seen how to represent properties of objects. For example, B(x) may represent that x is a student at Bryn Mawr College. Here B stands for is a student at Bryn Mawr College

More information

Slides for a Course Based on the Text Discrete Mathematics & Its Applications (5 th Edition) by Kenneth H. Rosen

Slides for a Course Based on the Text Discrete Mathematics & Its Applications (5 th Edition) by Kenneth H. Rosen University of Florida Dept. of Computer & Information Science & Engineering COT 3100 Applications of Discrete Structures Dr. Michael P. Frank Slides for a Course Based on the Text Discrete Mathematics

More information

The Pigeonhole Principle

The Pigeonhole Principle The Pigeonhole Principle 2 2.1 The Pigeonhole Principle The pigeonhole principle is one of the most used tools in combinatorics, and one of the simplest ones. It is applied frequently in graph theory,

More information

CDM Combinatorial Principles

CDM Combinatorial Principles CDM Combinatorial Principles 1 Counting Klaus Sutner Carnegie Mellon University Pigeon Hole 22-in-exclusion 2017/12/15 23:16 Inclusion/Exclusion Counting 3 Aside: Ranking and Unranking 4 Counting is arguably

More information

MATH 3012 N Homework Chapter 9

MATH 3012 N Homework Chapter 9 MATH 01 N Homework Chapter 9 February, 017 The recurrence r n+ = r n+1 + r n can be expressed with advancement operators as A A )r n = 0 The quadratic can then be factored using the quadratic formula,

More information

Math 2534 Solution to Test 3A Spring 2010

Math 2534 Solution to Test 3A Spring 2010 Math 2534 Solution to Test 3A Spring 2010 Problem 1: (10pts) Prove that R is a transitive relation on Z when given that mrpiff m pmod d (ie. d ( m p) ) Solution: The relation R is transitive, if arb and

More information

CIS Spring 2018 (instructor Val Tannen)

CIS Spring 2018 (instructor Val Tannen) CIS 160 - Spring 2018 (instructor Val Tannen) Lecture 09 Tuesday, February 13 PROOFS and COUNTING Figure 1: Too Many Pigeons Theorem 9.1 (The Pigeonhole Principle (PHP)) If k + 1 or more pigeons fly to

More information

HW2 Solutions, for MATH441, STAT461, STAT561, due September 9th

HW2 Solutions, for MATH441, STAT461, STAT561, due September 9th HW2 Solutions, for MATH44, STAT46, STAT56, due September 9th. You flip a coin until you get tails. Describe the sample space. How many points are in the sample space? The sample space consists of sequences

More information

Discrete Mathematics: Lectures 6 and 7 Sets, Relations, Functions and Counting Instructor: Arijit Bishnu Date: August 4 and 6, 2009

Discrete Mathematics: Lectures 6 and 7 Sets, Relations, Functions and Counting Instructor: Arijit Bishnu Date: August 4 and 6, 2009 Discrete Mathematics: Lectures 6 and 7 Sets, Relations, Functions and Counting Instructor: Arijit Bishnu Date: August 4 and 6, 2009 Our main goal is here is to do counting using functions. For that, we

More information

Reed-Solomon code. P(n + 2k)

Reed-Solomon code. P(n + 2k) Reed-Solomon code. Problem: Communicate n packets m 1,...,m n on noisy channel that corrupts k packets. Reed-Solomon Code: 1. Make a polynomial, P(x) of degree n 1, that encodes message: coefficients,

More information

Reading 11 : Relations and Functions

Reading 11 : Relations and Functions CS/Math 240: Introduction to Discrete Mathematics Fall 2015 Reading 11 : Relations and Functions Instructor: Beck Hasti and Gautam Prakriya In reading 3, we described a correspondence between predicates

More information

9 RELATIONS. 9.1 Reflexive, symmetric and transitive relations. MATH Foundations of Pure Mathematics

9 RELATIONS. 9.1 Reflexive, symmetric and transitive relations. MATH Foundations of Pure Mathematics MATH10111 - Foundations of Pure Mathematics 9 RELATIONS 9.1 Reflexive, symmetric and transitive relations Let A be a set with A. A relation R on A is a subset of A A. For convenience, for x, y A, write

More information

Intermediate Math Circles February 14, 2018 Contest Prep: Number Theory

Intermediate Math Circles February 14, 2018 Contest Prep: Number Theory Intermediate Math Circles February 14, 2018 Contest Prep: Number Theory Part 1: Prime Factorization A prime number is an integer greater than 1 whose only positive divisors are 1 and itself. An integer

More information

Math 109 HW 9 Solutions

Math 109 HW 9 Solutions Math 109 HW 9 Solutions Problems IV 18. Solve the linear diophantine equation 6m + 10n + 15p = 1 Solution: Let y = 10n + 15p. Since (10, 15) is 5, we must have that y = 5x for some integer x, and (as we

More information

Solutions to Tutorial 8 (Week 9)

Solutions to Tutorial 8 (Week 9) The University of Sydney School of Mathematics and Statistics Solutions to Tutorial 8 (Week 9) MATH3961: Metric Spaces (Advanced) Semester 1, 2018 Web Page: http://www.maths.usyd.edu.au/u/ug/sm/math3961/

More information

Problems for Recitation 15

Problems for Recitation 15 6.042/18.062J Mathematics for Computer Science November 3, 2010 Tom Leighton and Marten van Dijk Problems for Recitation 15 1 The Tao of BOOKKEEPER In this problem, we seek enlightenment through contemplation

More information

MATH 215 DISCRETE MATHEMATICS INSTRUCTOR: P. WENG

MATH 215 DISCRETE MATHEMATICS INSTRUCTOR: P. WENG MATH 215 DISCRETE MATHEMATICS INSTRUCTOR: P. WENG Suggested Problems for Sets and Functions The following problems are from Discrete Mathematics and Its Applications by Kenneth H. Rosen. 1. Define the

More information

1.4 Equivalence Relations and Partitions

1.4 Equivalence Relations and Partitions 24 CHAPTER 1. REVIEW 1.4 Equivalence Relations and Partitions 1.4.1 Equivalence Relations Definition 1.4.1 (Relation) A binary relation or a relation on a set S is a set R of ordered pairs. This is a very

More information

Carmen s Core Concepts (Math 135)

Carmen s Core Concepts (Math 135) Carmen s Core Concepts (Math 135) Carmen Bruni University of Waterloo Week 2 1 Divisibility Theorems 2 DIC Example 3 Converses 4 If and only if 5 Sets 6 Other Set Examples 7 Set Operations 8 More Set Terminology

More information

MATH 271 Summer 2016 Practice problem solutions Week 1

MATH 271 Summer 2016 Practice problem solutions Week 1 Part I MATH 271 Summer 2016 Practice problem solutions Week 1 For each of the following statements, determine whether the statement is true or false. Prove the true statements. For the false statement,

More information

Name (please print) Mathematics Final Examination December 14, 2005 I. (4)

Name (please print) Mathematics Final Examination December 14, 2005 I. (4) Mathematics 513-00 Final Examination December 14, 005 I Use a direct argument to prove the following implication: The product of two odd integers is odd Let m and n be two odd integers Since they are odd,

More information

Notes on Sets, Relations and Functions

Notes on Sets, Relations and Functions PURE MTH 3002 Topology & Analysis III (3246) 2002 Notes on Sets, Relations and Functions These are some notes taken from Mathematical Applications (now Mathematics for Information Technology (MIT)). They

More information

CSC Discrete Math I, Spring Discrete Probability

CSC Discrete Math I, Spring Discrete Probability CSC 125 - Discrete Math I, Spring 2017 Discrete Probability Probability of an Event Pierre-Simon Laplace s classical theory of probability: Definition of terms: An experiment is a procedure that yields

More information

The Inclusion Exclusion Principle

The Inclusion Exclusion Principle The Inclusion Exclusion Principle 1 / 29 Outline Basic Instances of The Inclusion Exclusion Principle The General Inclusion Exclusion Principle Counting Derangements Counting Functions Stirling Numbers

More information

Today. Wrapup of Polynomials...and modular arithmetic. Coutability and Uncountability.

Today. Wrapup of Polynomials...and modular arithmetic. Coutability and Uncountability. Today. Wrapup of Polynomials...and modular arithmetic. Coutability and Uncountability. Reed-Solomon code. Problem: Communicate n packets m 1,...,m n on noisy channel that corrupts k packets. Reed-Solomon

More information

True/False. Math 10B with Professor Stankova Worksheet, Midterm #1; Friday, 2/16/2018 GSI name: Roy Zhao

True/False. Math 10B with Professor Stankova Worksheet, Midterm #1; Friday, 2/16/2018 GSI name: Roy Zhao Math 10B with Professor Stankova Worksheet, Midterm #1; Friday, 2/16/2018 GSI name: Roy Zhao True/False 1. True False Among the problems we considered in class, a multi-stage process can be encoded (and

More information

Chapter 2 - Basics Structures MATH 213. Chapter 2: Basic Structures. Dr. Eric Bancroft. Fall Dr. Eric Bancroft MATH 213 Fall / 60

Chapter 2 - Basics Structures MATH 213. Chapter 2: Basic Structures. Dr. Eric Bancroft. Fall Dr. Eric Bancroft MATH 213 Fall / 60 MATH 213 Chapter 2: Basic Structures Dr. Eric Bancroft Fall 2013 Dr. Eric Bancroft MATH 213 Fall 2013 1 / 60 Chapter 2 - Basics Structures 2.1 - Sets 2.2 - Set Operations 2.3 - Functions 2.4 - Sequences

More information

2013 University of New South Wales School Mathematics Competition

2013 University of New South Wales School Mathematics Competition Parabola Volume 49, Issue (201) 201 University of New South Wales School Mathematics Competition Junior Division Problems and s Problem 1 Suppose that x, y, z are non-zero integers with no common factor

More information

Chapter 1 : The language of mathematics.

Chapter 1 : The language of mathematics. MAT 200, Logic, Language and Proof, Fall 2015 Summary Chapter 1 : The language of mathematics. Definition. A proposition is a sentence which is either true or false. Truth table for the connective or :

More information

Foundations of Computer Science Lecture 14 Advanced Counting

Foundations of Computer Science Lecture 14 Advanced Counting Foundations of Computer Science Lecture 14 Advanced Counting Sequences with Repetition Union of Overlapping Sets: Inclusion-Exclusion Pigeonhole Principle Last Time To count complex objects, construct

More information

Senior Math Circles November 19, 2008 Probability II

Senior Math Circles November 19, 2008 Probability II University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Senior Math Circles November 9, 2008 Probability II Probability Counting There are many situations where

More information

CCSU Regional Math Competition, 2012 Part I

CCSU Regional Math Competition, 2012 Part I CCSU Regional Math Competition, Part I Each problem is worth ten points. Please be sure to use separate pages to write your solution for every problem.. Find all real numbers r, with r, such that a -by-r

More information

5.1. Integer Exponents and Scientific Notation. Objectives. Use the product rule for exponents. Define 0 and negative exponents.

5.1. Integer Exponents and Scientific Notation. Objectives. Use the product rule for exponents. Define 0 and negative exponents. Chapter 5 Section 5. Integer Exponents and Scientific Notation Objectives 2 4 5 6 Use the product rule for exponents. Define 0 and negative exponents. Use the quotient rule for exponents. Use the power

More information

PROBABILITY. Contents Preface 1 1. Introduction 2 2. Combinatorial analysis 5 3. Stirling s formula 8. Preface

PROBABILITY. Contents Preface 1 1. Introduction 2 2. Combinatorial analysis 5 3. Stirling s formula 8. Preface PROBABILITY VITTORIA SILVESTRI Contents Preface. Introduction. Combinatorial analysis 5 3. Stirling s formula 8 Preface These lecture notes are for the course Probability IA, given in Lent 09 at the University

More information

Year 1: Fall. Year 1: Spring. HSB Topics - 2 Year Cycle

Year 1: Fall. Year 1: Spring. HSB Topics - 2 Year Cycle Year 1: Fall Pigeonhole 1 Pigeonhole 2 Induction 1 Induction 2 Inequalities 1 (AM-GM) Geometry 1 - Triangle Area Ratio Theorem (TART) Contest (Math Battle) Geometry 2 - Inscribed Quadrilaterals, Ptolemy

More information

MATH 22. Lecture G: 9/23/2003 QUANTIFIERS & PIGEONHOLES

MATH 22. Lecture G: 9/23/2003 QUANTIFIERS & PIGEONHOLES MATH 22 Lecture G: 9/23/2003 QUANTIFIERS & PIGEONHOLES But I am pigeon-livered, and lack gall To make oppression [and Math 22] bitter... Hamlet, Act 2, sc. 2 Copyright 2003 Larry Denenberg Administrivia

More information

Week 2: Counting with sets; The Principle of Inclusion and Exclusion (PIE) 13 & 15 September 2017

Week 2: Counting with sets; The Principle of Inclusion and Exclusion (PIE) 13 & 15 September 2017 (1/25) MA204/MA284 : Discrete Mathematics Week 2: Counting with sets; The Principle of Inclusion and Exclusion (PIE) Dr Niall Madden 13 & 15 September 2017 A B A B C Tutorials (2/25) Tutorials will start

More information