1. Projective geometry

Size: px
Start display at page:

Download "1. Projective geometry"

Transcription

1 1. Projective geometry Homogeneous representation of points and lines in D space D projective space Points at infinity and the line at infinity Conics and dual conics Projective transformation Hierarchy of D projective transformation

2 Notation Scalars: x, y,... Vectors: x, y,... Transpose: x >, y >,... Matrices: A, B, P,... Transpose: A >, B >, P >,...

3 Homogeneous representation of lines in D space A line on a xy plane: ax + by + c =0 Any line can be represented by a -vector l =[a, b, c] > The same line is given by k(a, b, c) > =(ka, kb, kc) > kax + kby + kc = k(ax + by + c) =0 In this sense, (a, b, c) > is equivalent to k(a, b, c) > Such vectors are called homogeneous vectors This equivalence will be represented by Two vectors on both sides are parallel (a, b, c) > / k(a, b, c) > /

4 Homogeneous representation of points in D space A point (x, y) is on a line l =(a, b, c) >, l > x = a b c x 4y5 = ax + by + c =0 1 Homogeneous representation of a point: x =(x, y, 1) > The same point is given by: k(x, y, 1) > =(kx, ky, k) > (x, y, 1) > / k(x, y, 1) > To recover the original (inhomogeneous) coordinates from homogeneous coordinates, simply do x =(x 1,x,x ) > x1, x x x

5 D projective space Sets of equivalent vectors in this sense form a special space called the projective space x x x x x x D Euclidean space D projective space

6 Intersection of lines Q) What is the crossing point of lines? l = a 4b5 l 0 = c a 0 4b 0 5 c 0 A) It is given by their cross product: x l l 0 l l 0 Proof: l > x = l > (l l 0 )=0 (Scalar triple product) x =1 y =1 E.g. Crossing point of and? l =[ 1, 0, 1] > l 0 =[0, 1, 1] > x = l l 0 = = (1/1, 1/1) = (1, 1) y l y = 1 l 0 (1,1) x = 1 x

7 Points at infinity l =(a, b, c) > l 0 =(a, b, c 0 ) > Consider the intersection of and l l 0 =(bc 0 bc, ca ac 0,ab ab) > =(c 0 c)(b, a, 0) > Conversion to inhomogeneous coordinates (b/0, a/0) = (1, 1) (x, y, 0) > A point with homogeneous coordinates is called a point at infinity A point (x 1,x,x ) > gives a finite point if x 6=0and gives a point at infinity if x =0

8 Points at infinity In inhomogeneous domain, parallel lines do not have an intersection In homogenous domain, parallel lines have an intersection at a point at infinity Points at infinity and finite points can be treated equally ß an advantage of using homogeneous representation Note that there are an infinite number of ʻpoints at infinityʼ y (a, b, 0) > x

9 The line at infinity l =(0, 0, 1) > The special line is called the line at infinity The name comes from the fact that every point at infinity will lie on this line x 1 x 0 5 =0 This line is unique, and will be denoted by l 1 =(0, 0, 1) >

10 Duality of points and lines There is symmetry between points and lines l > x = x > l =0 Exchange of points and lines in a proposition wonʼt change its correctness E.g. Intersection of lines is given by, x = l l 0 A line passing through two points is given by l = x x 0 Prove this directly without using the duality (1 st assignment)

11 Conics A conic = a curve obtained as the intersection of a cone with a plane Ellipse Hyperbola Parabola Any conic on a xy plane is given by ax + bxy + cy + dx + ey + f =0 x x 1 /x and y x /x ax 1 + bx 1 x + cx + dx 1 x + ex x + fx =0

12 Conics Or, can also be written as C = x > Cx =0 a b/ d/ 4b/ c e/5 d/ e/ f Any symmetric matrix represents a conic Matrices scaled by constants give the same conic Specifying five points determines a conic (passing these points)

13 Tangents to a conic l The line tangent to a conic at a point is given by C l = Cx x x l x > l = x > Cx =0 Proof: lies on, since Assume that there exists another point and. l y lying on C y Then, for any, it should hold that (x + y) > C(x + y) =0 x l This means that any point x + y should lie on C. This is possible only if C is a line or there exists no such point y.

14 Dual conics C A conic gives a set of points. A dual conic is another type of conics, which gives a set of lines Also known as line conics l > C l =0 Consider, where C C 1 This gives a set of tangent lines to conic ---- (*) C C l > C l =0 x > Cx =0 Show the above (*) is true ( nd assignment).

15 D projective transformation Projective transformation (different names: projectivity, homography, colineation) Definition: An invertible mapping from/to D projective spaces that satisfies that if three points lie on a line, then the mapped points lie on a line. Intuitively, any mapping from a plane to a plane that maps a line to a line Such a transformation ( x! x 0 ) is given by the following equation: x 0 / Hx or x 0 / h 11 h 1 h 1 4h 1 h h 5 x h 1 h h

16 An example: central projection Central projection: a point on a plane is mapped onto a point on another plane as shown below x x π π Obviously, central projection maps a line to a line, and thus it is a d projective transformation

17 Calculating a projective transformation If you want to represent the points before/after the mapping in inhomogeneous coordinates x 0 / h 11 h 1 h 1 4h 1 h h 5 x h 1 h h 4 x 0 y / h 11 h 1 h 1 x 4h 1 h h 5 4y5 = h 1 h h 1 h 11 x + h 1 y + h 1 4h 1 x + h y + h 5 h 1 x + h y + h x 0 = h 11x + h 1 y + h 1 h 1 x + h y + h y 0 = h 1x + h y + h h 1 x + h y + h

18 Transformation of lines and conics A D projective transformation mapping a point as x 0 / Hx maps a line as proof: l 0 / H > l x 0> l 0 =(x > H > )l 0 =(x > H > )(H > l)=x > l =0 and maps a conic as C 0 / H > CH 1 proof: x 0> C 0 x 0 = x > H > C 0 Hx = x > H > H > CH 1 Hx = x > Cx =0

19 Transformation of lines and conics l π l π C C π π

20 Hierarchy of D projective transformation Projective transformation can be classified into the following four types in the order of increasing degrees of freedom: 1. Euclidean transformation / Isometry. Similarity transformation. Affine transformation 4. Projective transformation (full-projective ---) x 0 / h 11 h 1 h 1 4h 1 h h 5 x h 1 h h

21 Euclidean transformation D projective transformations given as follows: " cos sin t x x 0 / 4" sin cos t y 5 x Called Euclidean trans. if ε=1; isometry if ε=-1 or 1. Combination of D rotation and translation Length and area are preserved (invariant)

22 Similarity transformation D projective transformations given as follows: s cos s sin t x x 0 / 4s sin s cos t y 5 x Combination of D rotation, translation, and scaling Shape and angle are preserved (invariant)

23 Affine transformation D projective transformations given as follows: a 11 a 1 t x x 0 / 4a 1 a t y 5 x Parallelism is preserved Points at infinity are mapped to points at infinity x 0 / = a 11 a 1 t x x 1 4a 1 a t y 5 4x a 11 x 1 + a 1 x 4a 1 x 1 + a x 5 0 5

24 Projective transformation The most general one: x 0 / h 11 h 1 h 1 4h 1 h h 5 x h 1 h h Colinearity and cross-ratio are preserved Points at infinity can be mapped to finite points x 0 / 5 = h 11 h 1 h 1 x 1 4h 1 h h 5 4x 5 h 1 h h 0 h 11 x 1 + h 1 x 4h 1 x 1 + h x 5 h 1 x 1 + h x

25 Transformations and images Images of a plane created by different transformations [Hartley-Zisserman0] similarity affine projective

26 Image rectification Given a projective transform of a plane, we want to find a transformation that maps it onto a similarity transform of the same plane x x 1 x 0 x 0 1 x x 4 x 0 x 0 4 [Hartley-Zisserman0] Any projective trans. is determined by four point pairs

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Basic Information Instructor: Professor Ron Sahoo Office: NS 218 Tel: (502) 852-2731 Fax: (502)

More information

Lines and points. Lines and points

Lines and points. Lines and points omogeneous coordinates in the plane Homogeneous coordinates in the plane A line in the plane a + by + c is represented as (a, b, c). A line is a subset of points in the plane. All vectors (ka, kb, kc)

More information

Introduction to conic sections. Author: Eduard Ortega

Introduction to conic sections. Author: Eduard Ortega Introduction to conic sections Author: Eduard Ortega 1 Introduction A conic is a two-dimensional figure created by the intersection of a plane and a right circular cone. All conics can be written in terms

More information

Rotation of Axes. By: OpenStaxCollege

Rotation of Axes. By: OpenStaxCollege Rotation of Axes By: OpenStaxCollege As we have seen, conic sections are formed when a plane intersects two right circular cones aligned tip to tip and extending infinitely far in opposite directions,

More information

SKILL BUILDER TEN. Graphs of Linear Equations with Two Variables. If x = 2 then y = = = 7 and (2, 7) is a solution.

SKILL BUILDER TEN. Graphs of Linear Equations with Two Variables. If x = 2 then y = = = 7 and (2, 7) is a solution. SKILL BUILDER TEN Graphs of Linear Equations with Two Variables A first degree equation is called a linear equation, since its graph is a straight line. In a linear equation, each term is a constant or

More information

8.6 Translate and Classify Conic Sections

8.6 Translate and Classify Conic Sections 8.6 Translate and Classify Conic Sections Where are the symmetric lines of conic sections? What is the general 2 nd degree equation for any conic? What information can the discriminant tell you about a

More information

Circles. Example 2: Write an equation for a circle if the enpoints of a diameter are at ( 4,5) and (6, 3).

Circles. Example 2: Write an equation for a circle if the enpoints of a diameter are at ( 4,5) and (6, 3). Conics Unit Ch. 8 Circles Equations of Circles The equation of a circle with center ( hk, ) and radius r units is ( x h) ( y k) r. Example 1: Write an equation of circle with center (8, 3) and radius 6.

More information

Robotics - Homogeneous coordinates and transformations. Simone Ceriani

Robotics - Homogeneous coordinates and transformations. Simone Ceriani Robotics - Homogeneous coordinates and transformations Simone Ceriani ceriani@elet.polimi.it Dipartimento di Elettronica e Informazione Politecnico di Milano 5 March 0 /49 Outline Introduction D space

More information

Introduction. Chapter Points, Vectors and Coordinate Systems

Introduction. Chapter Points, Vectors and Coordinate Systems Chapter 1 Introduction Computer aided geometric design (CAGD) concerns itself with the mathematical description of shape for use in computer graphics, manufacturing, or analysis. It draws upon the fields

More information

Distance and Midpoint Formula 7.1

Distance and Midpoint Formula 7.1 Distance and Midpoint Formula 7.1 Distance Formula d ( x - x ) ( y - y ) 1 1 Example 1 Find the distance between the points (4, 4) and (-6, -). Example Find the value of a to make the distance = 10 units

More information

Pure Math 30: Explained! 81

Pure Math 30: Explained!   81 4 www.puremath30.com 81 Part I: General Form General Form of a Conic: Ax + Cy + Dx + Ey + F = 0 A & C are useful in finding out which conic is produced: A = C Circle AC > 0 Ellipse A or C = 0 Parabola

More information

x = x y and y = x + y.

x = x y and y = x + y. 8. Conic sections We can use Legendre s theorem, (7.1), to characterise all rational solutions of the general quadratic equation in two variables ax 2 + bxy + cy 2 + dx + ey + ef 0, where a, b, c, d, e

More information

Chapter 12 Review Vector. MATH 126 (Section 9.5) Vector and Scalar The University of Kansas 1 / 30

Chapter 12 Review Vector. MATH 126 (Section 9.5) Vector and Scalar The University of Kansas 1 / 30 Chapter 12 Review Vector MATH 126 (Section 9.5) Vector and Scalar The University of Kansas 1 / 30 iclicker 1: Let v = PQ where P = ( 2, 5) and Q = (1, 2). Which of the following vectors with the given

More information

Some Highlights along a Path to Elliptic Curves

Some Highlights along a Path to Elliptic Curves 11/8/016 Some Highlights along a Path to Elliptic Curves Part : Conic Sections and Rational Points Steven J Wilson, Fall 016 Outline of the Series 1 The World of Algebraic Curves Conic Sections and Rational

More information

Fundamentals of Engineering (FE) Exam Mathematics Review

Fundamentals of Engineering (FE) Exam Mathematics Review Fundamentals of Engineering (FE) Exam Mathematics Review Dr. Garey Fox Professor and Buchanan Endowed Chair Biosystems and Agricultural Engineering October 16, 2014 Reference Material from FE Review Instructor

More information

A geometric interpretation of the homogeneous coordinates is given in the following Figure.

A geometric interpretation of the homogeneous coordinates is given in the following Figure. Introduction Homogeneous coordinates are an augmented representation of points and lines in R n spaces, embedding them in R n+1, hence using n + 1 parameters. This representation is useful in dealing with

More information

Local properties of plane algebraic curves

Local properties of plane algebraic curves Chapter 7 Local properties of plane algebraic curves Throughout this chapter let K be an algebraically closed field of characteristic zero, and as usual let A (K) be embedded into P (K) by identifying

More information

Homogeneous Coordinates

Homogeneous Coordinates Homogeneous Coordinates Basilio Bona DAUIN-Politecnico di Torino October 2013 Basilio Bona (DAUIN-Politecnico di Torino) Homogeneous Coordinates October 2013 1 / 32 Introduction Homogeneous coordinates

More information

Chapter 1 Analytic geometry in the plane

Chapter 1 Analytic geometry in the plane 3110 General Mathematics 1 31 10 General Mathematics For the students from Pharmaceutical Faculty 1/004 Instructor: Dr Wattana Toutip (ดร.ว ฒนา เถาว ท พย ) Chapter 1 Analytic geometry in the plane Overview:

More information

Conic Sections. Geometry - Conics ~1~ NJCTL.org. Write the following equations in standard form.

Conic Sections. Geometry - Conics ~1~ NJCTL.org. Write the following equations in standard form. Conic Sections Midpoint and Distance Formula M is the midpoint of A and B. Use the given information to find the missing point. 1. A(, 2) and B(3, -), find M 2. A(5, 7) and B( -2, -), find M 3. A( 2,0)

More information

TEST CODE: MIII (Objective type) 2010 SYLLABUS

TEST CODE: MIII (Objective type) 2010 SYLLABUS TEST CODE: MIII (Objective type) 200 SYLLABUS Algebra Permutations and combinations. Binomial theorem. Theory of equations. Inequalities. Complex numbers and De Moivre s theorem. Elementary set theory.

More information

MATH10000 Mathematical Workshop Project 2 Part 1 Conic Sections

MATH10000 Mathematical Workshop Project 2 Part 1 Conic Sections MATH10000 Mathematical Workshop Project 2 Part 1 Conic Sections The aim of this project is to introduce you to an area of geometry known as the theory of conic sections, which is one of the most famous

More information

A Study of Kruppa s Equation for Camera Self-calibration

A Study of Kruppa s Equation for Camera Self-calibration Proceedings of the International Conference of Machine Vision and Machine Learning Prague, Czech Republic, August 14-15, 2014 Paper No. 57 A Study of Kruppa s Equation for Camera Self-calibration Luh Prapitasari,

More information

2. A die is rolled 3 times, the probability of getting a number larger than the previous number each time is

2. A die is rolled 3 times, the probability of getting a number larger than the previous number each time is . If P(A) = x, P = 2x, P(A B) = 2, P ( A B) = 2 3, then the value of x is (A) 5 8 5 36 6 36 36 2. A die is rolled 3 times, the probability of getting a number larger than the previous number each time

More information

TWO THEOREMS ON THE FOCUS-SHARING ELLIPSES: A THREE-DIMENSIONAL VIEW

TWO THEOREMS ON THE FOCUS-SHARING ELLIPSES: A THREE-DIMENSIONAL VIEW TWO THEOREMS ON THE FOCUS-SHARING ELLIPSES: A THREE-DIMENSIONAL VIEW ILYA I. BOGDANOV Abstract. Consider three ellipses each two of which share a common focus. The radical axes of the pairs of these ellipses

More information

LINEAR SYSTEMS AND MATRICES

LINEAR SYSTEMS AND MATRICES CHAPTER 3 LINEAR SYSTEMS AND MATRICES SECTION 3. INTRODUCTION TO LINEAR SYSTEMS This initial section takes account of the fact that some students remember only hazily the method of elimination for and

More information

Projective Geometry Lecture Notes

Projective Geometry Lecture Notes Projective Geometry Lecture Notes Thomas Baird March 26, 2012 Contents 1 Introduction 2 2 Vector Spaces and Projective Spaces 3 2.1 Vector spaces and their duals......................... 3 2.2 Projective

More information

LECTURE 5, FRIDAY

LECTURE 5, FRIDAY LECTURE 5, FRIDAY 20.02.04 FRANZ LEMMERMEYER Before we start with the arithmetic of elliptic curves, let us talk a little bit about multiplicities, tangents, and singular points. 1. Tangents How do we

More information

Analytic Geometry MAT 1035

Analytic Geometry MAT 1035 Analytic Geometry MAT 035 5.09.04 WEEKLY PROGRAM - The first week of the semester, we will introduce the course and given a brief outline. We continue with vectors in R n and some operations including

More information

TEST CODE: MMA (Objective type) 2015 SYLLABUS

TEST CODE: MMA (Objective type) 2015 SYLLABUS TEST CODE: MMA (Objective type) 2015 SYLLABUS Analytical Reasoning Algebra Arithmetic, geometric and harmonic progression. Continued fractions. Elementary combinatorics: Permutations and combinations,

More information

LECTURE 7, WEDNESDAY

LECTURE 7, WEDNESDAY LECTURE 7, WEDNESDAY 25.02.04 FRANZ LEMMERMEYER 1. Singular Weierstrass Curves Consider cubic curves in Weierstraß form (1) E : y 2 + a 1 xy + a 3 y = x 3 + a 2 x 2 + a 4 x + a 6, the coefficients a i

More information

XV - Vector Spaces and Subspaces

XV - Vector Spaces and Subspaces MATHEMATICS -NYC- Vectors and Matrices Martin Huard Fall 7 XV - Vector Spaces and Subspaces Describe the zero vector (the additive identity) for the following vector spaces 4 a) c) d) e) C, b) x, y x,

More information

3. A( 2,0) and B(6, -2), find M 4. A( 3, 7) and M(4,-3), find B. 5. M(4, -9) and B( -10, 11) find A 6. B(4, 8) and M(-2, 5), find A

3. A( 2,0) and B(6, -2), find M 4. A( 3, 7) and M(4,-3), find B. 5. M(4, -9) and B( -10, 11) find A 6. B(4, 8) and M(-2, 5), find A Midpoint and Distance Formula Class Work M is the midpoint of A and B. Use the given information to find the missing point. 1. A(4, 2) and B(3, -8), find M 2. A(5, 7) and B( -2, -9), find M 3. A( 2,0)

More information

Conic Sections and Polar Graphing Lab Part 1 - Circles

Conic Sections and Polar Graphing Lab Part 1 - Circles MAC 1114 Name Conic Sections and Polar Graphing Lab Part 1 - Circles 1. What is the standard equation for a circle with center at the origin and a radius of k? 3. Consider the circle x + y = 9. a. What

More information

Review Solutions for Exam 1

Review Solutions for Exam 1 Definitions Basic Theorems. Finish the definition: Review Solutions for Exam (a) A linear combination of vectors {v,..., v n } is: any vector of the form c v + c v + + c n v n (b) A set of vectors {v,...,

More information

MATH 1020 WORKSHEET 12.1 & 12.2 Vectors in the Plane

MATH 1020 WORKSHEET 12.1 & 12.2 Vectors in the Plane MATH 100 WORKSHEET 1.1 & 1. Vectors in the Plane Find the vector v where u =, 1 and w = 1, given the equation v = u w. Solution. v = u w =, 1 1, =, 1 +, 4 =, 1 4 = 0, 5 Find the magnitude of v = 4, 3 Solution.

More information

(a) Write down the value of q and of r. (2) Write down the equation of the axis of symmetry. (1) (c) Find the value of p. (3) (Total 6 marks)

(a) Write down the value of q and of r. (2) Write down the equation of the axis of symmetry. (1) (c) Find the value of p. (3) (Total 6 marks) 1. Let f(x) = p(x q)(x r). Part of the graph of f is shown below. The graph passes through the points ( 2, 0), (0, 4) and (4, 0). (a) Write down the value of q and of r. (b) Write down the equation of

More information

Analytic Geometry MAT 1035

Analytic Geometry MAT 1035 Analytic Geometry MAT 035 5.09.04 WEEKLY PROGRAM - The first week of the semester, we will introduce the course and given a brief outline. We continue with vectors in R n and some operations including

More information

MAT1035 Analytic Geometry

MAT1035 Analytic Geometry MAT1035 Analytic Geometry Lecture Notes R.A. Sabri Kaan Gürbüzer Dokuz Eylül University 2016 2 Contents 1 Review of Trigonometry 5 2 Polar Coordinates 7 3 Vectors in R n 9 3.1 Located Vectors..............................................

More information

Video 15: PDE Classification: Elliptic, Parabolic and Hyperbolic March Equations 11, / 20

Video 15: PDE Classification: Elliptic, Parabolic and Hyperbolic March Equations 11, / 20 Video 15: : Elliptic, Parabolic and Hyperbolic Equations March 11, 2015 Video 15: : Elliptic, Parabolic and Hyperbolic March Equations 11, 2015 1 / 20 Table of contents 1 Video 15: : Elliptic, Parabolic

More information

Elliptic Curves and Mordell s Theorem

Elliptic Curves and Mordell s Theorem Elliptic Curves and Mordell s Theorem Aurash Vatan, Andrew Yao MIT PRIMES December 16, 2017 Diophantine Equations Definition (Diophantine Equations) Diophantine Equations are polynomials of two or more

More information

ELLIPTIC CURVES BJORN POONEN

ELLIPTIC CURVES BJORN POONEN ELLIPTIC CURVES BJORN POONEN 1. Introduction The theme of this lecture is to show how geometry can be used to understand the rational number solutions to a polynomial equation. We will illustrate this

More information

Linear Algebra. Chapter 8: Eigenvalues: Further Applications and Computations Section 8.2. Applications to Geometry Proofs of Theorems.

Linear Algebra. Chapter 8: Eigenvalues: Further Applications and Computations Section 8.2. Applications to Geometry Proofs of Theorems. Linear Algebra Chapter 8: Eigenvalues: Further Applications and Computations Section 8.2. Applications to Geometry Proofs of Theorems May 1, 2018 () Linear Algebra May 1, 2018 1 / 8 Table of contents 1

More information

2018 Fall 2210Q Section 013 Midterm Exam I Solution

2018 Fall 2210Q Section 013 Midterm Exam I Solution 8 Fall Q Section 3 Midterm Exam I Solution True or False questions ( points = points) () An example of a linear combination of vectors v, v is the vector v. True. We can write v as v + v. () If two matrices

More information

3.4 Conic sections. Such type of curves are called conics, because they arise from different slices through a cone

3.4 Conic sections. Such type of curves are called conics, because they arise from different slices through a cone 3.4 Conic sections Next we consider the objects resulting from ax 2 + bxy + cy 2 + + ey + f = 0. Such type of curves are called conics, because they arise from different slices through a cone Circles belong

More information

8. Diagonalization.

8. Diagonalization. 8. Diagonalization 8.1. Matrix Representations of Linear Transformations Matrix of A Linear Operator with Respect to A Basis We know that every linear transformation T: R n R m has an associated standard

More information

Harmonic quadrangle in isotropic plane

Harmonic quadrangle in isotropic plane Turkish Journal of Mathematics http:// journals. tubitak. gov. tr/ math/ Research Article Turk J Math (018) 4: 666 678 c TÜBİTAK doi:10.3906/mat-1607-35 Harmonic quadrangle in isotropic plane Ema JURKIN

More information

Uncovering the Lagrangian from observations of trajectories

Uncovering the Lagrangian from observations of trajectories Uncovering the Lagrangian from observations of trajectories Yakov Berchenko-Kogan June, Abstract We approach the problem of automatically modeling a mechanical system from data about its dynamics, using

More information

0, otherwise. Find each of the following limits, or explain that the limit does not exist.

0, otherwise. Find each of the following limits, or explain that the limit does not exist. Midterm Solutions 1, y x 4 1. Let f(x, y) = 1, y 0 0, otherwise. Find each of the following limits, or explain that the limit does not exist. (a) (b) (c) lim f(x, y) (x,y) (0,1) lim f(x, y) (x,y) (2,3)

More information

The Distance Formula. The Midpoint Formula

The Distance Formula. The Midpoint Formula Math 120 Intermediate Algebra Sec 9.1: Distance Midpoint Formulas The Distance Formula The distance between two points P 1 = (x 1, y 1 ) P 2 = (x 1, y 1 ), denoted by d(p 1, P 2 ), is d(p 1, P 2 ) = (x

More information

Given the table of values, determine the equation

Given the table of values, determine the equation 3.1 Properties of Quadratic Functions Recall: Standard Form f(x) = ax 2 + bx + c Factored Form f(x) = a(x r)(x s) Vertex Form f(x) = a(x h) 2 + k Given the table of values, determine the equation x y 1

More information

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given.

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given. HW1 solutions Exercise 1 (Some sets of probability distributions.) Let x be a real-valued random variable with Prob(x = a i ) = p i, i = 1,..., n, where a 1 < a 2 < < a n. Of course p R n lies in the standard

More information

Elliptic Curves, Factorization, and Cryptography

Elliptic Curves, Factorization, and Cryptography Elliptic Curves, Factorization, and Cryptography Brian Rhee MIT PRIMES May 19, 2017 RATIONAL POINTS ON CONICS The following procedure yields the set of rational points on a conic C given an initial rational

More information

MATH32062 Notes. 1 Affine algebraic varieties. 1.1 Definition of affine algebraic varieties

MATH32062 Notes. 1 Affine algebraic varieties. 1.1 Definition of affine algebraic varieties MATH32062 Notes 1 Affine algebraic varieties 1.1 Definition of affine algebraic varieties We want to define an algebraic variety as the solution set of a collection of polynomial equations, or equivalently,

More information

Mathematics I. Exercises with solutions. 1 Linear Algebra. Vectors and Matrices Let , C = , B = A = Determine the following matrices:

Mathematics I. Exercises with solutions. 1 Linear Algebra. Vectors and Matrices Let , C = , B = A = Determine the following matrices: Mathematics I Exercises with solutions Linear Algebra Vectors and Matrices.. Let A = 5, B = Determine the following matrices: 4 5, C = a) A + B; b) A B; c) AB; d) BA; e) (AB)C; f) A(BC) Solution: 4 5 a)

More information

Math Academy I Fall Study Guide. CHAPTER ONE: FUNDAMENTALS Due Thursday, December 8

Math Academy I Fall Study Guide. CHAPTER ONE: FUNDAMENTALS Due Thursday, December 8 Name: Math Academy I Fall Study Guide CHAPTER ONE: FUNDAMENTALS Due Thursday, December 8 1-A Terminology natural integer rational real complex irrational imaginary term expression argument monomial degree

More information

AM 106/206: Applied Algebra Madhu Sudan 1. Lecture Notes 12

AM 106/206: Applied Algebra Madhu Sudan 1. Lecture Notes 12 AM 106/206: Applied Algebra Madhu Sudan 1 Lecture Notes 12 October 19 2016 Reading: Gallian Chs. 27 & 28 Most of the applications of group theory to the physical sciences are through the study of the symmetry

More information

Projective Spaces. Chapter The Projective Line

Projective Spaces. Chapter The Projective Line Chapter 3 Projective Spaces 3.1 The Projective Line Suppose you want to describe the lines through the origin O = (0, 0) in the Euclidean plane R 2. The first thing you might think of is to write down

More information

Conics and their duals

Conics and their duals 9 Conics and their duals You always admire what you really don t understand. Blaise Pascal So far we dealt almost exclusively with situations in which only points and lines were involved. Geometry would

More information

CALIBRATION OF AN ELLIPSE S ALGEBRAIC EQUATION AND DIRECT DETERMINATION OF ITS PARAMETERS

CALIBRATION OF AN ELLIPSE S ALGEBRAIC EQUATION AND DIRECT DETERMINATION OF ITS PARAMETERS Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 19 (003), 1 5 www.emis.de/journals CALIBRATION OF AN ELLIPSE S ALGEBRAIC EQUATION AND DIRECT DETERMINATION OF ITS PARAMETERS MOHAMED ALI SAID Abstract.

More information

3. A( 2,0) and B(6, -2), find M 4. A( 3, 7) and M(4,-3), find B. 5. M(4, -9) and B( -10, 11) find A 6. B(4, 8) and M(-2, 5), find A

3. A( 2,0) and B(6, -2), find M 4. A( 3, 7) and M(4,-3), find B. 5. M(4, -9) and B( -10, 11) find A 6. B(4, 8) and M(-2, 5), find A Midpoint and Distance Formula Class Work M is the midpoint of A and B. Use the given information to find the missing point. 1. A(, 2) and B(3, -8), find M 2. A(5, 7) and B( -2, -), find M (3. 5, 3) (1.

More information

Classification of cubics up to affine transformations

Classification of cubics up to affine transformations Classification of cubics up to affine transformations Mehdi Nadjafikah and Ahmad-Reza Forough Abstract. Classification of cubics (that is, third order planar curves in the R 2 ) up to certain transformations

More information

Projection pencils of quadrics and Ivory s theorem

Projection pencils of quadrics and Ivory s theorem Projection pencils of quadrics and Ivory s theorem Á.G. Horváth Abstract. Using selfadjoint regular endomorphisms, the authors of [7] defined, for an indefinite inner product, a variant of the notion of

More information

Linear Algebra, Summer 2011, pt. 3

Linear Algebra, Summer 2011, pt. 3 Linear Algebra, Summer 011, pt. 3 September 0, 011 Contents 1 Orthogonality. 1 1.1 The length of a vector....................... 1. Orthogonal vectors......................... 3 1.3 Orthogonal Subspaces.......................

More information

A distance space on Cayley s ruled surface

A distance space on Cayley s ruled surface A distance space on Cayley s ruled surface Hans Havlicek Joint work with Johannes Gmainer DIFFERENTIALGEOMETRIE UND GEOMETRISCHE STRUKTUREN Basic notions Let P 3 (K) be the 3-dimensional projective space

More information

Finite affine planes in projective spaces

Finite affine planes in projective spaces Finite affine planes in projective spaces J. A.Thas H. Van Maldeghem Ghent University, Belgium {jat,hvm}@cage.ugent.be Abstract We classify all representations of an arbitrary affine plane A of order q

More information

March Algebra 2 Question 1. March Algebra 2 Question 1

March Algebra 2 Question 1. March Algebra 2 Question 1 March Algebra 2 Question 1 If the statement is always true for the domain, assign that part a 3. If it is sometimes true, assign it a 2. If it is never true, assign it a 1. Your answer for this question

More information

Conics. Chapter 6. When you do this Exercise, you will see that the intersections are of the form. ax 2 + bxy + cy 2 + ex + fy + g =0, (1)

Conics. Chapter 6. When you do this Exercise, you will see that the intersections are of the form. ax 2 + bxy + cy 2 + ex + fy + g =0, (1) Chapter 6 Conics We have a pretty good understanding of lines/linear equations in R 2 and RP 2. Let s spend some time studying quadratic equations in these spaces. These curves are called conics for the

More information

Exercises for algebraic curves

Exercises for algebraic curves Exercises for algebraic curves Christophe Ritzenthaler February 18, 2019 1 Exercise Lecture 1 1.1 Exercise Show that V = {(x, y) C 2 s.t. y = sin x} is not an algebraic set. Solutions. Let us assume that

More information

Hilbert s Metric and Gromov Hyperbolicity

Hilbert s Metric and Gromov Hyperbolicity Hilbert s Metric and Gromov Hyperbolicity Andrew Altman May 13, 2014 1 1 HILBERT METRIC 2 1 Hilbert Metric The Hilbert metric is a distance function defined on a convex bounded subset of the n-dimensional

More information

Section 6.5. Least Squares Problems

Section 6.5. Least Squares Problems Section 6.5 Least Squares Problems Motivation We now are in a position to solve the motivating problem of this third part of the course: Problem Suppose that Ax = b does not have a solution. What is the

More information

APPLICATIONS The eigenvalues are λ = 5, 5. An orthonormal basis of eigenvectors consists of

APPLICATIONS The eigenvalues are λ = 5, 5. An orthonormal basis of eigenvectors consists of CHAPTER III APPLICATIONS The eigenvalues are λ =, An orthonormal basis of eigenvectors consists of, The eigenvalues are λ =, A basis of eigenvectors consists of, 4 which are not perpendicular However,

More information

10. Noether Normalization and Hilbert s Nullstellensatz

10. Noether Normalization and Hilbert s Nullstellensatz 10. Noether Normalization and Hilbert s Nullstellensatz 91 10. Noether Normalization and Hilbert s Nullstellensatz In the last chapter we have gained much understanding for integral and finite ring extensions.

More information

Camera Models and Affine Multiple Views Geometry

Camera Models and Affine Multiple Views Geometry Camera Models and Affine Multiple Views Geometry Subhashis Banerjee Dept. Computer Science and Engineering IIT Delhi email: suban@cse.iitd.ac.in May 29, 2001 1 1 Camera Models A Camera transforms a 3D

More information

Analytic Geometry and Calculus I Exam 1 Practice Problems Solutions 2/19/7

Analytic Geometry and Calculus I Exam 1 Practice Problems Solutions 2/19/7 Analytic Geometry and Calculus I Exam 1 Practice Problems Solutions /19/7 Question 1 Write the following as an integer: log 4 (9)+log (5) We have: log 4 (9)+log (5) = ( log 4 (9)) ( log (5)) = 5 ( log

More information

Chapter 5. Basics of Euclidean Geometry

Chapter 5. Basics of Euclidean Geometry Chapter 5 Basics of Euclidean Geometry 5.1 Inner Products, Euclidean Spaces In Affine geometry, it is possible to deal with ratios of vectors and barycenters of points, but there is no way to express the

More information

0.1 Rational Canonical Forms

0.1 Rational Canonical Forms We have already seen that it is useful and simpler to study linear systems using matrices. But matrices are themselves cumbersome, as they are stuffed with many entries, and it turns out that it s best

More information

Exercises for Unit I I (Vector algebra and Euclidean geometry)

Exercises for Unit I I (Vector algebra and Euclidean geometry) Exercises for Unit I I (Vector algebra and Euclidean geometry) I I.1 : Approaches to Euclidean geometry Ryan : pp. 5 15 1. What is the minimum number of planes containing three concurrent noncoplanar lines

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 2 Limits 2.1 The Tangent Problems The word tangent is derived from the Latin word tangens, which means touching. A tangent line to a curve is a line that touches the curve and a secant line is a line that

More information

Senior Math Circles February 11, 2009 Conics II

Senior Math Circles February 11, 2009 Conics II 1 University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Senior Math Circles February 11, 2009 Conics II Locus Problems The word locus is sometimes synonymous with

More information

Math 250B Midterm II Information Spring 2019 SOLUTIONS TO PRACTICE PROBLEMS

Math 250B Midterm II Information Spring 2019 SOLUTIONS TO PRACTICE PROBLEMS Math 50B Midterm II Information Spring 019 SOLUTIONS TO PRACTICE PROBLEMS Problem 1. Determine whether each set S below forms a subspace of the given vector space V. Show carefully that your answer is

More information

Draft: January 2, 2017 INTRODUCTION TO ALGEBRAIC GEOMETRY

Draft: January 2, 2017 INTRODUCTION TO ALGEBRAIC GEOMETRY Draft: January 2, 2017 INTRODUCTION TO ALGEBRAIC GEOMETRY MATTHEW EMERTON Contents 1. Introduction and overview 1 2. Affine space 2 3. Affine plane curves 3 4. Projective space 7 5. Projective plane curves

More information

King Fahd University of Petroleum and Minerals Prep-Year Math Program Math Term 161 Recitation (R1, R2)

King Fahd University of Petroleum and Minerals Prep-Year Math Program Math Term 161 Recitation (R1, R2) Math 001 - Term 161 Recitation (R1, R) Question 1: How many rational and irrational numbers are possible between 0 and 1? (a) 1 (b) Finite (c) 0 (d) Infinite (e) Question : A will contain how many elements

More information

What is a Linear Space/Vector Space?

What is a Linear Space/Vector Space? What is a Linear Space/Vector Space? The terms linear space and vector space mean the same thing and can be used interchangeably. I have used the term linear space in the discussion below because I prefer

More information

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere.

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere. MATH 4 FINAL EXAM REVIEW QUESTIONS Problem. a) The points,, ) and,, 4) are the endpoints of a diameter of a sphere. i) Determine the center and radius of the sphere. ii) Find an equation for the sphere.

More information

FINAL REVIEW Answers and hints Math 311 Fall 2017

FINAL REVIEW Answers and hints Math 311 Fall 2017 FINAL RVIW Answers and hints Math 3 Fall 7. Let R be a Jordan region and let f : R be integrable. Prove that the graph of f, as a subset of R 3, has zero volume. Let R be a rectangle with R. Since f is

More information

Institutionen för matematik, KTH.

Institutionen för matematik, KTH. Institutionen för matematik, KTH. Contents 4 Curves in the projective plane 1 4.1 Lines................................ 1 4.1.3 The dual projective plane (P 2 )............. 2 4.1.5 Automorphisms of P

More information

TEKS Clarification Document. Mathematics Algebra

TEKS Clarification Document. Mathematics Algebra TEKS Clarification Document Mathematics Algebra 2 2012 2013 111.31. Implementation of Texas Essential Knowledge and Skills for Mathematics, Grades 9-12. Source: The provisions of this 111.31 adopted to

More information

2.1 Affine and Projective Coordinates

2.1 Affine and Projective Coordinates 1 Introduction Depending how you look at them, elliptic curves can be deceptively simple. Using one of the easier definitions, we are just looking at points (x,y) that satisfy a cubic equation, something

More information

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3 Math 127 Introduction and Review (1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3 MATH 127 Introduction to Calculus III

More information

Identifying the Graphs of Polynomial Functions

Identifying the Graphs of Polynomial Functions Identifying the Graphs of Polynomial Functions Many of the functions on the Math IIC are polynomial functions. Although they can be difficult to sketch and identify, there are a few tricks to make it easier.

More information

SMT Power Round Solutions : Poles and Polars

SMT Power Round Solutions : Poles and Polars SMT Power Round Solutions : Poles and Polars February 18, 011 1 Definition and Basic Properties 1 Note that the unit circles are not necessary in the solutions. They just make the graphs look nicer. (1).0

More information

Linear Algebra. Min Yan

Linear Algebra. Min Yan Linear Algebra Min Yan January 2, 2018 2 Contents 1 Vector Space 7 1.1 Definition................................. 7 1.1.1 Axioms of Vector Space..................... 7 1.1.2 Consequence of Axiom......................

More information

2. Intersection Multiplicities

2. Intersection Multiplicities 2. Intersection Multiplicities 11 2. Intersection Multiplicities Let us start our study of curves by introducing the concept of intersection multiplicity, which will be central throughout these notes.

More information

FFTs in Graphics and Vision. Homogenous Polynomials and Irreducible Representations

FFTs in Graphics and Vision. Homogenous Polynomials and Irreducible Representations FFTs in Graphics and Vision Homogenous Polynomials and Irreducible Representations 1 Outline The 2π Term in Assignment 1 Homogenous Polynomials Representations of Functions on the Unit-Circle Sub-Representations

More information

Bilinear and quadratic forms

Bilinear and quadratic forms Bilinear and quadratic forms Zdeněk Dvořák April 8, 015 1 Bilinear forms Definition 1. Let V be a vector space over a field F. A function b : V V F is a bilinear form if b(u + v, w) = b(u, w) + b(v, w)

More information

M GENERAL MATHEMATICS -2- Dr. Tariq A. AlFadhel 1 Solution of the First Mid-Term Exam First semester H

M GENERAL MATHEMATICS -2- Dr. Tariq A. AlFadhel 1 Solution of the First Mid-Term Exam First semester H M - GENERAL MATHEMATICS -- Dr. Tariq A. AlFadhel Solution of the First Mid-Term Exam First semester 38-39 H 3 Q. Let A =, B = and C = 3 Compute (if possible) : A+B and BC A+B is impossible. ( ) BC = 3

More information

Alg Review/Eq & Ineq (50 topics, due on 01/19/2016)

Alg Review/Eq & Ineq (50 topics, due on 01/19/2016) Course Name: MAC 1140 Spring 16 Course Code: XQWHD-P4TU6 ALEKS Course: PreCalculus Instructor: Van De Car Course Dates: Begin: 01/11/2016 End: 05/01/2016 Course Content: 307 topics Textbook: Coburn: Precalculus,

More information

AM 205: lecture 14. Last time: Boundary value problems Today: Numerical solution of PDEs

AM 205: lecture 14. Last time: Boundary value problems Today: Numerical solution of PDEs AM 205: lecture 14 Last time: Boundary value problems Today: Numerical solution of PDEs ODE BVPs A more general approach is to formulate a coupled system of equations for the BVP based on a finite difference

More information

TARGET QUARTERLY MATHS MATERIAL

TARGET QUARTERLY MATHS MATERIAL Adyar Adambakkam Pallavaram Pammal Chromepet Now also at SELAIYUR TARGET QUARTERLY MATHS MATERIAL Achievement through HARDWORK Improvement through INNOVATION Target Centum Practising Package +2 GENERAL

More information