8.1.6 Quadratic pole response: resonance
|
|
- Elfreda Stafford
- 3 years ago
- Views:
Transcription
1 8.1.6 Quadratic pole response: resonance Example G(s)= v (s) v 1 (s) = 1 1+s L R + s LC L + Second-order denominator, of the form 1+a 1 s + a s v 1 (s) + C R Two-pole low-pass filter example v (s) with a 1 = L/R and a = LC How should we construct the Bode diagram? 37
2 Approach 1: factor denominator 1+a 1 s + a s We might factor the denominator using the quadratic formula, then construct Bode diagram as the combination of two real poles: 1 s s 1 s with s 1 = a a a a 1 s 1 s = a 1 a a a 1 If 4a a 1, then the roots s 1 and s are real. We can construct Bode diagram as the combination of two real poles. If 4a > a 1, then the roots are complex. In Section 8.1.1, the assumption was made that ω 0 is real; hence, the results of that section cannot be applied and we need to do some additional work. 38
3 G(jω) and G(jω) Let s = jω: G(j )= 1 1+j = 1 j Magnitude is G(j ) = Re (G(j )) + Im (G(j )) = Im(G(j )) G(j ) G(j ) G(j ) Re(G(j )) Magnitude in db: G(j ) db = 0 log db 1
4 Approach : Define a standard normalized form for the quadratic case 1+ s + s or 0 1+ s + 0 Q s 0 0 When the coefficients of s are real and positive, then the parameters ζ, ω 0, and Q are also real and positive The parameters ζ, ω 0, and Q are found by equating the coefficients of s The parameter ω 0 is the angular corner frequency, and we can define = ω 0 /π The parameter ζ is called the damping factor. ζ controls the shape of the exact curve in the vicinity of f =. The roots are complex when ζ < 1. In the alternative form, the parameter Q is called the quality factor. Q also controls the shape of the exact curve in the vicinity of f =. The roots are complex when Q >
5 The Q-factor In a second-order system, ζ and Q are related according to Q = 1 Q is a measure of the dissipation in the system. A more general definition of Q, for sinusoidal excitation of a passive element or system is (peak stored energy) Q = (energy dissipated per cycle) For a second-order passive system, the two equations above are equivalent. We will see that Q has a simple interpretation in the Bode diagrams of second-order transfer functions. 40
6 Analytical expressions for and Q Two-pole low-pass filter example: we found that G(s)= v (s) v 1 (s) = 1 1+s L R + s LC Equate coefficients of like powers of s with the standard form 1+ s Q 0 + s 0 Result: = 0 = 1 LC Q = R C L 41
7 Magnitude asymptotes, quadratic form In the form 1+ s Q 0 + s 0 let s = jω and find magnitude: G(j ) = Q 0 Asymptotes are G 1 for << 0 G f for >> 0 G(j ) db 0 db 0 db 40 db 60 db 0 db f 40 db/decade f 4
8 Deviation of exact curve from magnitude asymptotes G(j ) = 1 At ω = ω 0, the exact magnitude is Q 0 G(j 0 ) = Q or, in db: G(j 0 ) db = Q db The exact curve has magnitude Q at f =. The deviation of the exact curve from the asymptotes is Q db G 0 db Q db 40 db/decade 43
9 Phase asymptotes! G(jω) = tan 1 1 Q ω ω0 1 ω ω 0 Increasing Q G 9 Low frequency asymptote o " High frequency asymptote of 180 " Change from 0 to 180 becomes more sharp as Q is increased" f /! 45!!
10 Mid-frequency phase asymptote! Match slope at f = :" or" Choose same approximation as in real pole case: " f a f a Slope: 180Q /decade G G f b f b f / f / 1/Q f a = e π/ Q 1 f a = 10 f b = e π/ 1 f Q b = 10 1/Q! 46!!
11 Two-pole response: exact curves 10dB Q = Q = 5 Q = Q = 1 Q = Q = Q = 10 Q =5 Q = Q = 1 Q = 0.7 Q = 0.5 G db 0dB Q = 0.5 G -9 Q = 0. Q = dB Q = Q = 0.1-0dB f / f /
R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder
R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 8.1. Review of Bode plots Decibels Table 8.1. Expressing magnitudes in decibels G db = 0 log 10
Chapter 8: Converter Transfer Functions
Chapter 8. Converter Transfer Functions 8.1. Review of Bode plots 8.1.1. Single pole response 8.1.2. Single zero response 8.1.3. Right half-plane zero 8.1.4. Frequency inversion 8.1.5. Combinations 8.1.6.
Chapter 8: Converter Transfer Functions
Chapter 8. Converter Transer Functions 8.1. Review o Bode plots 8.1.1. Single pole response 8.1.2. Single zero response 8.1.3. Right hal-plane zero 8.1.4. Frequency inversion 8.1.5. Combinations 8.1.6.
Homework 7 - Solutions
Homework 7 - Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the
1 (s + 3)(s + 2)(s + a) G(s) = C(s) = K P + K I
MAE 43B Linear Control Prof. M. Krstic FINAL June 9, Problem. ( points) Consider a plant in feedback with the PI controller G(s) = (s + 3)(s + )(s + a) C(s) = K P + K I s. (a) (4 points) For a given constant
EE221 Circuits II. Chapter 14 Frequency Response
EE22 Circuits II Chapter 4 Frequency Response Frequency Response Chapter 4 4. Introduction 4.2 Transfer Function 4.3 Bode Plots 4.4 Series Resonance 4.5 Parallel Resonance 4.6 Passive Filters 4.7 Active
CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION
CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION Objectives Students should be able to: Draw the bode plots for first order and second order system. Determine the stability through the bode plots.
Radar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D.
Radar Dish ME 304 CONTROL SYSTEMS Mechanical Engineering Department, Middle East Technical University Armature controlled dc motor Outside θ D output Inside θ r input r θ m Gearbox Control Transmitter
ROOT LOCUS. Consider the system. Root locus presents the poles of the closed-loop system when the gain K changes from 0 to. H(s) H ( s) = ( s)
C1 ROOT LOCUS Consider the system R(s) E(s) C(s) + K G(s) - H(s) C(s) R(s) = K G(s) 1 + K G(s) H(s) Root locus presents the poles of the closed-loop system when the gain K changes from 0 to 1+ K G ( s)
Solution: K m = R 1 = 10. From the original circuit, Z L1 = jωl 1 = j10 Ω. For the scaled circuit, L 1 = jk m ωl 1 = j10 10 = j100 Ω, Z L
Problem 9.9 Circuit (b) in Fig. P9.9 is a scaled version of circuit (a). The scaling process may have involved magnitude or frequency scaling, or both simultaneously. If R = kω gets scaled to R = kω, supply
Dynamic circuits: Frequency domain analysis
Electronic Circuits 1 Dynamic circuits: Contents Free oscillation and natural frequency Transfer functions Frequency response Bode plots 1 System behaviour: overview 2 System behaviour : review solution
EE C128 / ME C134 Fall 2014 HW 8 - Solutions. HW 8 - Solutions
EE C28 / ME C34 Fall 24 HW 8 - Solutions HW 8 - Solutions. Transient Response Design via Gain Adjustment For a transfer function G(s) = in negative feedback, find the gain to yield a 5% s(s+2)(s+85) overshoot
EE221 Circuits II. Chapter 14 Frequency Response
EE22 Circuits II Chapter 4 Frequency Response Frequency Response Chapter 4 4. Introduction 4.2 Transfer Function 4.3 Bode Plots 4.4 Series Resonance 4.5 Parallel Resonance 4.6 Passive Filters 4.7 Active
Steady State Frequency Response Using Bode Plots
School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 3 Steady State Frequency Response Using Bode Plots 1 Introduction
Response to a pure sinusoid
Harvard University Division of Engineering and Applied Sciences ES 145/215 - INTRODUCTION TO SYSTEMS ANALYSIS WITH PHYSIOLOGICAL APPLICATIONS Fall Lecture 14: The Bode Plot Response to a pure sinusoid
R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder
. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 8.1.7. The low-q approximation Given a second-order denominator polynomial, of the form G(s)= 1
r + - FINAL June 12, 2012 MAE 143B Linear Control Prof. M. Krstic
MAE 43B Linear Control Prof. M. Krstic FINAL June, One sheet of hand-written notes (two pages). Present your reasoning and calculations clearly. Inconsistent etchings will not be graded. Write answers
Frequency Response Techniques
4th Edition T E N Frequency Response Techniques SOLUTION TO CASE STUDY CHALLENGE Antenna Control: Stability Design and Transient Performance First find the forward transfer function, G(s). Pot: K 1 = 10
Transient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n
Design via frequency response Transient response via gain adjustment Consider a unity feedback system, where G(s) = ωn 2. The closed loop transfer function is s(s+2ζω n ) T(s) = ω 2 n s 2 + 2ζωs + ω 2
Frequency response. Pavel Máša - XE31EO2. XE31EO2 Lecture11. Pavel Máša - XE31EO2 - Frequency response
Frequency response XE3EO2 Lecture Pavel Máša - Frequency response INTRODUCTION Frequency response describe frequency dependence of output to input voltage magnitude ratio and its phase shift as a function
Frequency Response. Re ve jφ e jωt ( ) where v is the amplitude and φ is the phase of the sinusoidal signal v(t). ve jφ
27 Frequency Response Before starting, review phasor analysis, Bode plots... Key concept: small-signal models for amplifiers are linear and therefore, cosines and sines are solutions of the linear differential
Asymptote. 2 Problems 2 Methods
Asymptote Problems Methods Problems Assume we have the ollowing transer unction which has a zero at =, a pole at = and a pole at =. We are going to look at two problems: problem is where >> and problem
MAE 143B - Homework 9
MAE 143B - Homework 9 7.1 a) We have stable first-order poles at p 1 = 1 and p 2 = 1. For small values of ω, we recover the DC gain K = lim ω G(jω) = 1 1 = 2dB. Having this finite limit, our straight-line
Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore
Lecture 6 Classical Control Overview IV Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lead Lag Compensator Design Dr. Radhakant Padhi Asst.
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering.4 Dynamics and Control II Fall 7 Problem Set #9 Solution Posted: Sunday, Dec., 7. The.4 Tower system. The system parameters are
Frequency domain analysis
Automatic Control 2 Frequency domain analysis Prof. Alberto Bemporad University of Trento Academic year 2010-2011 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011
Frequency Response Analysis
Frequency Response Analysis Consider let the input be in the form Assume that the system is stable and the steady state response of the system to a sinusoidal inputdoes not depend on the initial conditions
EECE 301 Signals & Systems Prof. Mark Fowler
EECE 301 Signals & Systems Prof. Mark Fowler C-T Systems: Bode Plots Note Set #36 1/14 What are Bode Plots? Bode Plot = Freq. Resp. plotted with H() in db on a log frequency axis. Its easy to use computers
2nd-order filters. EE 230 second-order filters 1
nd-order filters Second order filters: Have second order polynomials in the denominator of the transfer function, and can have zeroth-, first-, or second-order polyinomials in the numerator. Use two reactive
Second-order filters. EE 230 second-order filters 1
Second-order filters Second order filters: Have second order polynomials in the denominator of the transfer function, and can have zeroth-, first-, or second-order polynomials in the numerator. Use two
Frequency Response part 2 (I&N Chap 12)
Frequency Response part 2 (I&N Chap 12) Introduction & TFs Decibel Scale & Bode Plots Resonance Scaling Filter Networks Applications/Design Frequency response; based on slides by J. Yan Slide 3.1 Example
Frequency methods for the analysis of feedback systems. Lecture 6. Loop analysis of feedback systems. Nyquist approach to study stability
Lecture 6. Loop analysis of feedback systems 1. Motivation 2. Graphical representation of frequency response: Bode and Nyquist curves 3. Nyquist stability theorem 4. Stability margins Frequency methods
Sinusoidal Forcing of a First-Order Process. / τ
Frequency Response Analysis Chapter 3 Sinusoidal Forcing of a First-Order Process For a first-order transfer function with gain K and time constant τ, the response to a general sinusoidal input, xt = A
( ) Frequency Response Analysis. Sinusoidal Forcing of a First-Order Process. Chapter 13. ( ) sin ω () (
1 Frequency Response Analysis Sinusoidal Forcing of a First-Order Process For a first-order transfer function with gain K and time constant τ, the response to a general sinusoidal input, xt = A tis: sin
R-L-C Circuits and Resonant Circuits
P517/617 Lec4, P1 R-L-C Circuits and Resonant Circuits Consider the following RLC series circuit What's R? Simplest way to solve for is to use voltage divider equation in complex notation. X L X C in 0
Asymptotic Bode Plot & Lead-Lag Compensator
Asymptotic Bode Plot & Lead-Lag Compensator. Introduction Consider a general transfer function Ang Man Shun 202-2-5 G(s = n k=0 a ks k m k=0 b ks k = A n k=0 (s z k m k=0 (s p k m > n When s =, transfer
ECE382/ME482 Spring 2005 Homework 6 Solution April 17, (s/2 + 1) s(2s + 1)[(s/8) 2 + (s/20) + 1]
ECE382/ME482 Spring 25 Homework 6 Solution April 17, 25 1 Solution to HW6 P8.17 We are given a system with open loop transfer function G(s) = 4(s/2 + 1) s(2s + 1)[(s/8) 2 + (s/2) + 1] (1) and unity negative
Boise State University Department of Electrical Engineering ECE461 Control Systems. Control System Design in the Frequency Domain
Boise State University Department of Electrical Engineering ECE6 Control Systems Control System Design in the Frequency Domain Situation: Consider the following block diagram of a type- servomechanism:
FREQUENCY RESPONSE ANALYSIS Closed Loop Frequency Response
Closed Loop Frequency Response The Bode plot is generally constructed for an open loop transfer function of a system. In order to draw the Bode plot for a closed loop system, the transfer function has
Some of the different forms of a signal, obtained by transformations, are shown in the figure. jwt e z. jwt z e
Transform methods Some of the different forms of a signal, obtained by transformations, are shown in the figure. X(s) X(t) L - L F - F jw s s jw X(jw) X*(t) F - F X*(jw) jwt e z jwt z e X(nT) Z - Z X(z)
III. The STM-8 Loop - Work in progress
III. The STM-8 Loop - Work in progress This contains the loop functions for a velocity input. The interaction between, forward gain, feedback function, loop gain and transfer function are well displayed.
EE3CL4: Introduction to Linear Control Systems
1 / 30 EE3CL4: Introduction to Linear Control Systems Section 9: of and using Techniques McMaster University Winter 2017 2 / 30 Outline 1 2 3 4 / 30 domain analysis Analyze closed loop using open loop
MAS107 Control Theory Exam Solutions 2008
MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve
ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques
CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques [] For the following system, Design a compensator such
Poles and Zeros and Transfer Functions
Poles and Zeros and Transfer Functions Transfer Function: Considerations: Factorization: A transfer function is defined as the ratio of the Laplace transform of the output to the input with all initial
Process Control & Instrumentation (CH 3040)
First-order systems Process Control & Instrumentation (CH 3040) Arun K. Tangirala Department of Chemical Engineering, IIT Madras January - April 010 Lectures: Mon, Tue, Wed, Fri Extra class: Thu A first-order
The Frequency-Response
6 The Frequency-Response Design Method A Perspective on the Frequency-Response Design Method The design of feedback control systems in industry is probably accomplished using frequency-response methods
(amperes) = (coulombs) (3.1) (seconds) Time varying current. (volts) =
3 Electrical Circuits 3. Basic Concepts Electric charge coulomb of negative change contains 624 0 8 electrons. Current ampere is a steady flow of coulomb of change pass a given point in a conductor in
Class 13 Frequency domain analysis
Class 13 Frequency domain analysis The frequency response is the output of the system in steady state when the input of the system is sinusoidal Methods of system analysis by the frequency response, as
School of Mechanical Engineering Purdue University
Case Study ME375 Frequency Response - 1 Case Study SUPPORT POWER WIRE DROPPERS Electric train derives power through a pantograph, which contacts the power wire, which is suspended from a catenary. During
Lecture 4: R-L-C Circuits and Resonant Circuits
Lecture 4: R-L-C Circuits and Resonant Circuits RLC series circuit: What's V R? Simplest way to solve for V is to use voltage divider equation in complex notation: V X L X C V R = in R R + X C + X L L
Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:
Serial :. PT_EE_A+C_Control Sytem_798 Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubanewar olkata Patna Web: E-mail: info@madeeay.in Ph: -4546 CLASS TEST 8-9 ELECTRICAL ENGINEERING Subject
Frequency Response DR. GYURCSEK ISTVÁN
DR. GYURCSEK ISTVÁN Frequency Response Sources and additional materials (recommended) Dr. Gyurcsek Dr. Elmer: Theories in Electric Circuits, GlobeEdit, 2016, ISBN:978-3-330-71341-3 Ch. Alexander, M. Sadiku:
1 (20 pts) Nyquist Exercise
EE C128 / ME134 Problem Set 6 Solution Fall 2011 1 (20 pts) Nyquist Exercise Consider a close loop system with unity feedback. For each G(s), hand sketch the Nyquist diagram, determine Z = P N, algebraically
The general form for the transform function of a second order filter is that of a biquadratic (or biquad to the cool kids).
nd-order filters The general form for the transform function of a second order filter is that of a biquadratic (or biquad to the cool kids). T (s) A p s a s a 0 s b s b 0 As before, the poles of the transfer
Plan of the Lecture. Goal: wrap up lead and lag control; start looking at frequency response as an alternative methodology for control systems design.
Plan of the Lecture Review: design using Root Locus; dynamic compensation; PD and lead control Today s topic: PI and lag control; introduction to frequency-response design method Goal: wrap up lead and
Control Systems I. Lecture 9: The Nyquist condition
Control Systems I Lecture 9: The Nyquist condition adings: Guzzella, Chapter 9.4 6 Åstrom and Murray, Chapter 9.1 4 www.cds.caltech.edu/~murray/amwiki/index.php/first_edition Emilio Frazzoli Institute
Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types
Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types Venkata Sonti Department of Mechanical Engineering Indian Institute of Science Bangalore, India, 562 This
Overview of Bode Plots Transfer function review Piece-wise linear approximations First-order terms Second-order terms (complex poles & zeros)
Overview of Bode Plots Transfer function review Piece-wise linear approximations First-order terms Second-order terms (complex poles & zeros) J. McNames Portland State University ECE 222 Bode Plots Ver.
Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL. Glenn Vinnicombe HANDOUT 4. The Frequency ResponseG(jω)
Part IB Paper 6: Information Engineering LINEAR SYSEMS AND CONROL Glenn Vinnicombe HANDOU 4 he Frequency ResponseG(jω) x(t) 2π ω y(t) G(jω) argg(jω) ω t t Asymptotically stable LI systemg(s) x(t)=cos(ωt)
agree w/input bond => + sign disagree w/input bond => - sign
1 ME 344 REVIEW FOR FINAL EXAM LOCATION: CPE 2.204 M. D. BRYANT DATE: Wednesday, May 7, 2008 9-noon Finals week office hours: May 6, 4-7 pm Permitted at final exam: 1 sheet of formulas & calculator I.
Transient Response of a Second-Order System
Transient Response of a Second-Order System ECEN 830 Spring 01 1. Introduction In connection with this experiment, you are selecting the gains in your feedback loop to obtain a well-behaved closed-loop
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 2: Drawing Bode Plots, Part 2 Overview In this Lecture, you will learn: Simple Plots Real Zeros Real Poles Complex
Step Response for the Transfer Function of a Sensor
Step Response f the Transfer Function of a Sens G(s)=Y(s)/X(s) of a sens with X(s) input and Y(s) output A) First Order Instruments a) First der transfer function G(s)=k/(1+Ts), k=gain, T = time constant
Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Discussion 5A
EECS 6B Designing Information Devices and Systems II Fall 208 Elad Alon and Miki Lustig Discussion 5A Transfer Function When we write the transfer function of an arbitrary circuit, it always takes the
Active Control? Contact : Website : Teaching
Active Control? Contact : bmokrani@ulb.ac.be Website : http://scmero.ulb.ac.be Teaching Active Control? Disturbances System Measurement Control Controler. Regulator.,,, Aims of an Active Control Disturbances
Nyquist Criterion For Stability of Closed Loop System
Nyquist Criterion For Stability of Closed Loop System Prof. N. Puri ECE Department, Rutgers University Nyquist Theorem Given a closed loop system: r(t) + KG(s) = K N(s) c(t) H(s) = KG(s) +KG(s) = KN(s)
Sinusoidal Steady-State Analysis
Chapter 4 Sinusoidal Steady-State Analysis In this unit, we consider circuits in which the sources are sinusoidal in nature. The review section of this unit covers most of section 9.1 9.9 of the text.
Outline. Classical Control. Lecture 1
Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction
ECE 255, Frequency Response
ECE 255, Frequency Response 19 April 2018 1 Introduction In this lecture, we address the frequency response of amplifiers. This was touched upon briefly in our previous lecture in Section 7.5 of the textbook.
Chapter 9: Controller design
Chapter 9. Controller Design 9.1. Introduction 9.2. Effect of negative feedback on the network transfer functions 9.2.1. Feedback reduces the transfer function from disturbances to the output 9.2.2. Feedback
( ) 2. 1) Bode plots/transfer functions. a. Draw magnitude and phase bode plots for the transfer function
ECSE CP7 olution Spring 5 ) Bode plot/tranfer function a. Draw magnitude and phae bode plot for the tranfer function H( ). ( ) ( E4) In your magnitude plot, indicate correction at the pole and zero. Step
Refinements to Incremental Transistor Model
Refinements to Incremental Transistor Model This section presents modifications to the incremental models that account for non-ideal transistor behavior Incremental output port resistance Incremental changes
First and Second Order Circuits. Claudio Talarico, Gonzaga University Spring 2015
First and Second Order Circuits Claudio Talarico, Gonzaga University Spring 2015 Capacitors and Inductors intuition: bucket of charge q = Cv i = C dv dt Resist change of voltage DC open circuit Store voltage
Chapter 2 SDOF Vibration Control 2.1 Transfer Function
Chapter SDOF Vibration Control.1 Transfer Function mx ɺɺ( t) + cxɺ ( t) + kx( t) = F( t) Defines the transfer function as output over input X ( s) 1 = G( s) = (1.39) F( s) ms + cs + k s is a complex number:
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall K(s +1)(s +2) G(s) =.
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Dynamics and Control II Fall 7 Problem Set #7 Solution Posted: Friday, Nov., 7. Nise problem 5 from chapter 8, page 76. Answer:
( s) N( s) ( ) The transfer function will take the form. = s = 2. giving ωo = sqrt(1/lc) = 1E7 [rad/s] ω 01 := R 1. α 1 2 L 1.
Problem ) RLC Parallel Circuit R L C E-4 E-0 V a. What is the resonant frequency of the circuit? The transfer function will take the form N ( ) ( s) N( s) H s R s + α s + ω s + s + o L LC giving ωo sqrt(/lc)
Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review
Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics
Sophomore Physics Laboratory (PH005/105)
CALIFORNIA INSTITUTE OF TECHNOLOGY PHYSICS MATHEMATICS AND ASTRONOMY DIVISION Sophomore Physics Laboratory (PH5/15) Analog Electronics Active Filters Copyright c Virgínio de Oliveira Sannibale, 23 (Revision
Root Locus Techniques
4th Edition E I G H T Root Locus Techniques SOLUTIONS TO CASE STUDIES CHALLENGES Antenna Control: Transient Design via Gain a. From the Chapter 5 Case Study Challenge: 76.39K G(s) = s(s+50)(s+.32) Since
The requirements of a plant may be expressed in terms of (a) settling time (b) damping ratio (c) peak overshoot --- in time domain
Compensators To improve the performance of a given plant or system G f(s) it may be necessary to use a compensator or controller G c(s). Compensator Plant G c (s) G f (s) The requirements of a plant may
SKEE 3143 CONTROL SYSTEM DESIGN. CHAPTER 3 Compensator Design Using the Bode Plot
SKEE 3143 CONTROL SYSTEM DESIGN CHAPTER 3 Compenator Deign Uing the Bode Plot 1 Chapter Outline 3.1 Introduc4on Re- viit to Frequency Repone, ploang frequency repone, bode plot tability analyi. 3.2 Gain
UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences. EE105 Lab Experiments
UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE15 Lab Experiments Bode Plot Tutorial Contents 1 Introduction 1 2 Bode Plots Basics
To find the step response of an RC circuit
To find the step response of an RC circuit v( t) v( ) [ v( t) v( )] e tt The time constant = RC The final capacitor voltage v() The initial capacitor voltage v(t ) To find the step response of an RL circuit
Module 3F2: Systems and Control EXAMPLES PAPER 2 ROOT-LOCUS. Solutions
Cambridge University Engineering Dept. Third Year Module 3F: Systems and Control EXAMPLES PAPER ROOT-LOCUS Solutions. (a) For the system L(s) = (s + a)(s + b) (a, b both real) show that the root-locus
MAE 143A: Homework 7 Solutions
MAE 143A: Homework 7 Solutions Jacob Huffman and Elena Menyaylenko Date Due: February 6 th, 13 Problem 1: (i) Lets utilize the formula cos(a + B) = cos A cos B sin A sin B. (ii) u(t) = Acos(ωt + φ) u(t)
Chapter 8: Frequency Domain Analysis
Chapter 8: Frequency Domain Analysis Samantha Ramirez Preview Questions 1. What is the steady-state response of a linear system excited by a cyclic or oscillatory input? 2. How does one characterize the
2.010 Fall 2000 Solution of Homework Assignment 1
2. Fall 2 Solution of Homework Assignment. Compact Disk Player. This is essentially a reprise of Problems and 2 from the Fall 999 2.3 Homework Assignment 7. t is included here to encourage you to review
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect
Studio Exercise Time Response & Frequency Response 1 st -Order Dynamic System RC Low-Pass Filter
Studio Exercise Time Response & Frequency Response 1 st -Order Dynamic System RC Low-Pass Filter i i in R out Assignment: Perform a Complete e in C e Dynamic System Investigation out of the RC Low-Pass
Single-Time-Constant (STC) Circuits This lecture is given as a background that will be needed to determine the frequency response of the amplifiers.
Single-Time-Constant (STC) Circuits This lecture is given as a background that will be needed to determine the frequency response of the amplifiers. Objectives To analyze and understand STC circuits with
EXPERIMENTALLY DETERMINING THE TRANSFER FUNCTION OF A SPRING- MASS SYSTEM
EXPERIMENTALLY DETERMINING THE TRANSFER FUNCTION OF A SPRING- MASS SYSTEM Lab 8 OBJECTIVES At the conclusion of this experiment, students should be able to: Experimentally determine the best fourth order
Filters and Tuned Amplifiers
Filters and Tuned Amplifiers Essential building block in many systems, particularly in communication and instrumentation systems Typically implemented in one of three technologies: passive LC filters,
Review of Linear Time-Invariant Network Analysis
D1 APPENDIX D Review of Linear Time-Invariant Network Analysis Consider a network with input x(t) and output y(t) as shown in Figure D-1. If an input x 1 (t) produces an output y 1 (t), and an input x
Control Systems Design
ELEC4410 Control Systems Design Lecture 13: Stability Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 13: Stability p.1/20 Outline Input-Output
Bode Diagrams School of Mechanical Engineering ME375 Frequency Response - 29 Purdue University Example Ex:
ME375 Hadouts Bode Diagrams Recall that if m m bs m + bm s + + bs+ b Gs () as + a s + + as+ a The bm( j z)( j z) ( j zm) G( j ) a ( j p )( j p ) ( j p ) bm( s z)( s z) ( s zm) a ( s p )( s p ) ( s p )
Poles and Zeros in z-plane
M58 Mixed Signal Processors page of 6 Poles and Zeros in z-plane z-plane Response of discrete-time system (i.e. digital filter at a particular frequency ω is determined by the distance between its poles
Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Frequency Response-Design Method
.. AERO 422: Active Controls for Aerospace Vehicles Frequency Response- Method Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. ... Response to
Poles, Zeros, and Frequency Response
Complex Poles Poles, Zeros, and Frequency esponse With only resistors and capacitors, you're stuck with real poles. If you want complex poles, you need either an op-amp or an inductor as well. Complex
AMME3500: System Dynamics & Control
Stefan B. Williams May, 211 AMME35: System Dynamics & Control Assignment 4 Note: This assignment contributes 15% towards your final mark. This assignment is due at 4pm on Monday, May 3 th during Week 13