Page 1/6

Size: px
Start display at page:

Download "Page 1/6"

Transcription

1 FORCE AND LAWS OF MOTION Force An agent that change or try to change the state of an object is called force.the force applied on a body can bring about the following changes: It can change the state of rest of a body or change its position. It can change the speed of the body. It can change the direction of motion of a body. Balanced Forces Forces which do not cause any change in state of rest or of uniform motion along a straight line are called balanced forces. The total balanced forces is always equal to zero (because the forces are equal and opposite) Unbalanced Forces The forces acting on a body produce any change in state of rest or motion, then the forces are said to be unbalanced Force. Unbalanced force acting on an object changes its speed or direction. The total unbalanced force is always greater than zero. Inertia Tendency of an object to resist any change in its state of rest or of uniform motion is called inertia. Or, Inertia can be defined as the property of matter by virtue of which it opposes any change in its state of rest or of uniform motion along a straight line. Inertia is classified as: Inertia Of Rest, Egs: A passenger standing in a bus leans backwards when the bus starts all of a sudden. Fruits fall down when the branches of a tree are shaken Dust particles on a carpet falls when we beat the carpet with a stick Inertia of Motion, Egs: A passenger standing in a moving bus leans forward when the bus stops all of a sudden A man carelessly alighting from a moving train leans forward Inertia of Direction, Egs: The water particles sticking to the cycle tyre are found to fly off tangentially. The passengers thrown to opposite side when a bus takes a sudden turn. edurash@gmail.com Page 1/6

2 Inertia of a body depends upon its mass. That is, massive objects possess more inertia than lighter ones. Mass is the measure of inertia. Q: - Explain why some of the leaves may get detached from a tree if we vigorously shake its branch. Answer: The answer of this cause lies behind the Newton s First Law of Motion. Initially, leaves and tree both are in rest. But when the tree is shaken vigorously, tree comes in motion while leaves have tendency to be in rest. Thus, because of remaining in the position of rest some of the leaves may get detached from a tree if we vigorously shake its branch. Q:- 4 - Why do you fall in the forward direction when a moving bus brakes to a stop and fall backwards when it accelerates from rest? Answer: In a moving bus, passengers are in motion along with bus. When brakes are applied to stop a moving bus, bus comes in the position of rest. But because of tendency to be in the motion a person falls in forward direction. Similarly, when a bus is accelerated from rest, the tendency to be in rest, a person in the bus falls backwards. Newton's First Law of Motion A body continues to be in a state of rest or of uniform motion along a straight line unless an external force acts upon it. This means that every object has a tendency to resist any change in its state of rest or motion. This law is also known as law of inertia. Momentum The momentum of an object is defined as the product of its mass and its velocity. Momentum is a vector quantity and its direction will be same as that of velocity. It is represented by p. p = mv Where, m is the mass of the object, v is its velocity. SI unit of momentum is kg m/s. Newton's Second Law of Motion It states that rate of change of momentum is directly proportional to applied force and takes place in the same direction as the applied force Explanation Consider a body of mass m, having an initial velocity u. Let the body be acted upon by some force F for time t, such that its final velocity is v. Initial momentum = m u Final momentum = m v edurash@gmail.com Page 2/6

3 Change in momentum in time = m(v - u) Change in momentum in unit time = According to Newton's second law, Rate of change of momentum is directly proportional to applied force. F α F = ma (since, a = ) F = K m a (K is the constant of proportionality) Or, F = ma ( K = 1) Or, Force = mass * acceleration Unit of Force We know that SI unit of mass is kg and acceleration is m/s 2. SI unit of force is kg m/s 2. But 1kgm/s 2 is defined as 1 Newton(N) in honor of Sir Issac Newton. 1 N = 1 kg m/s 2 One Newton force is that force which produces an acceleration of 1 m/s 2 on an object of mass 1 kg. Applications of Newton's Second Law of Motion : In a cricket match a fielder moves his arms back while trying to catch a cricket ball because if he tries to stop the fast moving ball suddenly then the speed decreases to zero in a very short time. Therefore the fielder has to apply a larger force to stop the ball. Thus, he may get hurt as the ball exerts a great pressure on the hands. But if he tries to stop it gradually by moving his arms back then the velocity decreases gradually in a longer interval of time and hence the force exerted by ball on the hand decreases and the fielder does not get hurt. A karate expert can break a pile of tiles or slab of ice with a single blow. He strike the slab with his hand as fast as he can. Here, by decreasing the time of action entire momentum of the hand is reduced to zero and so force delivered will be enough to break the slab. edurash@gmail.com Page 3/6

4 Newton's Third Law of Motion: To every action there is an equal and opposite reaction". Explanation: The two forces involved are called the "action force" and the "reaction force." They are equal in magnitude and are always act in opposite directions. Forces always come in pairs. Newton's third law of motion applied to collisions between two objects. In a collision between two objects, both objects experience forces which are equal in magnitude and opposite in direction. Such forces cause one object to speed up (gain momentum) and the other object to slow down (lose momentum). Applications: Walking: When we walk on the ground, then our foot pushes the ground backward (action force) and the ground in turn exerts a force on the foot (reaction force) pushing the foot forward. Recoil of a Gun: When a bullet is fired from a gun, a force is exerted on the bullet in the forward direction. The bullet is also exerting an equal force in backward direction. This backward movement of the gun is called the recoil of the gun. Flying Birds: The birds, while flying, push the air downwards with the help of their wings (action force) and the air in turn exerts a force on the bird in the upward direction (reaction force) Swimming: A swimmer pushes the water in the backward direction (action force) and the water exerts a force on the swimmer (reaction force) which pushes him forward. Rowing a boat: While rowing a boat the man pushes the water backward and the water exerts an equal and opposite push on the boat, which makes the boat moves forward. Jumping out of a boat: When a man jumps out of a boat, the man pushes the boat with his foot in the backward direction. The boat also exerts an equal force on the man in the forward direction. Q. If action is always equal to reaction, explain how a horse can pull cart? Ans: The horse pulls the cart with a force (action) in the forward direction. Since every action has an equal and opposite reaction so, the cart also pulls the horse with an equal force (reaction) in the backward direction. As a result of which the two forces get balanced. But while pulling the cart the horse also pushes the ground with its feet in the backward direction. The reaction of the earth of the earth makes it forward direction along with the cart. This is how the horse applies force and pulls the cart. edurash@gmail.com Page 4/6

5 Q. Explain why it is difficult for a fireman to hold a hose, which ejects large amount of water at a high velocity? Ans: Water is ejected with a large forward force (action). As we know by Newton s third law of motion that every action has an equal and opposite reaction so, because of this action fireman experiences a large backward force or reaction. That is why he feels difficulty in holding the hose. Law of Conservation of Momentum: If two objects are exerting force on each other(colliding with each other), their total momentum remains conserved before and after the collision provided there is no external force acting on them. Two bodies A and B of masses m 1 and m 2 are moving in the same direction with initial velocities u 1 and u 2. They make a direct collision. After collision, let v 1 and v 2 are the velocities of the bodies A and B respectively. The force exerted on A, F 1 = m 1 a 1 F 1 = F 1 = The force exerted on B, F 2 = m 2 a 2 F 2 = F 2 = According to Newton's third law of motion, these two forces are equal and opposite. i.e., F 1 = - F 2 = - = - m 1 v 1 - m 1 u 1 = - m 2 v 2 + m 2 u 2 m 1 v 1 + m 2 v 2 1 = m 1 u 1 + m 2 u 2 i.e., total momentum before collision is equal to the total momentum after collision, which is nothing but law of conservation of momentum. edurash@gmail.com Page 5/6

6 Q:- An object experiences a net zero external unbalanced force. Is it possible for the object to be travelling with a non-zero velocity? If yes, state the conditions that must be placed on the magnitude and direction of the velocity. If no, provide a reason. Answer: When a net zero external unbalanced force is applied on the body, it is possible for the object to be travelling with a non-zero velocity. In fact, once an object comes into motion and there is a condition in which its motion is unopposed by any external force; the object will continue to remain in motion. It is necessary that the object moves at a constant velocity and in a particular direction. Q :- When a carpet is beaten with a stick, dust comes out of it. Explain. Answer: Beating of a carpet with a stick; makes the carpet come in motion suddenly, while dust particles trapped within the pores of carpet have tendency to remain in rest, and in order to maintain the position of rest they come out of carpet. This happens because of the application of Newton s First Law of Motion which states that any object remains in its state unless any external force is applied over it. Q :- Why is it advised to tie any luggage kept on the roof of a bus with a rope? Answer:- Luggage kept on the roof of a bus has the tendency to maintain its state of rest when bus is in rest and to maintain the state of motion when bus is in motion according to Newton s First Law of Motion. When bus will come in motion from its state of rest, in order to maintain the position of rest, luggage kept over its roof may fall down. Similarly, when a moving bus will come in the state of rest or there is any sudden change in velocity because of applying of brake, luggage may fall down because of its tendency to remain in the state of motion. This is the cause that it is advised to tie any luggage kept on the roof a bus with a rope so that luggage can be prevented from falling down. edurash@gmail.com Page 6/6

CHAPTER 9 FORCE AND LAWS OF MOTION

CHAPTER 9 FORCE AND LAWS OF MOTION CHAPTER 9 FORCE AND LAWS OF MOTION Q 1. What is a force? Ans: Force is a push or pull which tries to bring the change in the state of rest or of uniform motion in a straight line. Unit of force: force

More information

Conceptual Questions for Laws of Motion

Conceptual Questions for Laws of Motion 1 Conceptual Questions for Laws of Motion Applicable for Class 9 Laws of motion Question 1 Which is true from Newton's Third law of motion? a) For every action force there is a 50% reaction force in the

More information

9. Force and Laws of Motions

9. Force and Laws of Motions Intext Exercise 1 Question 1: Which of the following has more inertia: (a) a rubber ball and a stone of the same size? (b) a bicycle and a train? (c) a five-rupees coin and a one-rupee coin? Solution 1:

More information

FORCE AND LAWS OF MOTION

FORCE AND LAWS OF MOTION 9 FORCE AND LAWS OF MOTION TEXTBOOK QUESTIONS AND THEIR ANSWERS Q. 1 Which of the following has more inertia : (a) A rubber ball and a stone of the same size? (b) A bicycle and a train? (c) A five rupees

More information

Downloaded from

Downloaded from CHAPTER 9 FORCE AND LAWS OF MOTION FORCE A force is anything that can cause a change to objects. Forces can: change the shape of an object move or stop an object change the direction of a moving object.

More information

FATHER AGNEL SCHOOL, VAISHALI CLASS IX QUESTION BANK PHYSICS

FATHER AGNEL SCHOOL, VAISHALI CLASS IX QUESTION BANK PHYSICS Topic : MOTION 1. Define acceleration and state its SI unit. For motion along a straight line, when do we consider the acceleration to be (i) positive (ii) negative? Give an example of a body in uniform

More information

Force Resultant Force Balanced And Unbalanced Forces Galileo's Observation and Origin of Newtonian Mechanics Inertia : Inertia is Classified as:

Force Resultant Force Balanced And Unbalanced Forces Galileo's Observation and Origin of Newtonian Mechanics Inertia : Inertia is Classified as: FORCE AND LAWS OF MOTION Force : An agent that change or try to change the state of an object is called force. A force may be i. Push ii. Pull iii. Gravitational force iv. Frictional force The force applied

More information

Laws of Motion 1. (a) (b) Ans. (a) Force : (b) (1) Examples : (i) (ii) (2) Examples : (i) (ii) (3) Examples : (i) (ii) (4) Examples : (i) (ii)

Laws of Motion 1. (a) (b) Ans. (a) Force : (b) (1) Examples : (i) (ii) (2) Examples : (i) (ii) (3) Examples : (i) (ii) (4) Examples : (i) (ii) Laws of Motion 1. (a) Define force. (b) State four effects, which a force can bring about, giving two examples in each case. Ans. (a) Force : An external cause, which changes or tends to changes the state

More information

Force Numerical questions

Force Numerical questions 1 Force Numerical questions Multiple choice questions Question 1: Why a goalkeeper in a game of football pulls his hands backwards after holding the ball shot at the goal? a)keep the ball in hands firmly

More information

Chapter 4 Newton s Laws

Chapter 4 Newton s Laws Chapter 4 Newton s Laws Isaac Newton 1642-1727 Some inventions and discoveries: 3 laws of motion Universal law of gravity Calculus Ideas on: Sound Light Thermodynamics Reflecting telescope In this chapter,

More information

FORCES. Integrated Science Unit 8. I. Newton s Laws of Motion

FORCES. Integrated Science Unit 8. I. Newton s Laws of Motion Integrated Science Unit 8 FORCES I. Newton s Laws of Motion A. Newton s First Law Sir Isaac Newton 1643 1727 Lincolnshire, England 1. An object at rest remains at rest, and an object in motion maintains

More information

Newton s Third Law KEY IDEAS READING TOOLBOX. As you read this section keep these questions in mind: Name Class Date

Newton s Third Law KEY IDEAS READING TOOLBOX. As you read this section keep these questions in mind: Name Class Date CHAPTER 12 Forces 3 SECTION KEY IDEAS Newton s Third Law As you read this section keep these questions in mind: What happens when one object exerts a force on another object? How can you calculate the

More information

Motion. Argument: (i) Forces are needed to keep things moving, because they stop when the forces are taken away (evidence horse pulling a carriage).

Motion. Argument: (i) Forces are needed to keep things moving, because they stop when the forces are taken away (evidence horse pulling a carriage). 1 Motion Aristotle s Study Aristotle s Law of Motion This law of motion was based on false assumptions. He believed that an object moved only if something was pushing it. His arguments were based on everyday

More information

CHAPTER 6 TEST. Directions: Show work on problems. Choose correct answer when available and place next to the question number.

CHAPTER 6 TEST. Directions: Show work on problems. Choose correct answer when available and place next to the question number. CHAPTER 6 TEST Directions: Show work on problems. Choose correct answer when available and place next to the question number. 1. What is inertia? A. the amount of matter in an object B. the force of gravity

More information

Laws of Motion. What is force? What happens when you push or pull objects? Some examples of pushing and pulling. Definition Force:

Laws of Motion. What is force? What happens when you push or pull objects? Some examples of pushing and pulling. Definition Force: 1 Laws of Motion What is force? What happens when you push or pull objects? Some examples of pushing and pulling Kicking Pushing Lifting Squeezing Definition Force: Activity: Tug of war In a tug of war,

More information

Exam 2--PHYS 101--Fall 2014

Exam 2--PHYS 101--Fall 2014 Class: Date: Exam 2--PHYS 101--Fall 2014 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Consider these vectors. What is A-B? a. a c. c b. b d. d 2. Consider

More information

SECTION 1 (PP ):

SECTION 1 (PP ): FORCES CHANGE MOTION. Georgia Standards: S8P3b Demonstrate the effect of balanced and unbalanced forces on an object in terms of gravity, inertia, and friction; S8CS6a Write clear, step-by-step instructions

More information

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal. Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45

More information

Forces & Newton s Laws. Honors Physics

Forces & Newton s Laws. Honors Physics Forces & Newton s Laws Honors Physics Newton s 1 st Law An object in motion stays in motion, and an object at rest stays at rest, unless an unbalanced force acts on it. An object will maintain a constant

More information

PHYSICS LAWS OF MOTION CLASS: XI

PHYSICS LAWS OF MOTION CLASS: XI In this chapter we will study the cause of motion of bodies, the factors affecting motion of body such as force, friction, mass etc. The branch of physics which deals with the study of motion of object

More information

Laws of Force and Motion

Laws of Force and Motion Does anything happen without a cause? Many people would say yes, because that often seems to be our experience. A cup near the edge of a table suddenly crashes to the floor. An apple falls from a tree

More information

Yanbu University College. General Studies Department. Phsc001 Course (111) Chapter2 (forces) Worksheet Solutions

Yanbu University College. General Studies Department. Phsc001 Course (111) Chapter2 (forces) Worksheet Solutions 1 Yanbu University College General Studies Department Phsc001 Course (111) Chapter2 (forces) Worksheet Solutions 2 Chapter 2 Worksheet Part 1 Matching: Match the definitions with the given concepts. 1.

More information

Sir Isaac Newton ( ) One of the world s greatest scientists Developed the 3 Laws of Motion

Sir Isaac Newton ( ) One of the world s greatest scientists Developed the 3 Laws of Motion Motion and Forces Sir Isaac Newton (1643 1727) One of the world s greatest scientists Developed the 3 Laws of Motion Newton s Laws of Motion 1 st Law Law of Inertia 2 nd Law Force = Mass x Acceleration

More information

Class Worksheet 3.1_Answer Forces and Newton s 1 st Law. Name: ( ) Date:

Class Worksheet 3.1_Answer Forces and Newton s 1 st Law. Name: ( ) Date: Class Worksheet 3.1_Answer Forces and Newton s 1 st Law Name: ( ) Date: Class: Sec 3/ Marks: Definition of a force: A force is defined as an influence which changes, or tries to change, the state of motion

More information

Impulse simply refers to a change in momentum, and is usually caused by a change in velocity, as described by p = m v.

Impulse simply refers to a change in momentum, and is usually caused by a change in velocity, as described by p = m v. 1 Impulse and Momentum Recall from Newton s 1 st Law: inertia is the tendency of an object to keep on doing what its already doing, that is: either remaining stationary, or: travelling at a constant velocity.

More information

Four naturally occuring forces

Four naturally occuring forces Forces System vs Environment: system the object the force is applied to environment the world around the object that exerts the force Type Forces: Contact is applied by touching Long range exerted without

More information

3.1 Inertia. 3.2 Linear Momentum. 3.3 Newtons First Law

3.1 Inertia. 3.2 Linear Momentum. 3.3 Newtons First Law 3.1 Inertia (1) Inherent property of all the bodies by virtue of which they cannot change their state of rest or uniform motion along a straight line by their own is called inertia. (2) Two bodies of equal

More information

FORCE, WORK, ENERGY & POWER

FORCE, WORK, ENERGY & POWER INAYA MEDICAL COLLEGE (IMC) PHYS 101 - LECTURE 5 FORCE, WORK, ENERGY & POWER DR. MOHAMMED MOSTAFA EMAM 1 What change the state of object is called force. We mean by saying state, shape or position of the

More information

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object.

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object. Force The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object. Forces do not always give rise to motion. Forces can be equal and opposite. Force is a vector

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION Name Period Date NEWTON S LAWS OF MOTION If I am anything, which I highly doubt, I have made myself so by hard work. Isaac Newton Goals: 1. Students will use conceptual and mathematical models to predict

More information

Momentum and Collisions. Resource Class/momentum/momtoc.html

Momentum and Collisions. Resource  Class/momentum/momtoc.html Momentum and Collisions Resource http://www.physicsclassroom.com/ Class/momentum/momtoc.html Define Inertia The property of any body to resist changes in its state of motion. The measure of Inertia is:

More information

Foundations of Physical Science. Unit One: Forces and Motion

Foundations of Physical Science. Unit One: Forces and Motion Foundations of Physical Science Unit One: Forces and Motion Chapter 3: Forces and Motion 3.1 Force, Mass and Acceleration 3.2 Weight, Gravity and Friction 3.3 Equilibrium, Action and Reaction Learning

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion I. Law of Inertia II. F=ma III. Action Reaction Newton s Laws of Motion 1 st Law An object at rest will stay at rest, and an object in motion will stay in motion at constant velocity,

More information

Chapter 6. Preview. Section 1 Gravity and Motion. Section 2 Newton s Laws of Motion. Section 3 Momentum. Forces and Motion.

Chapter 6. Preview. Section 1 Gravity and Motion. Section 2 Newton s Laws of Motion. Section 3 Momentum. Forces and Motion. Forces and Motion Preview Section 1 Gravity and Motion Section 2 Newton s Laws of Motion Section 3 Momentum Concept Mapping Section 1 Gravity and Motion Bellringer Answer the following question in your

More information

Physics 20 Lesson 14 Forces & Dynamics Conceptual Change

Physics 20 Lesson 14 Forces & Dynamics Conceptual Change Physics 20 Lesson 14 Forces & Dynamics Conceptual Change t this point in the course you have learned about Kinematics (the description of motion) and you have learned about vectors (addition, components).

More information

16. A ball is thrown straight up with an initial speed of 30 m/s. What is its speed after 4.2 s? a. 11 m/s b. 30 m/s c. 42 m/s d.

16. A ball is thrown straight up with an initial speed of 30 m/s. What is its speed after 4.2 s? a. 11 m/s b. 30 m/s c. 42 m/s d. Page 1 1. If you are driving 90 km/h along a straight road and you look to the side for 3.0 s, how far do you travel during this inattentive period? a. 30 m b. 25 m c. 50 m d. 75 m 2. A polar bear starts

More information

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a)

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a) Chapter Work, Energy and Power Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Q2. A bullet of mass 10g leaves a rifle at an initial velocity of

More information

Chapter 06 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 06 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Chapter 06 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The property of matter that resists changes in motion is: a. acceleration.

More information

Appendix- B POST-TEST QUESTION PAPER BASED ON PROGRAMMED INSTRUCTION (LINEAR PROGRAMME) OF IX STANDARD PHYSICAL SCIENCE

Appendix- B POST-TEST QUESTION PAPER BASED ON PROGRAMMED INSTRUCTION (LINEAR PROGRAMME) OF IX STANDARD PHYSICAL SCIENCE Appendix- B POST-TEST QUESTION PAPER BASED ON PROGRAMMED INSTRUCTION (LINEAR PROGRAMME) OF IX STANDARD PHYSICAL SCIENCE 1. To change a state of rest or to stop the motion of a body we apply a) direction

More information

Force - a push or a pull A force described by its strength and by the direction in which it acts The SI unit for force is the newton (N)

Force - a push or a pull A force described by its strength and by the direction in which it acts The SI unit for force is the newton (N) Forces Force - a push or a pull A force described by its strength and by the direction in which it acts The SI unit for force is the newton (N) The direction and strength of forces can be represented by

More information

Physics 100. Today. Finish Chapter 4: Newton s Second Law. Start Chapter 5: Newton s Third Law

Physics 100. Today. Finish Chapter 4: Newton s Second Law. Start Chapter 5: Newton s Third Law Physics 100 Today Finish Chapter 4: Newton s Second Law Start Chapter 5: Newton s Third Law First, let s clarify notion of a force: Previously defined force as a push or pull. Better to think of force

More information

Newton s Laws of Motion

Newton s Laws of Motion Motion & Forces Newton s Laws of Motion If I have seen far, it is because I have stood on the shoulders of giants. - Sir Isaac Newton (referring to Galileo) A. Newton s First Law Newton s First Law of

More information

Newton s Laws of Motion. Chapter 3, Section 2

Newton s Laws of Motion. Chapter 3, Section 2 Newton s Laws of Motion Chapter 3, Section 2 3 Motion and Forces Inertia and Mass Inertia (ih NUR shuh) is the tendency of an object to resist any change in its motion. If an object is moving, it will

More information

Newton s Third Law of Motion

Newton s Third Law of Motion Newton s Third Law of Motion Whenever one object exerts a force on a second object, the second object exerts an equal and opposite force on the first. Figure 17 The action force and reaction force are

More information

Practice Honors Physics Test: Newtons Laws

Practice Honors Physics Test: Newtons Laws Name: Class: Date: Practice Honors Physics Test: Newtons Laws Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Acceleration is defined as the CHANGE in

More information

2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN

2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN 2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN Topics: Forces Motion Momentum Gravity Electrostatics DATE: TIME: ROOM: PROCTOR: YOU ARE REQUIRED TO BRING: 1. CALCULATOR (YOUR OWN NO SHARING) 2. PENCIL

More information

that when friction is present, a is needed to keep an object moving. 21. State Newton s first law of motion.

that when friction is present, a is needed to keep an object moving. 21. State Newton s first law of motion. Chapter 3 Newton s First Law of Motion Inertia Exercises 31 Aristotle on Motion (pages 29 30) Fill in the blanks with the correct terms 1 Aristotle divided motion into two types: and 2 Natural motion on

More information

Newton s 3 rd Law. 3rd Six Weeks

Newton s 3 rd Law. 3rd Six Weeks Newton s 3 rd Law 3rd Six Weeks Golf and Newton s 3 rd Law Newton s 3 rd Law of Motion The Law states: Whenever one object exerts a force upon a second object, the second object exerts an equal and opposite

More information

MOTION & FORCES. Observing Motion. Speed and Velocity. Distance vs. Displacement CHAPTERS 11 & 12

MOTION & FORCES. Observing Motion. Speed and Velocity. Distance vs. Displacement CHAPTERS 11 & 12 Observing Motion CHAPTERS 11 & 12 MOTION & FORCES Everything surrounding us is in motion, but it is relative to other object that remain in place. Motion is observed using a frame of reference. Motion

More information

Physics 11. Unit 5 Momentum and Impulse

Physics 11. Unit 5 Momentum and Impulse Physics 11 Unit 5 Momentum and Impulse 1 1. Momentum It is always amazing to see karate experts chopping woods or blocks. They look so extraordinary and powerful! How could they do that? 2 Let s consider

More information

Newton s Laws Student Success Sheets (SSS)

Newton s Laws Student Success Sheets (SSS) --- Newton s Laws unit student success sheets--- Page 1 Newton s Laws Student Success Sheets (SSS) HS-PS2-1 HS-PS2-2 NGSS Civic Memorial High School - Physics Concept # What we will be learning Mandatory

More information

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 *Read the following (20) questions and choose the right answer: 1 The figure below represents the speed-time graph for the motion of a vehicle during a 7.0-minute

More information

Chapter 4. Forces in One Dimension

Chapter 4. Forces in One Dimension Chapter 4 Forces in One Dimension Chapter 4 Forces in One Dimension In this chapter you will: *VD Note Use Newton s laws to solve problems. Determine the magnitude and direction of the net force that causes

More information

CHAPTER -9 Force & Laws Of Motion

CHAPTER -9 Force & Laws Of Motion CHAPTER -9 Force & Laws Of Motion KEY CONCEPTS [ *rating as per the significance of concept] 1 Balanced and Unbalanced Forces *** 2 Laws of Motion ***** 3 Inertia and Mass ***** 4 Conservation of Momentum

More information

Test Wed, Feb 8 th 7pm, G20 MING HSIEH Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from:

Test Wed, Feb 8 th 7pm, G20 MING HSIEH Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from: Test Wed, Feb 8 th 7pm, G20 MING HSIEH Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from: Chapter 1 (except section 1.2 and 1.7): Unit conversions, estimating, trigonometry,

More information

Force Test Review. 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force.

Force Test Review. 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force. Force Test Review 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force. 2. Define weight. The force of gravity on an object at the surface of

More information

Dynamics; Newton s Laws of Motion

Dynamics; Newton s Laws of Motion Dynamics; Newton s Laws of Motion Force A force is any kind of push or pull on an object. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. The magnitude

More information

Go on to the next page.

Go on to the next page. Chapter 10: The Nature of Force Force a push or a pull Force is a vector (it has direction) just like velocity and acceleration Newton the SI unit for force = kg m/s 2 Net force the combination of all

More information

If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List:

If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List: If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List: No Push No Go No Push No Stop No Push No Speed Up No Push No Slow Down

More information

Physics-MC Page 1 of 29 Inertia, Force and Motion 1.

Physics-MC Page 1 of 29 Inertia, Force and Motion 1. Physics-MC 2006-7 Page 1 of 29 Inertia, Force and Motion 1. 3. 2. Three blocks of equal mass are placed on a smooth horizontal surface as shown in the figure above. A constant force F is applied to block

More information

Practice Midterm Exam 1 Physics 14

Practice Midterm Exam 1 Physics 14 Booklet Number Practice Midterm Exam 1 Physics 14 Last Name First Name To get a full credit show the all calculations steps in the spaces provided. All work must be shown in order to receive FULL credit.

More information

Matter, Atoms & Molecules

Matter, Atoms & Molecules Matter, Atoms & Molecules Matter is anything that has mass and takes up space. All matter is made of tiny particles called atoms, which are too small to see with the naked eye. Matter Matter is anything

More information

Newtonian Mechanics. Dynamics. Marline Kurishingal

Newtonian Mechanics. Dynamics. Marline Kurishingal Newtonian Mechanics Dynamics Marline Kurishingal Newton s laws of Motion Newton's laws of motion are three physical laws which provide relationships between the forces acting on a body and the motion of

More information

Physics 101. Today Chapter 5: Newton s Third Law

Physics 101. Today Chapter 5: Newton s Third Law Physics 101 Today Chapter 5: Newton s Third Law First, let s clarify notion of a force: Previously defined force as a push or pull. Better to think of force as an interaction between two objects. Eg. I

More information

Force, Friction & Gravity Notes

Force, Friction & Gravity Notes Force, Friction & Gravity Notes Key Terms to Know Speed: The distance traveled by an object within a certain amount of time. Speed = distance/time Velocity: Speed in a given direction Acceleration: The

More information

NEWTON S FIRST LAW OF MOTION. Law of Inertia

NEWTON S FIRST LAW OF MOTION. Law of Inertia NEWTON S FIRST LAW OF MOTION Law of Inertia An object at rest will remain at rest unless acted on by an unbalanced force. An object in motion continues in motion with the same speed and in the same direction

More information

Physics 221, January 24

Physics 221, January 24 Key Concepts: Newton s 1 st law Newton s 2 nd law Weight Newton s 3 rd law Physics 221, January 24 Please find a seat. Keep all walkways free for safety reasons and to comply with the fire code. Matter

More information

Newton s third law relates action and reaction forces.

Newton s third law relates action and reaction forces. Chapter 11, Section 3 Key Concept: Forces act in pairs. BEFORE, you learned A force is a push or a pull Increasing the force on an object increases the acceleration The acceleration of an object depends

More information

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km Name: Physics I Mid Term Exam Review Multiple Choice Questions Date: Mr. Tiesler 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km

More information

Introduction to Dynamics: Forces and Newton's Laws What causes an object's motion to change? What is a Force? What are Newton's 3 Laws of Motion?

Introduction to Dynamics: Forces and Newton's Laws What causes an object's motion to change? What is a Force? What are Newton's 3 Laws of Motion? Introduction to Dynamics: Forces and Newton's Laws What causes an object's motion to change? What is a Force? What are Newton's 3 Laws of Motion? Physics 1 a When I drop a tennis ball, it accelerates downwards.

More information

Chapter: Newton s Laws of Motion

Chapter: Newton s Laws of Motion Table of Contents Chapter: Newton s Laws of Motion Section 1: Motion Section 2: Newton s First Law Section 3: Newton s Second Law Section 4: Newton s Third Law 1 Motion What is motion? Distance and Displacement

More information

Measuring Force You may have measured forces using a spring scale. The of the spring in the scale depends on the amount of (a type of ) acting on it.

Measuring Force You may have measured forces using a spring scale. The of the spring in the scale depends on the amount of (a type of ) acting on it. Forces 12.1 Name 1 A is a push or a pull that on an. How do forces affect the motion of an object? Measuring Force You may have measured forces using a spring scale. The of the spring in the scale depends

More information

Physics 11 (Fall 2012) Chapter 9: Momentum. Problem Solving

Physics 11 (Fall 2012) Chapter 9: Momentum. Problem Solving Physics 11 (Fall 2012) Chapter 9: Momentum The answers you receive depend upon the questions you ask. Thomas Kuhn Life is a mirror and will reflect back to the thinker what he thinks into it. Ernest Holmes

More information

LAWS OF MOTION Newtons laws of motion. (i) First law: Law of inertia. Every body continues to be in its state of rest or of uniform motion in a

LAWS OF MOTION Newtons laws of motion. (i) First law: Law of inertia. Every body continues to be in its state of rest or of uniform motion in a LAWS OF MOTION Newtons laws of motion. (i) First law: Law of inertia. Every body continues to be in its state of rest or of uniform motion in a straight line unless compelled to change that state by an

More information

Main Ideas in Class Today

Main Ideas in Class Today 2/4/17 Test Wed, Feb 8th 7pm, G24 Eiesland Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from: Chapter 1 (except section 1.2 and 1.7): Unit conversions, estimating,

More information

TEACHER BACKGROUND INFORMATION FORCE

TEACHER BACKGROUND INFORMATION FORCE TEACHER BACKGROUND INFORMATION FORCE WHAT IS FORCE? Force is anything that can change the state of motion of a body. In simpler terms, force is a push or a pull. For example, wind pushing on a flag is

More information

-: MECHANICS:- 2. Motion in one dimension & 3. Newton s laws of motion

-: MECHANICS:- 2. Motion in one dimension & 3. Newton s laws of motion -: MECHANICS:- Chapters: 1.Units and Dimensions, 2. Motion in one dimension & 3. Newton s laws of motion 01. The quantities L/R and RC (where L, C and R stand for inductance, capacitance and resistance

More information

Chapter 6 Study Questions Name: Class:

Chapter 6 Study Questions Name: Class: Chapter 6 Study Questions Name: Class: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. A feather and a rock dropped at the same time from

More information

Chapter 2. Forces & Newton s Laws

Chapter 2. Forces & Newton s Laws Chapter 2 Forces & Newton s Laws 1st thing you need to know Everything from chapter 1 Speed formula Acceleration formula All their units There is only 1 main formula, but some equations will utilize previous

More information

Momentum -- Conceptual Questions

Momentum -- Conceptual Questions Momentum Momentum -- Conceptual Questions 1.) A net force F stops a car in time t and distance d. If you multiply that force by the time over which it is applied, what will that quantity tell you? 2.)

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion 4-1 Force A force is a push or pull. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. The magnitude of

More information

Chapter 4 Force and Motion

Chapter 4 Force and Motion Chapter 4 Force and Motion Units of Chapter 4 The Concepts of Force and Net Force Inertia and Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion More on Newton s Laws:

More information

P11 Dynamics 1 Forces and Laws of Motion Bundle.notebook October 14, 2013

P11 Dynamics 1 Forces and Laws of Motion Bundle.notebook October 14, 2013 Dynamics 1 Definition of Dynamics Dynamics is the study of why an object moves. In order to understand why objects move, we must first study forces. Forces A force is defined as a push or a pull. Forces

More information

3. What type of force is the woman applying to cart in the illustration below?

3. What type of force is the woman applying to cart in the illustration below? Name: Forces and Motion STUDY GUIDE Directions: Answer the following questions. 1. What is a force? a. A type of energy b. The rate at which an object performs work c. A push or a pull d. An object that

More information

A force is could described by its magnitude and by the direction in which it acts.

A force is could described by its magnitude and by the direction in which it acts. 8.2.a Forces Students know a force has both direction and magnitude. P13 A force is could described by its magnitude and by the direction in which it acts. 1. Which of the following could describe the

More information

1. Type your first name. * 2. Type your last name. * 3. Choose the block I teach you for science. * Mark only one oval. Block 1.

1. Type your first name. * 2. Type your last name. * 3. Choose the block I teach you for science. * Mark only one oval. Block 1. Hippenmeyer Physics Assessment 1 Your email address (khippenmeyer@ncmcs.net) will be recorded when you submit this form. Not khippenmeyer? Sign out * Required 1. Type your first name. * 2. Type your last

More information

Semester 1 Final Exam Review Answers

Semester 1 Final Exam Review Answers Position (m) Mass (g) Semester 1 Final Exam Review Answers A physics student was interested in finding the mass of a penny. To do so she grabbed a bunch of pennies and placed them on a scale. She gathered

More information

A. true. 6. An object is in motion when

A. true. 6. An object is in motion when 1. The SI unit for speed is A. Miles per hour B. meters per second 5. Frictional forces are greatest when both surfaces are rough. A. true B. false 2. The combination of all of the forces acting on an

More information

ConcepTest PowerPoints

ConcepTest PowerPoints ConcepTest PowerPoints Chapter 4 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

AP Physics 1 Momentum and Impulse Practice Test Name

AP Physics 1 Momentum and Impulse Practice Test Name AP Physics 1 Momentum and Impulse Practice Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A rubber ball and a lump of clay have equal

More information

4. As you increase your push, will friction on the crate increase also? Ans. Yes it will.

4. As you increase your push, will friction on the crate increase also? Ans. Yes it will. Ch. 4 Newton s Second Law of Motion p.65 Review Questions 3. How great is the force of friction compared with your push on a crate that doesn t move on a level floor? Ans. They are equal in magnitude and

More information

SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION.

SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION. MOTION & FORCES SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION. A. CALCULATE VELOCITY AND ACCELERATION. B. APPLY NEWTON S THREE LAWS TO EVERYDAY SITUATIONS BY EXPLAINING THE

More information

Forces and Motion Chapter Problems

Forces and Motion Chapter Problems Forces and Motion Chapter Problems Motion & Speed 1. Define motion. 2. When you look at the ground you seem to be at rest. Using the term relative motion explain why someone in space would see you moving

More information

Momentum C HAPTER. Chapter Outline.

Momentum C HAPTER. Chapter Outline. www.ck12.org C HAPTER 7 Momentum Chapter Outline 7.1 M OMENTUM AND I MPULSE 7.2 C ONSERVATION OF M OMENTUM IN O NE D IMENSION 7.3 R EFERENCES This chapter is about momentum and impulse. There are an amazing

More information

Make sure you know the three laws inside and out! You must know the vocabulary too!

Make sure you know the three laws inside and out! You must know the vocabulary too! Newton's Laws Study Guide Test March 9 th The best plan is to study every night for 15 to 20 minutes. Make sure you know the three laws inside and out! You must know the vocabulary too! Newton s First

More information

Amusement Park Forces

Amusement Park Forces Amusement Park Forces What is a Force? FORCE = Any push or pull which causes something to move or change its speed or direction What is a Force? Forces can be BALANCED or UNBALANCED Balanced forces are

More information

The Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron.

The Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron. Lecture 3 The Laws of Motion OUTLINE 5.1 The Concept of Force 5.2 Newton s First Law and Inertial Frames 5.3 Mass 5.4 Newton s Second Law 5.5 The Gravitational Force and Weight 5.6 Newton s Third Law 5.8

More information

Ch Forces & Motion. Forces can: 1. Cause a resting object to move 2. Accelerate a moving object (by changing speed or direction)

Ch Forces & Motion. Forces can: 1. Cause a resting object to move 2. Accelerate a moving object (by changing speed or direction) Ch. 12 - Forces & Motion Force --> a push or a pull that acts on an object Forces can: 1. Cause a resting object to move 2. Accelerate a moving object (by changing speed or direction) Force is measured

More information

for every action there is an equal and opposite reaction

for every action there is an equal and opposite reaction for every action there is an equal and opposite reaction Name Period Date Newton s Three Laws of Motion Study Guide 1. Gina is driving her car down the street. She has a teddy bear sitting on the back

More information

CHAPTER 7 NEWTON'S THIRD LAW OF MOTION MOMENTUM & CONSERVATION OF MOMENTUM ACTIVITY LESSON DESCRIPTION POINTS

CHAPTER 7 NEWTON'S THIRD LAW OF MOTION MOMENTUM & CONSERVATION OF MOMENTUM ACTIVITY LESSON DESCRIPTION POINTS 1 Name Period CHAPTER 7 NEWTON'S THIRD LAW OF MOTION MOMENTUM & CONSERVATION OF MOMENTUM ACTIVITY LESSON DESCRIPTION POINTS 1. NT OVERHEAD NOTES WITH WORKSHEET GUIDE /30 2. WS MOMENTUM WORKSHEET /17 3.

More information