Generalized Least-Squares Regressions III: Further Theory and Classication

Size: px
Start display at page:

Download "Generalized Least-Squares Regressions III: Further Theory and Classication"

Transcription

1 Generalized Least-Squares Regressions III: Further Theor Classication NATANIEL GREENE Department of Mathematics Computer Science Kingsborough Communit College, CUNY Oriental Boulevard, Brookln, NY UNITED STATES Abstract: This paper continues the work of this series with two results. The rst is an eponential equivalence theorem which states that ever generalized least-squares regression line can be generated b an equivalent eponential regression. It follows that ever generalized least-squares line has an effective normalized eponential parameter between which classies the line on the spectrum between ordinar least-squares the etremal line for a given set of data. The second result is a fundamental formula for the generalized least-squares slope: b = ( + )( = ) where is a measure of scatter is an increasing function of ranging from to. According to the formula it is the nature of generalized least-squares regression to incorporate the scatter of the data into the slope. The regression methods differ in how much the scatter should be weighted. The parameter measures this varies from one regression method to another. Ke Words: Least-squares, generalized least-squares, smmetric least-squares, weighted ordinar least-squares, orthogonal regression, geometric mean regression. Overview In the rst two papers of this series [, ], the known cases of smmetric least-squares regression, as well as a variet of least-squares regression methods which ma not have been known or full eplicated were derived b this author. The derivation of each method was made efcient through the use of Ehrenberg's formula for the ordinar least-squares error [] through the etraction of a weight function g(b) which characterizes the regression. For ever case of generalized least-squares, the error between the line the data was shown to be a product of the weight function g(b) Ehrenberg's error formula. The re-derivation of orthogonal regression was notable in showing that orthogonal regression minimizes the average harmonic mean of the square deviations, allowing it to also be categorized alternativel as harmonic mean regression. This work was then generalized into a theor for deriving, analzing, classifing all smmetric weighted least-squares regression methods. All smmetric least-squares regressions were categorized b a generating function (; ) that is positive, even, homogenous of degree two in, a weight function g(b) = (; =b), an indicative function G(b) = g (b)=g(b) g (b)=g (b). All weighted ordinar least-squares regressions, of which smmetric regressions are a part, were categorized b grouping them into classes with the same general indicative function G(b) the same general weight function g(b) = =(c + k R R ep( G(b)db)db). This paper continues the development of this theor. It is shown here that ever generalized leastsquares regression line can be generated b an equivalent eponential regression. All generalized leastsquares regression lines fan out from the mean point are bounded between the OLS j line the etremal eponential line. The normalized parameter in the weight function g (b) = ep ( p jbj), is then used to numericall classif the regression lines for a given set of data on the spectrum between the ordinar least-squares line the etremal line. A fundamental formula for the generalized leastsquares slope is then derived based on. It is clear from the formula that ever generalized least-squares method incorporates the scatter of the data into the slope. The degree to which the do so is measured b a parameter that is a function of also classies the lines on the spectrum between the ordinar leastsquares line the etremal line. ISBN:

2 The Equivalence of Generalized Regression Eponential Regression A variet of smmetric weighted least-squares regression methods were derived the various regression lines were observed empiricall to fan out between the OLS j line the OLS j line. Eponential regressions were also dened with weight function given b g (b) = ep ( p jbj) : Eponential regression lines fan out between the OLS j line the etremal line = a + b where a = b b = + sgn p. Eponential regressions were treated as just another interesting case of weighted ordinar least-squares regressions. Here their importance is made clear in that eponential regressions subsume all possible generalized leastsquares. Coefcient of Scatter Recall that measures the scatter of the data cloud awa from the ordinar least-squares regression line. It follows that the square root of this is also a measure of scatter. It is useful here to have a notation for this quantit for its sign to agree with. Denition Dene = sgn p () to be the coefcient of scatter satisfing + = : When the correlation coefcient is parametrized as cos then is parameterized as sgn sin. The notation makes the epressions in the formulas developed earlier simpler more more intuitive. In notation the slope of the etremal line can be rewritten as b = ( + ).. The Eponential Parameter Classies Non-eponential Regressions An eplicit formula for the eponential regression slope b was alread given [] is quoted in the net theorem. Theorem (Eponential Slope Formula) Let b be the slope of an eponentiall weighted least-squares regression with parameter p. Then s b = + sgn where p p p = = jj : p A () The eponential regression lines fan out from the mean point ; var continuousl from the ordinar least-squares j line with p = to the etremal line with p = p : The negative sign in front of the radical was chosen in order that the Hessian determinant be positive. In the second part of the series [] the Second Discrepanc Formula was derived. It is re-written here in parallel form in the net theorem. Theorem (Second Discrepanc Formula) The slope of a generalized least-squares regression line is given b b = g g (b) s g (b) A : g (b) () The similarit between the two formulas is striking. The two formulas become the same when one sets g (b) = p sgn b () g (b) where again sgn b = sgn. Denote the weight function satisfing this equation b g (b) = ep ( p jbj). It is now clear that ever least-squares regression line with arbitrar weight function g (b) is the solution to a corresponding eponential regression problem with weight function g (b) = ep ( p jbj) parameter p. Since p varies from problem to problem it is useful to have a normalized eponential regression parameter satisfing p = p where. Denition Dene = p p () to be the normalized eponential parameter write g (b) = ep ( p jbj) : (6) As varies between the weight function g (b) = ep ( p jbj) generates all the possible regression The net theorem gives the formula for the parameter p the normalized parameter once the slope is known. Theorem (Eponential Equivalence Theorem) Let b be the slope of a generalized least-squares regression line with associated weight function g (b). ISBN:

3 Then this line can be generated from an equivalent eponentiall weighted least-squares regression with weight function g (b) = ep ( p jbj) = ep ( p jbj) effective parameters given b b p = b + (7) = p : (8) Proof. Solve for p in terms of b in the eponential slope formula. Once a generalized regression line has been computed, one can alwas go back compute the effective parameters p or corresponding to the equivalent eponential regression line. Ever generalized regression line can now be assigned an effective value between. The net formula reveals the simple form which all generalized least-squares regression lines have. Theorem 6 (General Slope Intercept Formulas) Let b be the slope of a generalized least-squares regression line with effective normalized eponential parameter, then b = ( + ) (9) where are related b the equations = + p () The -intercept is = + : () a = b : () Proof. Begin with the eponential slope formula, substitute p = =( = ) simplif. This fundamental formula makes clear that ever generalized least-squares regression method seeks to incorporate the scatter of the data into the slope. The regression methods differ in how much the scatter should be weighted. The scatter parameter measures this varies from one regression method to another. Corollar 7 (Third Discrepanc Formula) generalized least-squares regression b For an b OLS = : () In words: the discrepanc between the generalized least-squares slope the ordinar least-squares slope is given b a weighted scatter term. Equivalentl, the generalized least-squares slope is the sum of the ordinar least-squares slope plus a weighted scatter term The functions = () = () are both increasing over [; ]. When = then = the line is the OLS j line. When = then = the line is the etremal line. The graph of as a function of is displaed, allowing one to visuall estimate the normalized eponential parameter corresponding to a particular value vice versa. It is clear from the graph that is alwas less than or equal to with equalit onl at the endpoints. λ Plot of λ as a function of γ 6 8 γ In the net table, quarter values the corresponding eact values for are calculated here as a reference. These reference values are used for comparison purposes in the numerical eamples below. γ λ In those cases where an eplicit formula for b was derived one can substitute write specic formulas for pertaining to that regression. This is done now for geometric mean regression OLS j regression since their parameters are compact epressions in. OLS GMR OLS ( ρ ) Etremal γ κ κρ λ κ κ + ρ ρ ISBN:

4 In all cases, including those cases where the slope was a solution to a cubic or higher-degree polnomial equation, the effective eponential parameter can be found numericall once the slope is known. This is done in the eamples in the net section. Numerical Eamples This section revisits the eamples eplored in the previous work [] taking into account the eponential equivalence theorem. In addition to placing smmetric, hbrid smmetric eponential regressions on the same tables, the corresponding numerical values for, are now computed for each regression line. Eample Si data values are given: (; 6), (; ), (; ), (; ), (; ), (; ). The reader can verif that = :97, = :9, = :, = :, = :778, = :986. The effective eponential parameter the corresponding scatter parameter are computed along with the equation of each line. The reader can verif in each case that b = ( + ) a = b. The graph shows the generalized regression lines together with the etremal line thereb displaing the region containing all possible generalized regression 6 Generalized Regressions Compared graph. Regression Tpe Etremal Eponentia l Eponentia l Eponentia l OLS Eponentia l Eponentia l Pthagorean Least Perimeter Squared GMR Squared Harmonic Orthogonal Eponentia l Hbrid Pthagorean Hbrid Least Perimeter Hbrid Harmonic Hbrid Orthogonal OLS = a + b Eponentia l Scatter Parameter γ Parameter λ = = = = = = = = = = = = = = = = = = In the last column, is again the fraction of the scatter that regression method contributes to the slope. It is seen, for eample, that OLS j contributes approimatel % of the scatter to the slope whereas GMR contributes % orthogonal regression contributes 9%. In this eample all the non-eponential methods contribute less than % of the scatter to the slope. Eample Ten data values are given: (; :), (; ), (:; :), (; ), (; ), (6:; ), (6:; ), (7; ), (9; ), (; :). The reader can verif that = :868, = :6, = :, = :, = :77, = :698. The effective eponential parameter the corresponding scatter parameter are again computed along with the equation of each line. The reader can verif in each case that b = ( + ) a = b. Again, in the graph, the generalized regression lines are plotted together with the etremal line thereb displaing the region containing all possible generalized regression.... Additional eponential regressions with = ; are included in the table. The eponential regressions with = 8 7 ; corresponding to = ; respectivel are also included here for comparison purposes. The are not shown in the ISBN:

5 6 - Generalized Regressions Compared ponential equivalence theorem, which states that an generalized least-squares regression line with arbitrar weight function g (b) can be generated b an equivalent eponentiall weighted least-squares problem. It follows that ever generalized least-squares line can be assigned an effective eponential parameter which classies it on the spectrum between the ordinar least-squares line ( = ) the etremal line ( = ) : The second result is a fundamental formula for the generalized least-squares slope: b = ( + ) + p where =. The formula eplains what all generalized least-squares methods do how the differ from one another. Ever generalized least-squares method incorporates the scatter of the data into the slope. The degree to which it does this is measured b the parameter, again classifing ever generalized regression line on the spectrum between the ordinar least-squares line the etremal line. Additional eponential regressions are included in the table for comparison purposes. Regression Tpe Etremal Eponentia l OLS Eponentia l Pthagorean Eponentia l Least Perimeter Squared GMR Eponentia l Eponentia l Hbrid Pthagorean Squared Harmonic Hbrid Least Perimeter Eponentia l Orthogonal Hbrid Harmonic Hbrid Orthogonal OLS = a + b Eponentia l Scatter Parameter γ Parameter λ = = = = = = = = = = = = = = = = = =. + 6 Here OLS j contributes approimatel 68% of the scatter to the slope whereas GMR contributes % orthogonal regression contributes %. In this eample all the non-eponential methods contribute less than 7% of the scatter to the slope. Summar Two fundamental results on generalized least-squares regression have been presented. The rst is the e- References [] S. C. Ehrenberg, Deriving the Least-Squares Regression Equation, The American Statistician, Vol. 7, No. (Aug. 98), p.. [] N. Greene, Generalized Least-Squares Regressions I: Efcient Derivations, in: Recent Advances in Intelligent Control, Modelling Computational Science, Proceedings of the st International Conference on Computational Science Engineering (CSE'), Valencia, Spain, August 6-8,, pp. -8. [] N. Greene, Generalized Least-Squares Regressions II: Theor Classication, in: Recent Advances in Intelligent Control, Modelling Computational Science, Proceedings of the st International Conference on Computational Science Engineering (CSE'), Valencia, Spain, August 6-8,, pp [] R. Taagepera, Making Social Sciences More Scientic: The Need for Predictive Models, Oford Universit Press, New York, 8. In Part II of this series [], page 9, Denition, Part (iv) should read as follows: Non-decreasing in for : For differentiable this means when On page 6, the second line of the proof of Theorem should read d ln g (b). In the chart on page 6, db Row should read g (b) = p + =b. ISBN:

Generalized Least-Squares Regressions II: Theory and Classication

Generalized Least-Squares Regressions II: Theory and Classication Recent Advances in Intelligent Control, Modelling Comutational Science Generalized Least-Squares Regressions II Theor Classication NATANIEL GREENE Deartment of Mathematics Comuter Science Kingsorough Communit

More information

Section 1.2: A Catalog of Functions

Section 1.2: A Catalog of Functions Section 1.: A Catalog of Functions As we discussed in the last section, in the sciences, we often tr to find an equation which models some given phenomenon in the real world - for eample, temperature as

More information

Generalized Least-Powers Regressions I: Bivariate Regressions

Generalized Least-Powers Regressions I: Bivariate Regressions ITERATIOAL JOURAL OF MATHEMATICAL MODELS AD METHODS I APPLIED SCIECES Volume, Generalized Least-Powers Reressions I: Bivariate Reressions ataniel Greene Abstract The bivariate theory of eneralized least-squares

More information

Correlation. Bret Hanlon and Bret Larget. Department of Statistics University of Wisconsin Madison. December 6, Correlation 1 / 25

Correlation. Bret Hanlon and Bret Larget. Department of Statistics University of Wisconsin Madison. December 6, Correlation 1 / 25 Correlation Bret Hanlon and Bret Larget Department of Statistics Universit of Wisconsin Madison December 6, 2 Correlation / 25 The Big Picture We have just completed a length series of lectures on ANOVA

More information

Modeling with Exponential and Logarithmic Functions 6.7. Essential Question How can you recognize polynomial, exponential, and logarithmic models?

Modeling with Exponential and Logarithmic Functions 6.7. Essential Question How can you recognize polynomial, exponential, and logarithmic models? .7 Modeling with Eponential and Logarithmic Functions Essential Question How can ou recognize polnomial, eponential, and logarithmic models? Recognizing Different Tpes of Models Work with a partner. Match

More information

H.Algebra 2 Summer Review Packet

H.Algebra 2 Summer Review Packet H.Algebra Summer Review Packet 1 Correlation of Algebra Summer Packet with Algebra 1 Objectives A. Simplifing Polnomial Epressions Objectives: The student will be able to: Use the commutative, associative,

More information

Lecture 5. Equations of Lines and Planes. Dan Nichols MATH 233, Spring 2018 University of Massachusetts.

Lecture 5. Equations of Lines and Planes. Dan Nichols MATH 233, Spring 2018 University of Massachusetts. Lecture 5 Equations of Lines and Planes Dan Nichols nichols@math.umass.edu MATH 233, Spring 2018 Universit of Massachusetts Februar 6, 2018 (2) Upcoming midterm eam First midterm: Wednesda Feb. 21, 7:00-9:00

More information

KEY IDEAS. Chapter 1 Function Transformations. 1.1 Horizontal and Vertical Translations Pre-Calculus 12 Student Workbook MHR 1

KEY IDEAS. Chapter 1 Function Transformations. 1.1 Horizontal and Vertical Translations Pre-Calculus 12 Student Workbook MHR 1 Chapter Function Transformations. Horizontal and Vertical Translations A translation can move the graph of a function up or down (vertical translation) and right or left (horizontal translation). A translation

More information

Chapter 1 Functions and Models

Chapter 1 Functions and Models Chapter 1 Functions and Models 1.2 Mathematical Models: A catalog of Essential Functions A mathematical model is a mathematical description of a real world situations such as the size of a population,

More information

16.5. Maclaurin and Taylor Series. Introduction. Prerequisites. Learning Outcomes

16.5. Maclaurin and Taylor Series. Introduction. Prerequisites. Learning Outcomes Maclaurin and Talor Series 6.5 Introduction In this Section we eamine how functions ma be epressed in terms of power series. This is an etremel useful wa of epressing a function since (as we shall see)

More information

CHAPTER 2: Partial Derivatives. 2.2 Increments and Differential

CHAPTER 2: Partial Derivatives. 2.2 Increments and Differential CHAPTER : Partial Derivatives.1 Definition of a Partial Derivative. Increments and Differential.3 Chain Rules.4 Local Etrema.5 Absolute Etrema 1 Chapter : Partial Derivatives.1 Definition of a Partial

More information

Systems of Linear Equations: Solving by Graphing

Systems of Linear Equations: Solving by Graphing 8.1 Sstems of Linear Equations: Solving b Graphing 8.1 OBJECTIVE 1. Find the solution(s) for a set of linear equations b graphing NOTE There is no other ordered pair that satisfies both equations. From

More information

10.2 The Unit Circle: Cosine and Sine

10.2 The Unit Circle: Cosine and Sine 0. The Unit Circle: Cosine and Sine 77 0. The Unit Circle: Cosine and Sine In Section 0.., we introduced circular motion and derived a formula which describes the linear velocit of an object moving on

More information

Algebra 1 Skills Needed for Success in Math

Algebra 1 Skills Needed for Success in Math Algebra 1 Skills Needed for Success in Math A. Simplifing Polnomial Epressions Objectives: The student will be able to: Appl the appropriate arithmetic operations and algebraic properties needed to simplif

More information

Math 3201 UNIT 5: Polynomial Functions NOTES. Characteristics of Graphs and Equations of Polynomials Functions

Math 3201 UNIT 5: Polynomial Functions NOTES. Characteristics of Graphs and Equations of Polynomials Functions 1 Math 301 UNIT 5: Polnomial Functions NOTES Section 5.1 and 5.: Characteristics of Graphs and Equations of Polnomials Functions What is a polnomial function? Polnomial Function: - A function that contains

More information

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II LESSON #4 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART COMMON CORE ALGEBRA II You will recall from unit 1 that in order to find the inverse of a function, ou must switch and and solve for. Also,

More information

On Range and Reflecting Functions About the Line y = mx

On Range and Reflecting Functions About the Line y = mx On Range and Reflecting Functions About the Line = m Scott J. Beslin Brian K. Heck Jerem J. Becnel Dept.of Mathematics and Dept. of Mathematics and Dept. of Mathematics and Computer Science Computer Science

More information

Engineering Mathematics I

Engineering Mathematics I Engineering Mathematics I_ 017 Engineering Mathematics I 1. Introduction to Differential Equations Dr. Rami Zakaria Terminolog Differential Equation Ordinar Differential Equations Partial Differential

More information

The American School of Marrakesh. Algebra 2 Algebra 2 Summer Preparation Packet

The American School of Marrakesh. Algebra 2 Algebra 2 Summer Preparation Packet The American School of Marrakesh Algebra Algebra Summer Preparation Packet Summer 016 Algebra Summer Preparation Packet This summer packet contains eciting math problems designed to ensure our readiness

More information

NEXT-GENERATION Advanced Algebra and Functions

NEXT-GENERATION Advanced Algebra and Functions NEXT-GENERATIN Advanced Algebra and Functions Sample Questions The College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunit.

More information

Review Topics for MATH 1400 Elements of Calculus Table of Contents

Review Topics for MATH 1400 Elements of Calculus Table of Contents Math 1400 - Mano Table of Contents - Review - page 1 of 2 Review Topics for MATH 1400 Elements of Calculus Table of Contents MATH 1400 Elements of Calculus is one of the Marquette Core Courses for Mathematical

More information

1.5. Analyzing Graphs of Functions. The Graph of a Function. What you should learn. Why you should learn it. 54 Chapter 1 Functions and Their Graphs

1.5. Analyzing Graphs of Functions. The Graph of a Function. What you should learn. Why you should learn it. 54 Chapter 1 Functions and Their Graphs 0_005.qd /7/05 8: AM Page 5 5 Chapter Functions and Their Graphs.5 Analzing Graphs of Functions What ou should learn Use the Vertical Line Test for functions. Find the zeros of functions. Determine intervals

More information

Algebra 1 Skills Needed to be Successful in Algebra 2

Algebra 1 Skills Needed to be Successful in Algebra 2 Algebra 1 Skills Needed to be Successful in Algebra A. Simplifing Polnomial Epressions Objectives: The student will be able to: Appl the appropriate arithmetic operations and algebraic properties needed

More information

6.4 graphs OF logarithmic FUnCTIOnS

6.4 graphs OF logarithmic FUnCTIOnS SECTION 6. graphs of logarithmic functions 9 9 learning ObjeCTIveS In this section, ou will: Identif the domain of a logarithmic function. Graph logarithmic functions. 6. graphs OF logarithmic FUnCTIOnS

More information

LESSON #48 - INTEGER EXPONENTS COMMON CORE ALGEBRA II

LESSON #48 - INTEGER EXPONENTS COMMON CORE ALGEBRA II LESSON #8 - INTEGER EXPONENTS COMMON CORE ALGEBRA II We just finished our review of linear functions. Linear functions are those that grow b equal differences for equal intervals. In this unit we will

More information

Math 123 Summary of Important Algebra & Trigonometry Concepts Chapter 1 & Appendix D, Stewart, Calculus Early Transcendentals

Math 123 Summary of Important Algebra & Trigonometry Concepts Chapter 1 & Appendix D, Stewart, Calculus Early Transcendentals Math Summar of Important Algebra & Trigonometr Concepts Chapter & Appendi D, Stewart, Calculus Earl Transcendentals Function a rule that assigns to each element in a set D eactl one element, called f (

More information

1.2 Functions and Their Properties PreCalculus

1.2 Functions and Their Properties PreCalculus 1. Functions and Their Properties PreCalculus 1. FUNCTIONS AND THEIR PROPERTIES Learning Targets for 1. 1. Determine whether a set of numbers or a graph is a function. Find the domain of a function given

More information

Section 4.1 Increasing and Decreasing Functions

Section 4.1 Increasing and Decreasing Functions Section.1 Increasing and Decreasing Functions The graph of the quadratic function f 1 is a parabola. If we imagine a particle moving along this parabola from left to right, we can see that, while the -coordinates

More information

Basics Concepts and Ideas First Order Differential Equations. Dr. Omar R. Daoud

Basics Concepts and Ideas First Order Differential Equations. Dr. Omar R. Daoud Basics Concepts and Ideas First Order Differential Equations Dr. Omar R. Daoud Differential Equations Man Phsical laws and relations appear mathematicall in the form of Differentia Equations The are one

More information

4.3 Mean-Value Theorem and Monotonicity

4.3 Mean-Value Theorem and Monotonicity .3 Mean-Value Theorem and Monotonicit 1. Mean Value Theorem Theorem: Suppose that f is continuous on the interval a, b and differentiable on the interval a, b. Then there eists a number c in a, b such

More information

LESSON #28 - POWER FUNCTIONS COMMON CORE ALGEBRA II

LESSON #28 - POWER FUNCTIONS COMMON CORE ALGEBRA II 1 LESSON #8 - POWER FUNCTIONS COMMON CORE ALGEBRA II Before we start to analze polnomials of degree higher than two (quadratics), we first will look at ver simple functions known as power functions. The

More information

BRONX COMMUNITY COLLEGE of the City University of New York DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE. MTH 05 Review Sheet

BRONX COMMUNITY COLLEGE of the City University of New York DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE. MTH 05 Review Sheet BRONX COMMUNITY COLLEGE of the Cit Universit of New York DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE MTH 05 Review Sheet Go to http://www.cun.edu/testing for more information on the CUNY Elementar Algebra

More information

Learning Goals. College of Charleston Department of Mathematics Math 101: College Algebra Final Exam Review Problems 1

Learning Goals. College of Charleston Department of Mathematics Math 101: College Algebra Final Exam Review Problems 1 College of Charleston Department of Mathematics Math 0: College Algebra Final Eam Review Problems Learning Goals (AL-) Arithmetic of Real and Comple Numbers: I can classif numbers as natural, integer,

More information

ALGEBRA 1 CP FINAL EXAM REVIEW

ALGEBRA 1 CP FINAL EXAM REVIEW ALGEBRA CP FINAL EXAM REVIEW Alg CP Sem Eam Review 0 () Page of 8 Chapter 8: Eponents. Write in rational eponent notation. 7. Write in radical notation. Simplif the epression.. 00.. 6 6. 7 7. 6 6 8. 8

More information

INTRODUCTION GOOD LUCK!

INTRODUCTION GOOD LUCK! INTRODUCTION The Summer Skills Assignment for has been developed to provide all learners of our St. Mar s Count Public Schools communit an opportunit to shore up their prerequisite mathematical skills

More information

Mathematics 309 Conic sections and their applicationsn. Chapter 2. Quadric figures. ai,j x i x j + b i x i + c =0. 1. Coordinate changes

Mathematics 309 Conic sections and their applicationsn. Chapter 2. Quadric figures. ai,j x i x j + b i x i + c =0. 1. Coordinate changes Mathematics 309 Conic sections and their applicationsn Chapter 2. Quadric figures In this chapter want to outline quickl how to decide what figure associated in 2D and 3D to quadratic equations look like.

More information

A. Simplifying Polynomial Expressions

A. Simplifying Polynomial Expressions A. Simplifing Polnomial Epressions I. Combining Like Terms - You can add or subtract terms that are considered "like", or terms that have the same variable(s) with the same eponent(s). E. 1: 5-7 + 10 +

More information

Chapter 11. Correlation and Regression

Chapter 11. Correlation and Regression Chapter 11 Correlation and Regression Correlation A relationship between two variables. The data can be represented b ordered pairs (, ) is the independent (or eplanator) variable is the dependent (or

More information

Analytic Geometry in Three Dimensions

Analytic Geometry in Three Dimensions Analtic Geometr in Three Dimensions. The Three-Dimensional Coordinate Sstem. Vectors in Space. The Cross Product of Two Vectors. Lines and Planes in Space The three-dimensional coordinate sstem is used

More information

Introduction to Differential Equations

Introduction to Differential Equations Math0 Lecture # Introduction to Differential Equations Basic definitions Definition : (What is a DE?) A differential equation (DE) is an equation that involves some of the derivatives (or differentials)

More information

Review: critical point or equivalently f a,

Review: critical point or equivalently f a, Review: a b f f a b f a b critical point or equivalentl f a, b A point, is called a of if,, 0 A local ma or local min must be a critical point (but not conversel) 0 D iscriminant (or Hessian) f f D f f

More information

( ) ( ) ( )( ) Algebra II Semester 2 Practice Exam A DRAFT. = x. Which expression is equivalent to. 1. Find the solution set of. f g x? B.

( ) ( ) ( )( ) Algebra II Semester 2 Practice Exam A DRAFT. = x. Which expression is equivalent to. 1. Find the solution set of. f g x? B. Algebra II Semester Practice Eam A. Find the solution set of 5 5 +, 9 9 +, 5 5 +, =.. Let f ( ) = and g( ) =. Which epression is equivalent to f g? ( ) ( ) + ( ) 9 9 +, 5. If h( ) = 0 and j( ) h( ) + j

More information

Section 1.5 Formal definitions of limits

Section 1.5 Formal definitions of limits Section.5 Formal definitions of limits (3/908) Overview: The definitions of the various tpes of limits in previous sections involve phrases such as arbitraril close, sufficientl close, arbitraril large,

More information

Algebra II Notes Unit Six: Polynomials Syllabus Objectives: 6.2 The student will simplify polynomial expressions.

Algebra II Notes Unit Six: Polynomials Syllabus Objectives: 6.2 The student will simplify polynomial expressions. Algebra II Notes Unit Si: Polnomials Sllabus Objectives: 6. The student will simplif polnomial epressions. Review: Properties of Eponents (Allow students to come up with these on their own.) Let a and

More information

Quick Review 4.1 (For help, go to Sections 1.2, 2.1, 3.5, and 3.6.)

Quick Review 4.1 (For help, go to Sections 1.2, 2.1, 3.5, and 3.6.) Section 4. Etreme Values of Functions 93 EXPLORATION Finding Etreme Values Let f,.. Determine graphicall the etreme values of f and where the occur. Find f at these values of.. Graph f and f or NDER f,,

More information

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE Functions & Graphs Contents Functions and Relations... 1 Interval Notation... 3 Graphs: Linear Functions... 5 Lines and Gradients... 7 Graphs: Quadratic

More information

Introduction to Differential Equations. National Chiao Tung University Chun-Jen Tsai 9/14/2011

Introduction to Differential Equations. National Chiao Tung University Chun-Jen Tsai 9/14/2011 Introduction to Differential Equations National Chiao Tung Universit Chun-Jen Tsai 9/14/011 Differential Equations Definition: An equation containing the derivatives of one or more dependent variables,

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Final Eam Review MAC 1 Spring 0 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve and check the linear equation. 1) (- + ) - = -( - 7) {-

More information

5A Exponential functions

5A Exponential functions Chapter 5 5 Eponential and logarithmic functions bjectives To graph eponential and logarithmic functions and transformations of these functions. To introduce Euler s number e. To revise the inde and logarithm

More information

QUADRATIC FUNCTION REVIEW

QUADRATIC FUNCTION REVIEW Name: Date: QUADRATIC FUNCTION REVIEW Linear and eponential functions are used throughout mathematics and science due to their simplicit and applicabilit. Quadratic functions comprise another ver important

More information

UNCORRECTED SAMPLE PAGES. 3Quadratics. Chapter 3. Objectives

UNCORRECTED SAMPLE PAGES. 3Quadratics. Chapter 3. Objectives Chapter 3 3Quadratics Objectives To recognise and sketch the graphs of quadratic polnomials. To find the ke features of the graph of a quadratic polnomial: ais intercepts, turning point and ais of smmetr.

More information

Coached Instruction Supplement

Coached Instruction Supplement Practice Coach PLUS Coached Instruction Supplement Mathematics 8 Practice Coach PLUS, Coached Instruction Supplement, Mathematics, Grade 8 679NASP Triumph Learning Triumph Learning, LLC. All rights reserved.

More information

General Vector Spaces

General Vector Spaces CHAPTER 4 General Vector Spaces CHAPTER CONTENTS 4. Real Vector Spaces 83 4. Subspaces 9 4.3 Linear Independence 4.4 Coordinates and Basis 4.5 Dimension 4.6 Change of Basis 9 4.7 Row Space, Column Space,

More information

(2.5) 1. Solve the following compound inequality and graph the solution set.

(2.5) 1. Solve the following compound inequality and graph the solution set. Intermediate Algebra Practice Final Math 0 (7 th ed.) (Ch. -) (.5). Solve the following compound inequalit and graph the solution set. 0 and and > or or (.7). Solve the following absolute value inequalities.

More information

Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables.

Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables. Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables. Partial derivatives and directional derivatives. Directional derivative of functions of

More information

15.2 Graphing Logarithmic

15.2 Graphing Logarithmic _ - - - - - - Locker LESSON 5. Graphing Logarithmic Functions Teas Math Standards The student is epected to: A.5.A Determine the effects on the ke attributes on the graphs of f () = b and f () = log b

More information

Algebra 1B Assignments Exponential Functions (All graphs must be drawn on graph paper!)

Algebra 1B Assignments Exponential Functions (All graphs must be drawn on graph paper!) Name Score Algebra 1B Assignments Eponential Functions (All graphs must be drawn on graph paper!) 8-6 Pages 463-465: #1-17 odd, 35, 37-40, 43, 45-47, 50, 51, 54, 55-61 odd 8-7 Pages 470-473: #1-11 odd,

More information

Chapter 8 Notes SN AA U2C8

Chapter 8 Notes SN AA U2C8 Chapter 8 Notes SN AA U2C8 Name Period Section 8-: Eploring Eponential Models Section 8-2: Properties of Eponential Functions In Chapter 7, we used properties of eponents to determine roots and some of

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Final Eam Review MAC 1 Fall 011 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve and check the linear equation. 1) (- + ) - = -( - 7) A)

More information

( 3x. Chapter Review. Review Key Vocabulary. Review Examples and Exercises 6.1 Properties of Square Roots (pp )

( 3x. Chapter Review. Review Key Vocabulary. Review Examples and Exercises 6.1 Properties of Square Roots (pp ) 6 Chapter Review Review Ke Vocabular closed, p. 266 nth root, p. 278 eponential function, p. 286 eponential growth, p. 296 eponential growth function, p. 296 compound interest, p. 297 Vocabular Help eponential

More information

Review of Prerequisite Skills, p. 350 C( 2, 0, 1) B( 3, 2, 0) y A(0, 1, 0) D(0, 2, 3) j! k! 2k! Section 7.1, pp

Review of Prerequisite Skills, p. 350 C( 2, 0, 1) B( 3, 2, 0) y A(0, 1, 0) D(0, 2, 3) j! k! 2k! Section 7.1, pp . 5. a. a a b a a b. Case If and are collinear, then b is also collinear with both and. But is perpendicular to and c c c b 9 b c, so a a b b is perpendicular to. Case If b and c b c are not collinear,

More information

Roberto s Notes on Integral Calculus Chapter 3: Basics of differential equations Section 3. Separable ODE s

Roberto s Notes on Integral Calculus Chapter 3: Basics of differential equations Section 3. Separable ODE s Roberto s Notes on Integral Calculus Chapter 3: Basics of differential equations Section 3 Separable ODE s What ou need to know alread: What an ODE is and how to solve an eponential ODE. What ou can learn

More information

EXERCISES FOR SECTION 3.1

EXERCISES FOR SECTION 3.1 174 CHAPTER 3 LINEAR SYSTEMS EXERCISES FOR SECTION 31 1 Since a > 0, Paul s making a pro t > 0 has a bene cial effect on Paul s pro ts in the future because the a term makes a positive contribution to

More information

Table of Contents. Module 1

Table of Contents. Module 1 Table of Contents Module 1 11 Order of Operations 16 Signed Numbers 1 Factorization of Integers 17 Further Signed Numbers 13 Fractions 18 Power Laws 14 Fractions and Decimals 19 Introduction to Algebra

More information

4 The Cartesian Coordinate System- Pictures of Equations

4 The Cartesian Coordinate System- Pictures of Equations The Cartesian Coordinate Sstem- Pictures of Equations Concepts: The Cartesian Coordinate Sstem Graphs of Equations in Two Variables -intercepts and -intercepts Distance in Two Dimensions and the Pthagorean

More information

Analytic Trigonometry

Analytic Trigonometry CHAPTER 5 Analtic Trigonometr 5. Fundamental Identities 5. Proving Trigonometric Identities 5.3 Sum and Difference Identities 5.4 Multiple-Angle Identities 5.5 The Law of Sines 5.6 The Law of Cosines It

More information

METHODS IN Mathematica FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS. Keçiören, Ankara 06010, Turkey.

METHODS IN Mathematica FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS. Keçiören, Ankara 06010, Turkey. Mathematical and Computational Applications, Vol. 16, No. 4, pp. 784-796, 2011. Association for Scientific Research METHODS IN Mathematica FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS Ünal Göktaş 1 and

More information

Answer Explanations. The SAT Subject Tests. Mathematics Level 1 & 2 TO PRACTICE QUESTIONS FROM THE SAT SUBJECT TESTS STUDENT GUIDE

Answer Explanations. The SAT Subject Tests. Mathematics Level 1 & 2 TO PRACTICE QUESTIONS FROM THE SAT SUBJECT TESTS STUDENT GUIDE The SAT Subject Tests Answer Eplanations TO PRACTICE QUESTIONS FROM THE SAT SUBJECT TESTS STUDENT GUIDE Mathematics Level & Visit sat.org/stpractice to get more practice and stud tips for the Subject Test

More information

Fixed Point Theorem and Sequences in One or Two Dimensions

Fixed Point Theorem and Sequences in One or Two Dimensions Fied Point Theorem and Sequences in One or Two Dimensions Dr. Wei-Chi Yang Let us consider a recursive sequence of n+ = n + sin n and the initial value can be an real number. Then we would like to ask

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Polnomial and Rational Functions Figure -mm film, once the standard for capturing photographic images, has been made largel obsolete b digital photograph. (credit film : modification of work b Horia Varlan;

More information

Math Review Packet #5 Algebra II (Part 2) Notes

Math Review Packet #5 Algebra II (Part 2) Notes SCIE 0, Spring 0 Miller Math Review Packet #5 Algebra II (Part ) Notes Quadratic Functions (cont.) So far, we have onl looked at quadratic functions in which the term is squared. A more general form of

More information

Math 214 Spring problem set (a) Consider these two first order equations. (I) dy dx = x + 1 dy

Math 214 Spring problem set (a) Consider these two first order equations. (I) dy dx = x + 1 dy Math 4 Spring 08 problem set. (a) Consider these two first order equations. (I) d d = + d (II) d = Below are four direction fields. Match the differential equations above to their direction fields. Provide

More information

INVESTIGATE the Math

INVESTIGATE the Math . Graphs of Reciprocal Functions YOU WILL NEED graph paper coloured pencils or pens graphing calculator or graphing software f() = GOAL Sketch the graphs of reciprocals of linear and quadratic functions.

More information

Module 3, Section 4 Analytic Geometry II

Module 3, Section 4 Analytic Geometry II Principles of Mathematics 11 Section, Introduction 01 Introduction, Section Analtic Geometr II As the lesson titles show, this section etends what ou have learned about Analtic Geometr to several related

More information

1.3 LIMITS AT INFINITY; END BEHAVIOR OF A FUNCTION

1.3 LIMITS AT INFINITY; END BEHAVIOR OF A FUNCTION . Limits at Infinit; End Behavior of a Function 89. LIMITS AT INFINITY; END BEHAVIOR OF A FUNCTION Up to now we have been concerned with its that describe the behavior of a function f) as approaches some

More information

Glossary. Also available at BigIdeasMath.com: multi-language glossary vocabulary flash cards. An equation that contains an absolute value expression

Glossary. Also available at BigIdeasMath.com: multi-language glossary vocabulary flash cards. An equation that contains an absolute value expression Glossar This student friendl glossar is designed to be a reference for ke vocabular, properties, and mathematical terms. Several of the entries include a short eample to aid our understanding of important

More information

Summer Review For Students Entering Algebra 2

Summer Review For Students Entering Algebra 2 Summer Review For Students Entering Algebra Teachers and administrators at Tuscarora High School activel encourage parents and communit members to engage in children s learning. This Summer Review For

More information

Power Functions. A polynomial expression is an expression of the form a n. x n 2... a 3. ,..., a n. , a 1. A polynomial function has the form f(x) a n

Power Functions. A polynomial expression is an expression of the form a n. x n 2... a 3. ,..., a n. , a 1. A polynomial function has the form f(x) a n 1.1 Power Functions A rock that is tossed into the water of a calm lake creates ripples that move outward in a circular pattern. The area, A, spanned b the ripples can be modelled b the function A(r) πr,

More information

A PARTIAL CHARACTERIZATION OF THE COCIRCUITS OF A SPLITTING MATROID

A PARTIAL CHARACTERIZATION OF THE COCIRCUITS OF A SPLITTING MATROID DEPARTMENT OF MATHEMATICS TECHNICAL REPORT A PARTIAL CHARACTERIZATION OF THE COCIRCUITS OF A SPLITTING MATROID DR. ALLAN D. MILLS MAY 2004 No. 2004-2 TENNESSEE TECHNOLOGICAL UNIVERSITY Cookeville, TN 38505

More information

Coordinate geometry. + bx + c. Vertical asymptote. Sketch graphs of hyperbolas (including asymptotic behaviour) from the general

Coordinate geometry. + bx + c. Vertical asymptote. Sketch graphs of hyperbolas (including asymptotic behaviour) from the general A Sketch graphs of = a m b n c where m = or and n = or B Reciprocal graphs C Graphs of circles and ellipses D Graphs of hperbolas E Partial fractions F Sketch graphs using partial fractions Coordinate

More information

Ordinary Differential Equations

Ordinary Differential Equations 58229_CH0_00_03.indd Page 6/6/6 2:48 PM F-007 /202/JB0027/work/indd & Bartlett Learning LLC, an Ascend Learning Compan.. PART Ordinar Differential Equations. Introduction to Differential Equations 2. First-Order

More information

c) Words: The cost of a taxicab is $2.00 for the first 1/4 of a mile and $1.00 for each additional 1/8 of a mile.

c) Words: The cost of a taxicab is $2.00 for the first 1/4 of a mile and $1.00 for each additional 1/8 of a mile. Functions Definition: A function f, defined from a set A to a set B, is a rule that associates with each element of the set A one, and onl one, element of the set B. Eamples: a) Graphs: b) Tables: 0 50

More information

SECTION 8-7 De Moivre s Theorem. De Moivre s Theorem, n a Natural Number nth-roots of z

SECTION 8-7 De Moivre s Theorem. De Moivre s Theorem, n a Natural Number nth-roots of z 8-7 De Moivre s Theorem 635 B eactl; compute the modulus and argument for part C to two decimal places. 9. (A) 3 i (B) 1 i (C) 5 6i 10. (A) 1 i 3 (B) 3i (C) 7 4i 11. (A) i 3 (B) 3 i (C) 8 5i 12. (A) 3

More information

INTRODUCTION TO DIFFERENTIAL EQUATIONS

INTRODUCTION TO DIFFERENTIAL EQUATIONS INTRODUCTION TO DIFFERENTIAL EQUATIONS. Definitions and Terminolog. Initial-Value Problems.3 Differential Equations as Mathematical Models CHAPTER IN REVIEW The words differential and equations certainl

More information

Differentiation and applications

Differentiation and applications FS O PA G E PR O U N C O R R EC TE D Differentiation and applications. Kick off with CAS. Limits, continuit and differentiabilit. Derivatives of power functions.4 C oordinate geometr applications of differentiation.5

More information

C H A P T E R 1. Functions and Models. PDF Created with deskpdf PDF Writer - Trial ::

C H A P T E R 1. Functions and Models. PDF Created with deskpdf PDF Writer - Trial :: Licensed to: jsamuels@bmcc.cun.edu C H A P T E R A graphical representation of a function here the number of hours of dalight as a function of the time of ear at various latitudes is often the most natural

More information

Review of Essential Skills and Knowledge

Review of Essential Skills and Knowledge Review of Essential Skills and Knowledge R Eponent Laws...50 R Epanding and Simplifing Polnomial Epressions...5 R 3 Factoring Polnomial Epressions...5 R Working with Rational Epressions...55 R 5 Slope

More information

UNIT 6 MODELING GEOMETRY Lesson 1: Deriving Equations Instruction

UNIT 6 MODELING GEOMETRY Lesson 1: Deriving Equations Instruction Prerequisite Skills This lesson requires the use of the following skills: appling the Pthagorean Theorem representing horizontal and vertical distances in a coordinate plane simplifing square roots writing

More information

Math RE - Calculus I Exponential & Logarithmic Functions Page 1 of 9. y = f(x) = 2 x. y = f(x)

Math RE - Calculus I Exponential & Logarithmic Functions Page 1 of 9. y = f(x) = 2 x. y = f(x) Math 20-0-RE - Calculus I Eponential & Logarithmic Functions Page of 9 Eponential Function The general form of the eponential function equation is = f) = a where a is a real number called the base of the

More information

Solving Variable-Coefficient Fourth-Order ODEs with Polynomial Nonlinearity by Symmetric Homotopy Method

Solving Variable-Coefficient Fourth-Order ODEs with Polynomial Nonlinearity by Symmetric Homotopy Method Applied and Computational Mathematics 218; 7(2): 58-7 http://www.sciencepublishinggroup.com/j/acm doi: 1.11648/j.acm.21872.14 ISSN: 2328-565 (Print); ISSN: 2328-5613 (Online) Solving Variable-Coefficient

More information

3.1 Exponential Functions and Their Graphs

3.1 Exponential Functions and Their Graphs .1 Eponential Functions and Their Graphs Sllabus Objective: 9.1 The student will sketch the graph of a eponential, logistic, or logarithmic function. 9. The student will evaluate eponential or logarithmic

More information

8.1 Exponents and Roots

8.1 Exponents and Roots Section 8. Eponents and Roots 75 8. Eponents and Roots Before defining the net famil of functions, the eponential functions, we will need to discuss eponent notation in detail. As we shall see, eponents

More information

In this chapter a student has to learn the Concept of adjoint of a matrix. Inverse of a matrix. Rank of a matrix and methods finding these.

In this chapter a student has to learn the Concept of adjoint of a matrix. Inverse of a matrix. Rank of a matrix and methods finding these. MATRICES UNIT STRUCTURE.0 Objectives. Introduction. Definitions. Illustrative eamples.4 Rank of matri.5 Canonical form or Normal form.6 Normal form PAQ.7 Let Us Sum Up.8 Unit End Eercise.0 OBJECTIVES In

More information

5.6. Differential equations

5.6. Differential equations 5.6. Differential equations The relationship between cause and effect in phsical phenomena can often be formulated using differential equations which describe how a phsical measure () and its derivative

More information

Exponential, Logistic, and Logarithmic Functions

Exponential, Logistic, and Logarithmic Functions CHAPTER 3 Eponential, Logistic, and Logarithmic Functions 3.1 Eponential and Logistic Functions 3.2 Eponential and Logistic Modeling 3.3 Logarithmic Functions and Their Graphs 3.4 Properties of Logarithmic

More information

Chapter 4 Analytic Trigonometry

Chapter 4 Analytic Trigonometry Analtic Trigonometr Chapter Analtic Trigonometr Inverse Trigonometric Functions The trigonometric functions act as an operator on the variable (angle, resulting in an output value Suppose this process

More information

Applications of Derivatives

Applications of Derivatives 58_Ch04_pp86-60.qd /3/06 :35 PM Page 86 Chapter 4 Applications of Derivatives A n automobile s gas mileage is a function of man variables, including road surface, tire tpe, velocit, fuel octane rating,

More information

12.1 Systems of Linear equations: Substitution and Elimination

12.1 Systems of Linear equations: Substitution and Elimination . Sstems of Linear equations: Substitution and Elimination Sstems of two linear equations in two variables A sstem of equations is a collection of two or more equations. A solution of a sstem in two variables

More information

We have examined power functions like f (x) = x 2. Interchanging x

We have examined power functions like f (x) = x 2. Interchanging x CHAPTER 5 Eponential and Logarithmic Functions We have eamined power functions like f =. Interchanging and ields a different function f =. This new function is radicall different from a power function

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Eponential and Logarithmic Functions 6 Figure Electron micrograph of E. Coli bacteria (credit: Mattosaurus, Wikimedia Commons) CHAPTER OUTLINE 6. Eponential Functions 6. Logarithmic Properties 6. Graphs

More information