Test 3 SOLUTIONS. x P(x) xp(x)

Size: px
Start display at page:

Download "Test 3 SOLUTIONS. x P(x) xp(x)"

Transcription

1 16 1. A couple of weeks ago in class, each of you took three quizzes where you randomly guessed the answers to each question. There were eight questions on each quiz, and four possible answers to each question (A, B, C, or D). Based on the results of the quizzes, the probability distribution shown here gives the random variable x, which represents the number of questions out of eight that were guessed correctly, and the experimental probability P(x) for each value of x. Test 3 SOLUTIONS (a) Find the mean number of questions that were guessed correctly (round to one decimal place). Create a third column, x times P(x). The sum of this column equals the mean of the random variable. (b) What is the probability that a randomly selected student from this class guessed the answers to exactly 2 questions correctly? P(2) = (c) What is the probability that a randomly selected student from this class guessed the answers to less than 2 questions correctly? P(0) + P(1) = = x P(x) xp(x) Mean = 1.9 (d) Would it be unusual for a student to guess 3 or more questions correctly? Yes or no, plus briefly explain your answer here, and include the relevant probability in your answer. P(3 or more) = P(3) + P(4) + + P(8) = = NOT unusual, because the probability of 3 or more is > (a) 1.9 (b) (c) (d) Answer in space to left. Page 1 of 8

2 2. Now consider a different quiz, a True/False quiz with 10 questions on it. Randomly guessing the answer to each question is a binomial experiment. Use the binomial probability distribution to answer the following questions. Remember that the random variable x represents the total number of questions out of ten that are guessed correctly. Round off the probabilities to three significant figures. You don t have to do this, but you might want to start by identifying: S = success = what? (in words) = guess the correct answer n = 10 (total number of questions) p = 0.5 (probability of guessing any one question correctly) 16 (a) Calculate the mean of the random variable x, the number of questions that will be guessed correctly. µ = np = (10)(0.5) = 5 (b) What is the probability of guessing exactly 4 questions correctly out of 10? There is no need to do any calculations, just look up the probabilities in Table III. (see next page) (a) 5 (b) From the table, P(4) = Page 2 of 8

3 (c) What is the probability of guessing 4 or less questions correctly out of 10? P(4 or less) = P(0) + + P(4) = Just add up the probabilities from the table! (d) Would it be unusual to guess 8 or more questions correctly? Yes or no, plus briefly explain your answer here. Your answer must include the relevant probability. (c) (d) Answer to left. P(8 or more) = P(8) + P(9) + P(10) = This is > 0.05, therefore it is NOT unusual. Note: Because p = 0.5 exactly, the distribution will be bellshaped (even though the sample size is small), so you could also use the Empirical Rule for this. If you did that, you would find that the maximum usual = 8.16, and therefore 8 is not unusual because it is less than that. Page 3 of 8

4 3. According to a recent (May 18, 2017) poll done by Monmouth University *, a majority of American adults believe President Trump fired FBI Director James Comey recently in an effort to slow down or stop the investigation into the Trump campaign s ties with Russia. Specifically, 59% of Americans believe that it was very or somewhat likely that he was fired for this reason. Suppose that 65 American adults are randomly selected, and answer the following using the binomial probability distribution: 18 * Source: S = likely or somewhat likely p = probability of success in any one trial = 0.59 n = number of trials = 65 (a) Find the mean number of Americans out of 65 who believe that Trump fired Comey to stop the Russia investigation. Do not round off your answer µ = np = (65)(0.59) = (b) Find the probability that exactly 38 out of 65 Americans believe that Trump fired Comey to stop the Russia investigation. Round off your answer to three significant figures. P(38) = 65C 38(0.59) 38 (0.41) 27 = (c) Would it be unusual for 50 of the 65 Americans to believe that Trump fired Comey to stop the Russia investigation? Yes or no, plus explain your answer, including a relevant calculation. Use the Empirical Rule: σ = (65)(0. 59)(0. 41) = Max usual = µ + 2 σ = ( ) = is greater than the max usual, so YES, it would be unusual. Note: you cannot use probabilities here, because you would have to calculate P(50 or more), which is basically not possible by hand. Just quoting P(50) is not adequate. (d) If you plotted the probability histogram for this binomial distribution, what shape would you expect it to have? Explain your answer, and include a relevant calculation. It would be normal, because the sample size is large enough. Demonstrate this as follows: np(1 p) = 65(0.59)(0.41) = Since this is > 10, it will be normal. (a) (b) (c) Answer to left. (d) Answer to left. Page 4 of 8

5 4. Determine the area under the standard normal curve that lies: (a) To the left of 0.83 Area = (b) To the right of 0.09 Area = = (c) Between 1.48 and 0.33 Area below z = = Area below z = 0.33 = Area between = = (d) Obtain the z-score for which the area under the standard normal curve to its right is Therefore, the area to its left = = Closest area in the table is , corresponding z-score is (a) (b) (c) (d) (e) Determine the two z-scores that divide the area under the standard normal curve symmetrically into a middle 0.62 area and two outside 0.19 areas (the tails). The closest area in the table to 0.19 is , which corresponds to a z-score of By symmetry, the other z- score is (e) ± 0.88 Page 5 of 8

6 5. It has traditionally been taken as fact that the mean normal body temperature for humans is 98.6 F. However, more recent medical research suggests that the true mean is approximately 98.2 F *. *Source: Healthy body temperatures are known to be normally distributed. Assume a mean of 98.2 F and a standard deviation of 0.7 F for the following calculations. Note: do not round off any of the probabilities. (a) If one person is randomly selected, find the probability that their temperature is greater than 98.6 F. z = = Area below z = 0.57 = Area above = = (a) (b) If one person is randomly selected, find the probability that their temperature is between 96.5 F and 98.6 F. z 96.5 = = Area below = Already found in part (a) that the area below 98.6 = Area between = = (b) (c) Fever is generally agreed to be present if a person s temperature is over 99.9 F. What percentage of healthy people have a temperature of over 99.9 F? z = = Area above is , which you can infer from symmetry and part (b), since the area below z = is To convert into percentage, multiply by 100. (c) 0.75 % Page 6 of 8

7 (d) Find the value of the 80 th percentile. In other words, what is the cutoff temperature that separates the bottom 80% from the top 20% of the body temperatures? Round your answer to two decimal places. (d) F (e) Answer to left. The closest area in the table is , which corresponds to a z- score of Calculate the x-value: x = µ + z = (0.84)(0.7) = F (e) Would it be unusual for a healthy person to have a temperature of 96.5 F? Yes or no, plus explain briefly, and include a relevant calculation. You can answer this EITHER using probabilities or the Empirical Rule. Empirical Rule: min usual = µ 2 = (0.7) = Yes, it would be unusual, because 96.5 F is less than the min usual. Probabilities: You already calculated in part (b) that the area below = Because this probability is very small (<0.05), it would be considered unusual. OVER FOR EXTRA CREDIT!!! Page 7 of 8

8 Extra Credit #1 (4 points): Men tend to have longer feet than women. So, if you find a really long footprint at the scene of a crime, then in the absence of any other evidence, you would probably conclude that the criminal was a man. Assume that men s foot lengths are normally distributed with a mean of 25 cm and a standard deviation of 4 cm, and women s foot lengths are normally distributed with a mean of 19 cm and a standard deviation of 3 cm. Assume that a footprint belongs to a man if it is longer than 22 cm, and to a women if it is less than 22 cm (the midpoint of the means). Using this rule, what is the probability that you will mistakenly identify a woman s footprint as having come from a man? If the footprint is greater than 22 cm, then you would assume that it came from a man. However, the yellow highlighted portion of the Females curve represents the women that have feet longer than 22 cm. Therefore, that area is the probability that you need to find. z = = 1. 0 Area to the right = = Therefore, there is a 15.87% chance that it is a woman s footprint, but it is mistakenly identified as a man s. Page 8 of 8

Section 7.1 Properties of the Normal Distribution

Section 7.1 Properties of the Normal Distribution Section 7.1 Properties of the Normal Distribution In Chapter 6, talked about probability distributions. Coin flip problem: Difference of two spinners: The random variable x can only take on certain discrete

More information

Chapter 15 Sampling Distribution Models

Chapter 15 Sampling Distribution Models Chapter 15 Sampling Distribution Models 1 15.1 Sampling Distribution of a Proportion 2 Sampling About Evolution According to a Gallup poll, 43% believe in evolution. Assume this is true of all Americans.

More information

The Central Limit Theorem

The Central Limit Theorem - The Central Limit Theorem Definition Sampling Distribution of the Mean the probability distribution of sample means, with all samples having the same sample size n. (In general, the sampling distribution

More information

Chapter 6. The Standard Deviation as a Ruler and the Normal Model 1 /67

Chapter 6. The Standard Deviation as a Ruler and the Normal Model 1 /67 Chapter 6 The Standard Deviation as a Ruler and the Normal Model 1 /67 Homework Read Chpt 6 Complete Reading Notes Do P129 1, 3, 5, 7, 15, 17, 23, 27, 29, 31, 37, 39, 43 2 /67 Objective Students calculate

More information

QUIZ 4 (CHAPTER 7) - SOLUTIONS MATH 119 SPRING 2013 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100%

QUIZ 4 (CHAPTER 7) - SOLUTIONS MATH 119 SPRING 2013 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100% QUIZ 4 (CHAPTER 7) - SOLUTIONS MATH 119 SPRING 013 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100% 1) We want to conduct a study to estimate the mean I.Q. of a pop singer s fans. We want to have 96% confidence

More information

2014 SM4 Revision Questions Distributions

2014 SM4 Revision Questions Distributions 2014 SM4 Revision Questions Distributions Normal Q1. Professor Halen has 184 students in his college mathematics class. The scores on the semester exam are normally distributed with a mean of 72.3 and

More information

Salt Lake Community College MATH 1040 Final Exam Fall Semester 2011 Form E

Salt Lake Community College MATH 1040 Final Exam Fall Semester 2011 Form E Salt Lake Community College MATH 1040 Final Exam Fall Semester 011 Form E Name Instructor Time Limit: 10 minutes Any hand-held calculator may be used. Computers, cell phones, or other communication devices

More information

4.4-Multiplication Rule: Basics

4.4-Multiplication Rule: Basics .-Multiplication Rule: Basics The basic multiplication rule is used for finding P (A and, that is, the probability that event A occurs in a first trial and event B occurs in a second trial. If the outcome

More information

Lecture 10: The Normal Distribution. So far all the random variables have been discrete.

Lecture 10: The Normal Distribution. So far all the random variables have been discrete. Lecture 10: The Normal Distribution 1. Continuous Random Variables So far all the random variables have been discrete. We need a different type of model (called a probability density function) for continuous

More information

Math 1040 Final Exam Form A Introduction to Statistics Fall Semester 2010

Math 1040 Final Exam Form A Introduction to Statistics Fall Semester 2010 Math 1040 Final Exam Form A Introduction to Statistics Fall Semester 2010 Instructor Name Time Limit: 120 minutes Any calculator is okay. Necessary tables and formulas are attached to the back of the exam.

More information

6 THE NORMAL DISTRIBUTION

6 THE NORMAL DISTRIBUTION CHAPTER 6 THE NORMAL DISTRIBUTION 341 6 THE NORMAL DISTRIBUTION Figure 6.1 If you ask enough people about their shoe size, you will find that your graphed data is shaped like a bell curve and can be described

More information

Chapter 8: Sampling Distributions. A survey conducted by the U.S. Census Bureau on a continual basis. Sample

Chapter 8: Sampling Distributions. A survey conducted by the U.S. Census Bureau on a continual basis. Sample Chapter 8: Sampling Distributions Section 8.1 Distribution of the Sample Mean Frequently, samples are taken from a large population. Example: American Community Survey (ACS) A survey conducted by the U.S.

More information

Chapitre 3. 5: Several Useful Discrete Distributions

Chapitre 3. 5: Several Useful Discrete Distributions Chapitre 3 5: Several Useful Discrete Distributions 5.3 The random variable x is not a binomial random variable since the balls are selected without replacement. For this reason, the probability p of choosing

More information

Calculator Exam 2009 University of Houston Math Contest. Name: School: There is no penalty for guessing.

Calculator Exam 2009 University of Houston Math Contest. Name: School: There is no penalty for guessing. Calculator Exam 2009 University of Houston Math Contest Name: School: Please read the questions carefully. Unless otherwise requested, round your answers to 8 decimal places. There is no penalty for guessing.

More information

Exercise 1. Exercise 2. Lesson 2 Theoretical Foundations Probabilities Solutions You ip a coin three times.

Exercise 1. Exercise 2. Lesson 2 Theoretical Foundations Probabilities Solutions You ip a coin three times. Lesson 2 Theoretical Foundations Probabilities Solutions monia.ranalli@uniroma3.it Exercise 1 You ip a coin three times. 1. Use a tree diagram to show the possible outcome patterns. How many outcomes are

More information

A C E. Answers Investigation 4. Applications

A C E. Answers Investigation 4. Applications Answers Applications 1. 1 student 2. You can use the histogram with 5-minute intervals to determine the number of students that spend at least 15 minutes traveling to school. To find the number of students,

More information

Chapter (4) Discrete Probability Distributions Examples

Chapter (4) Discrete Probability Distributions Examples Chapter (4) Discrete Probability Distributions Examples Example () Two balanced dice are rolled. Let X be the sum of the two dice. Obtain the probability distribution of X. Solution When the two balanced

More information

Statistics 100 Exam 2 March 8, 2017

Statistics 100 Exam 2 March 8, 2017 STAT 100 EXAM 2 Spring 2017 (This page is worth 1 point. Graded on writing your name and net id clearly and circling section.) PRINT NAME (Last name) (First name) net ID CIRCLE SECTION please! L1 (MWF

More information

You may use your calculator and a single page of notes. The room is crowded. Please be careful to look only at your own exam.

You may use your calculator and a single page of notes. The room is crowded. Please be careful to look only at your own exam. LAST NAME (Please Print): KEY FIRST NAME (Please Print): HONOR PLEDGE (Please Sign): Statistics 111 Midterm 1 This is a closed book exam. You may use your calculator and a single page of notes. The room

More information

Discrete Distributions

Discrete Distributions Discrete Distributions STA 281 Fall 2011 1 Introduction Previously we defined a random variable to be an experiment with numerical outcomes. Often different random variables are related in that they have

More information

68% 95% 99.7% x x 1 σ. x 1 2σ. x 1 3σ. Find a normal probability

68% 95% 99.7% x x 1 σ. x 1 2σ. x 1 3σ. Find a normal probability 11.3 a.1, 2A.1.B TEKS Use Normal Distributions Before You interpreted probability distributions. Now You will study normal distributions. Why? So you can model animal populations, as in Example 3. Key

More information

Answers Only VI- Counting Principles; Further Probability Topics

Answers Only VI- Counting Principles; Further Probability Topics Answers Only VI- Counting Principles; Further Probability Topics 1) If you are dealt 3 cards from a shuffled deck of 52 cards, find the probability that all 3 cards are clubs. (Type a fraction. Simplify

More information

Stats Review Chapter 6. Mary Stangler Center for Academic Success Revised 8/16

Stats Review Chapter 6. Mary Stangler Center for Academic Success Revised 8/16 Stats Review Chapter Revised 8/1 Note: This review is composed of questions similar to those found in the chapter review and/or chapter test. This review is meant to highlight basic concepts from the course.

More information

Chapter 6 The Standard Deviation as a Ruler and the Normal Model

Chapter 6 The Standard Deviation as a Ruler and the Normal Model Chapter 6 The Standard Deviation as a Ruler and the Normal Model Overview Key Concepts Understand how adding (subtracting) a constant or multiplying (dividing) by a constant changes the center and/or spread

More information

Math 1040 Sample Final Examination. Problem Points Score Total 200

Math 1040 Sample Final Examination. Problem Points Score Total 200 Name: Math 1040 Sample Final Examination Relax and good luck! Problem Points Score 1 25 2 25 3 25 4 25 5 25 6 25 7 25 8 25 Total 200 1. (25 points) The systolic blood pressures of 20 elderly patients in

More information

Thus, P(F or L) = P(F) + P(L) - P(F & L) = = 0.553

Thus, P(F or L) = P(F) + P(L) - P(F & L) = = 0.553 Test 2 Review: Solutions 1) The following outcomes have at least one Head: HHH, HHT, HTH, HTT, THH, THT, TTH Thus, P(at least one head) = 7/8 2) The following outcomes have a sum of 9: (6,3), (5,4), (4,5),

More information

The area under a probability density curve between any two values a and b has two interpretations:

The area under a probability density curve between any two values a and b has two interpretations: Chapter 7 7.1 The Standard Normal Curve Introduction Probability density curve: The area under a probability density curve between any two values a and b has two interpretations: 1. 2. The region above

More information

*Karle Laska s Sections: There is no class tomorrow and Friday! Have a good weekend! Scores will be posted in Compass early Friday morning

*Karle Laska s Sections: There is no class tomorrow and Friday! Have a good weekend! Scores will be posted in Compass early Friday morning STATISTICS 100 EXAM 3 Spring 2016 PRINT NAME (Last name) (First name) *NETID CIRCLE SECTION: Laska MWF L1 Laska Tues/Thurs L2 Robin Tu Write answers in appropriate blanks. When no blanks are provided CIRCLE

More information

What is statistics? Statistics is the science of: Collecting information. Organizing and summarizing the information collected

What is statistics? Statistics is the science of: Collecting information. Organizing and summarizing the information collected What is statistics? Statistics is the science of: Collecting information Organizing and summarizing the information collected Analyzing the information collected in order to draw conclusions Two types

More information

Homework 4 Solutions Math 150

Homework 4 Solutions Math 150 Homework Solutions Math 150 Enrique Treviño 3.2: (a) The table gives P (Z 1.13) = 0.1292. P (Z > 1.13) = 1 0.1292 = 0.8708. The table yields P (Z 0.18) = 0.571. (c) The table doesn t consider Z > 8 but

More information

Chapter 2 Solutions Page 15 of 28

Chapter 2 Solutions Page 15 of 28 Chapter Solutions Page 15 of 8.50 a. The median is 55. The mean is about 105. b. The median is a more representative average" than the median here. Notice in the stem-and-leaf plot on p.3 of the text that

More information

Geometry & Measurement

Geometry & Measurement Geometry & Measurement Maureen Steddin table of contents To the Student......................... v Part 1: Introduction.................................... 1 General Approach to Math Questions...................

More information

EQ: What is a normal distribution?

EQ: What is a normal distribution? Unit 5 - Statistics What is the purpose EQ: What tools do we have to assess data? this unit? What vocab will I need? Vocabulary: normal distribution, standard, nonstandard, interquartile range, population

More information

Section 7.2 Homework Answers

Section 7.2 Homework Answers 25.5 30 Sample Mean P 0.1226 sum n b. The two z-scores are z 25 20(1.7) n 1.0 20 sum n 2.012 and z 30 20(1.7) n 1.0 0.894, 20 so the probability is approximately 0.1635 (0.1645 using Table A). P14. a.

More information

Name: Exam 2 Solutions. March 13, 2017

Name: Exam 2 Solutions. March 13, 2017 Department of Mathematics University of Notre Dame Math 00 Finite Math Spring 07 Name: Instructors: Conant/Galvin Exam Solutions March, 07 This exam is in two parts on pages and contains problems worth

More information

Chapter 26: Comparing Counts (Chi Square)

Chapter 26: Comparing Counts (Chi Square) Chapter 6: Comparing Counts (Chi Square) We ve seen that you can turn a qualitative variable into a quantitative one (by counting the number of successes and failures), but that s a compromise it forces

More information

( ) P A B : Probability of A given B. Probability that A happens

( ) P A B : Probability of A given B. Probability that A happens A B A or B One or the other or both occurs At least one of A or B occurs Probability Review A B A and B Both A and B occur ( ) P A B : Probability of A given B. Probability that A happens given that B

More information

What Is a Sampling Distribution? DISTINGUISH between a parameter and a statistic

What Is a Sampling Distribution? DISTINGUISH between a parameter and a statistic Section 8.1A What Is a Sampling Distribution? Learning Objectives After this section, you should be able to DISTINGUISH between a parameter and a statistic DEFINE sampling distribution DISTINGUISH between

More information

QUIZ 1 (CHAPTERS 1-4) SOLUTIONS MATH 119 FALL 2012 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS

QUIZ 1 (CHAPTERS 1-4) SOLUTIONS MATH 119 FALL 2012 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS QUIZ 1 (CHAPTERS 1-4) SOLUTIONS MATH 119 FALL 2012 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100% Show all work, simplify as appropriate, and use good form and procedure (as in class). Box in your final

More information

Math 120 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency

Math 120 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency Math 1 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency The word average: is very ambiguous and can actually refer to the mean, median, mode or midrange. Notation:

More information

Are data normally normally distributed?

Are data normally normally distributed? Standard Normal Image source Are data normally normally distributed? Sample mean: 66.78 Sample standard deviation: 3.37 (66.78-1 x 3.37, 66.78 + 1 x 3.37) (66.78-2 x 3.37, 66.78 + 2 x 3.37) (66.78-3 x

More information

THE SAMPLING DISTRIBUTION OF THE MEAN

THE SAMPLING DISTRIBUTION OF THE MEAN THE SAMPLING DISTRIBUTION OF THE MEAN COGS 14B JANUARY 26, 2017 TODAY Sampling Distributions Sampling Distribution of the Mean Central Limit Theorem INFERENTIAL STATISTICS Inferential statistics: allows

More information

Probability deals with modeling of random phenomena (phenomena or experiments whose outcomes may vary)

Probability deals with modeling of random phenomena (phenomena or experiments whose outcomes may vary) Chapter 14 From Randomness to Probability How to measure a likelihood of an event? How likely is it to answer correctly one out of two true-false questions on a quiz? Is it more, less, or equally likely

More information

Introduction to Statistical Data Analysis Lecture 4: Sampling

Introduction to Statistical Data Analysis Lecture 4: Sampling Introduction to Statistical Data Analysis Lecture 4: Sampling James V. Lambers Department of Mathematics The University of Southern Mississippi James V. Lambers Statistical Data Analysis 1 / 30 Introduction

More information

OCR Maths S1. Topic Questions from Papers. Representation of Data

OCR Maths S1. Topic Questions from Papers. Representation of Data OCR Maths S1 Topic Questions from Papers Representation of Data PhysicsAndMathsTutor.com 12 The back-to-back stem-and-leaf diagram below shows the number of hours of television watched per week by each

More information

Hypothesis tests

Hypothesis tests 6.1 6.4 Hypothesis tests Prof. Tesler Math 186 February 26, 2014 Prof. Tesler 6.1 6.4 Hypothesis tests Math 186 / February 26, 2014 1 / 41 6.1 6.2 Intro to hypothesis tests and decision rules Hypothesis

More information

Example. What is the sample space for flipping a fair coin? Rolling a 6-sided die? Find the event E where E = {x x has exactly one head}

Example. What is the sample space for flipping a fair coin? Rolling a 6-sided die? Find the event E where E = {x x has exactly one head} Chapter 7 Notes 1 (c) Epstein, 2013 CHAPTER 7: PROBABILITY 7.1: Experiments, Sample Spaces and Events Chapter 7 Notes 2 (c) Epstein, 2013 What is the sample space for flipping a fair coin three times?

More information

Section 5.4. Ken Ueda

Section 5.4. Ken Ueda Section 5.4 Ken Ueda Students seem to think that being graded on a curve is a positive thing. I took lasers 101 at Cornell and got a 92 on the exam. The average was a 93. I ended up with a C on the test.

More information

Exam #2 Results (as percentages)

Exam #2 Results (as percentages) Oct. 30 Assignment: Read Chapter 19 Try exercises 1, 2, and 4 on p. 424 Exam #2 Results (as percentages) Mean: 71.4 Median: 73.3 Soda attitudes 2015 In a Gallup poll conducted Jul. 8 12, 2015, 1009 adult

More information

Exam: practice test 1 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam: practice test 1 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam: practice test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. ) Using the information in the table on home sale prices in

More information

If two different people are randomly selected from the 991 subjects, find the probability that they are both women. Round to four decimal places.

If two different people are randomly selected from the 991 subjects, find the probability that they are both women. Round to four decimal places. Math 227 Name 5 pts*20=100pts 1) A bin contains 67 light bulbs of which 8 are defective. If 3 light bulbs are randomly selected from the bin with replacement, find the probability that all the bulbs selected

More information

STAT 201 Assignment 6

STAT 201 Assignment 6 STAT 201 Assignment 6 Partial Solutions 12.1 Research question: Do parents in the school district support the new education program? Parameter: p = proportion of all parents in the school district who

More information

Elementary Statistics

Elementary Statistics Elementary Statistics Q: What is data? Q: What does the data look like? Q: What conclusions can we draw from the data? Q: Where is the middle of the data? Q: Why is the spread of the data important? Q:

More information

Review for Exam #1. Chapter 1. The Nature of Data. Definitions. Population. Sample. Quantitative data. Qualitative (attribute) data

Review for Exam #1. Chapter 1. The Nature of Data. Definitions. Population. Sample. Quantitative data. Qualitative (attribute) data Review for Exam #1 1 Chapter 1 Population the complete collection of elements (scores, people, measurements, etc.) to be studied Sample a subcollection of elements drawn from a population 11 The Nature

More information

Each trial has only two possible outcomes success and failure. The possible outcomes are exactly the same for each trial.

Each trial has only two possible outcomes success and failure. The possible outcomes are exactly the same for each trial. Section 8.6: Bernoulli Experiments and Binomial Distribution We have already learned how to solve problems such as if a person randomly guesses the answers to 10 multiple choice questions, what is the

More information

Lecture 7: Confidence interval and Normal approximation

Lecture 7: Confidence interval and Normal approximation Lecture 7: Confidence interval and Normal approximation 26th of November 2015 Confidence interval 26th of November 2015 1 / 23 Random sample and uncertainty Example: we aim at estimating the average height

More information

Chapter 4 Probability

Chapter 4 Probability 4-1 Review and Preview Chapter 4 Probability 4-2 Basic Concepts of Probability 4-3 Addition Rule 4-4 Multiplication Rule: Basics 4-5 Multiplication Rule: Complements and Conditional Probability 4-6 Counting

More information

MA 1125 Lecture 15 - The Standard Normal Distribution. Friday, October 6, Objectives: Introduce the standard normal distribution and table.

MA 1125 Lecture 15 - The Standard Normal Distribution. Friday, October 6, Objectives: Introduce the standard normal distribution and table. MA 1125 Lecture 15 - The Standard Normal Distribution Friday, October 6, 2017. Objectives: Introduce the standard normal distribution and table. 1. The Standard Normal Distribution We ve been looking at

More information

Homework 8 Solution Section

Homework 8 Solution Section Homework 8 Solution Section 7.3 7.4 7.3.16. For the experiments that an unprepared student takes a three-question, true/false quiz in which he guesses the answers to all three questions, so each answer

More information

Chapter 8: Confidence Intervals

Chapter 8: Confidence Intervals Chapter 8: Confidence Intervals Introduction Suppose you are trying to determine the mean rent of a two-bedroom apartment in your town. You might look in the classified section of the newspaper, write

More information

where Female = 0 for males, = 1 for females Age is measured in years (22, 23, ) GPA is measured in units on a four-point scale (0, 1.22, 3.45, etc.

where Female = 0 for males, = 1 for females Age is measured in years (22, 23, ) GPA is measured in units on a four-point scale (0, 1.22, 3.45, etc. Notes on regression analysis 1. Basics in regression analysis key concepts (actual implementation is more complicated) A. Collect data B. Plot data on graph, draw a line through the middle of the scatter

More information

COMP61011! Probabilistic Classifiers! Part 1, Bayes Theorem!

COMP61011! Probabilistic Classifiers! Part 1, Bayes Theorem! COMP61011 Probabilistic Classifiers Part 1, Bayes Theorem Reverend Thomas Bayes, 1702-1761 p ( T W ) W T ) T ) W ) Bayes Theorem forms the backbone of the past 20 years of ML research into probabilistic

More information

Chapter 5, 6 and 7: Review Questions: STAT/MATH Consider the experiment of rolling a fair die twice. Find the indicated probabilities.

Chapter 5, 6 and 7: Review Questions: STAT/MATH Consider the experiment of rolling a fair die twice. Find the indicated probabilities. Chapter5 Chapter 5, 6 and 7: Review Questions: STAT/MATH3379 1. Consider the experiment of rolling a fair die twice. Find the indicated probabilities. (a) One of the dice is a 4. (b) Sum of the dice equals

More information

Chapter 6 Continuous Probability Distributions

Chapter 6 Continuous Probability Distributions Continuous Probability Distributions Learning Objectives 1. Understand the difference between how probabilities are computed for discrete and continuous random variables. 2. Know how to compute probability

More information

7.1: What is a Sampling Distribution?!?!

7.1: What is a Sampling Distribution?!?! 7.1: What is a Sampling Distribution?!?! Section 7.1 What Is a Sampling Distribution? After this section, you should be able to DISTINGUISH between a parameter and a statistic DEFINE sampling distribution

More information

Section 6-1 Overview. Definition. Definition. Using Area to Find Probability. Area and Probability

Section 6-1 Overview. Definition. Definition. Using Area to Find Probability. Area and Probability Chapter focus is on: Continuous random variables Normal distributions Figure 6-1 Section 6-1 Overview ( -1 e 2 x-µ σ ) 2 f(x) = σ 2 π Formula 6-1 Slide 1 Section 6-2 The Standard Normal Distribution Key

More information

The Standard Deviation as a Ruler and the Normal Model

The Standard Deviation as a Ruler and the Normal Model The Standard Deviation as a Ruler and the Normal Model Al Nosedal University of Toronto Summer 2017 Al Nosedal University of Toronto The Standard Deviation as a Ruler and the Normal Model Summer 2017 1

More information

Section 5.1: Probability and area

Section 5.1: Probability and area Section 5.1: Probability and area Review Normal Distribution s z = x - m s Standard Normal Distribution s=1 m x m=0 z The area that falls in the interval under the nonstandard normal curve is the same

More information

MATH 1150 Chapter 2 Notation and Terminology

MATH 1150 Chapter 2 Notation and Terminology MATH 1150 Chapter 2 Notation and Terminology Categorical Data The following is a dataset for 30 randomly selected adults in the U.S., showing the values of two categorical variables: whether or not the

More information

Answers Part A. P(x = 67) = 0, because x is a continuous random variable. 2. Find the following probabilities:

Answers Part A. P(x = 67) = 0, because x is a continuous random variable. 2. Find the following probabilities: Answers Part A 1. Woman s heights are normally distributed with a mean of 63.6 inches and a standard deviation of 2.5 inches. Find the probability that a single randomly selected woman will be 67 inches

More information

Chapter 7 Discussion Problem Solutions D1 D2. D3.

Chapter 7 Discussion Problem Solutions D1 D2. D3. Chapter 7 Discussion Problem Solutions D1. The agent can increase his sample size to a value greater than 10. The larger the sample size, the smaller the spread of the distribution of means and the more

More information

COSC 341 Human Computer Interaction. Dr. Bowen Hui University of British Columbia Okanagan

COSC 341 Human Computer Interaction. Dr. Bowen Hui University of British Columbia Okanagan COSC 341 Human Computer Interaction Dr. Bowen Hui University of British Columbia Okanagan 1 Last Class Introduced hypothesis testing Core logic behind it Determining results significance in scenario when:

More information

Computations - Show all your work. (30 pts)

Computations - Show all your work. (30 pts) Math 1012 Final Name: Computations - Show all your work. (30 pts) 1. Fractions. a. 1 7 + 1 5 b. 12 5 5 9 c. 6 8 2 16 d. 1 6 + 2 5 + 3 4 2.a Powers of ten. i. 10 3 10 2 ii. 10 2 10 6 iii. 10 0 iv. (10 5

More information

Using Dice to Introduce Sampling Distributions Written by: Mary Richardson Grand Valley State University

Using Dice to Introduce Sampling Distributions Written by: Mary Richardson Grand Valley State University Using Dice to Introduce Sampling Distributions Written by: Mary Richardson Grand Valley State University richamar@gvsu.edu Overview of Lesson In this activity students explore the properties of the distribution

More information

Lecture 10/Chapter 8 Bell-Shaped Curves & Other Shapes. From a Histogram to a Frequency Curve Standard Score Using Normal Table Empirical Rule

Lecture 10/Chapter 8 Bell-Shaped Curves & Other Shapes. From a Histogram to a Frequency Curve Standard Score Using Normal Table Empirical Rule Lecture 10/Chapter 8 Bell-Shaped Curves & Other Shapes From a Histogram to a Frequency Curve Standard Score Using Normal Table Empirical Rule From Histogram to Normal Curve Start: sample of female hts

More information

University of Jordan Fall 2009/2010 Department of Mathematics

University of Jordan Fall 2009/2010 Department of Mathematics handouts Part 1 (Chapter 1 - Chapter 5) University of Jordan Fall 009/010 Department of Mathematics Chapter 1 Introduction to Introduction; Some Basic Concepts Statistics is a science related to making

More information

20 Hypothesis Testing, Part I

20 Hypothesis Testing, Part I 20 Hypothesis Testing, Part I Bob has told Alice that the average hourly rate for a lawyer in Virginia is $200 with a standard deviation of $50, but Alice wants to test this claim. If Bob is right, she

More information

Principles of Mathematics 12 June 2004 Provincial Examination

Principles of Mathematics 12 June 2004 Provincial Examination Principles of Mathematics June 004 Provincial Examination ANSWER KEY / SCORING GUIDE CURRICULUM: Organizers Sub-Organizers. Problem Solving A Problem Solving and Cross Topic Problems. Patterns and Relations

More information

You have 3 hours to complete the exam. Some questions are harder than others, so don t spend too long on any one question.

You have 3 hours to complete the exam. Some questions are harder than others, so don t spend too long on any one question. Data 8 Fall 2017 Foundations of Data Science Final INSTRUCTIONS You have 3 hours to complete the exam. Some questions are harder than others, so don t spend too long on any one question. The exam is closed

More information

Exercises from Chapter 3, Section 1

Exercises from Chapter 3, Section 1 Exercises from Chapter 3, Section 1 1. Consider the following sample consisting of 20 numbers. (a) Find the mode of the data 21 23 24 24 25 26 29 30 32 34 39 41 41 41 42 43 48 51 53 53 (b) Find the median

More information

Chapter 3 Probability Chapter 3 Probability 3-1 Overview 3-2 Fundamentals 3-3 Addition Rule 3-4 Multiplication Rule: Basics

Chapter 3 Probability Chapter 3 Probability 3-1 Overview 3-2 Fundamentals 3-3 Addition Rule 3-4 Multiplication Rule: Basics Chapter 3 Probability 1 3-1 Overview 3-2 Fundamentals 3-3 Addition Rule Chapter 3 Probability 3-4 Multiplication Rule: Basics 2 Overview Objectives develop sound understanding of probability values used

More information

Ch. 7 Statistical Intervals Based on a Single Sample

Ch. 7 Statistical Intervals Based on a Single Sample Ch. 7 Statistical Intervals Based on a Single Sample Before discussing the topics in Ch. 7, we need to cover one important concept from Ch. 6. Standard error The standard error is the standard deviation

More information

What does a population that is normally distributed look like? = 80 and = 10

What does a population that is normally distributed look like? = 80 and = 10 What does a population that is normally distributed look like? = 80 and = 10 50 60 70 80 90 100 110 X Empirical Rule 68% 95% 99.7% 68-95-99.7% RULE Empirical Rule restated 68% of the data values fall within

More information

Chapter 6 Group Activity - SOLUTIONS

Chapter 6 Group Activity - SOLUTIONS Chapter 6 Group Activity - SOLUTIONS Group Activity Summarizing a Distribution 1. The following data are the number of credit hours taken by Math 105 students during a summer term. You will be analyzing

More information

Foundations of Math 1 Review

Foundations of Math 1 Review Foundations of Math 1 Review Due Wednesday 1/6/16. For each of the 23 questions you get COMPLETELY correct, you will receive a point on an extra assessment grade. **All regular credit must be completed

More information

Ch. 17. DETERMINATION OF SAMPLE SIZE

Ch. 17. DETERMINATION OF SAMPLE SIZE LOGO Ch. 17. DETERMINATION OF SAMPLE SIZE Dr. Werner R. Murhadi www.wernermurhadi.wordpress.com Descriptive and Inferential Statistics descriptive statistics is Statistics which summarize and describe

More information

Math 243 Chapter 7 Supplement The Sampling Distribution of a Proportion

Math 243 Chapter 7 Supplement The Sampling Distribution of a Proportion Math 243 Chapter 7 Supplement The Sampling Distribution of a Proportion The number of tattoos was quantitative data so we found a sampling distribution for the mean of each sample. Now we are going to

More information

Practice problems from chapters 2 and 3

Practice problems from chapters 2 and 3 Practice problems from chapters and 3 Question-1. For each of the following variables, indicate whether it is quantitative or qualitative and specify which of the four levels of measurement (nominal, ordinal,

More information

MATH 227 CP 7 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

MATH 227 CP 7 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. MATH 227 CP 7 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Find the mean, µ, for the binomial distribution which has the stated values of n and p.

More information

hypotheses. P-value Test for a 2 Sample z-test (Large Independent Samples) n > 30 P-value Test for a 2 Sample t-test (Small Samples) n < 30 Identify α

hypotheses. P-value Test for a 2 Sample z-test (Large Independent Samples) n > 30 P-value Test for a 2 Sample t-test (Small Samples) n < 30 Identify α Chapter 8 Notes Section 8-1 Independent and Dependent Samples Independent samples have no relation to each other. An example would be comparing the costs of vacationing in Florida to the cost of vacationing

More information

Sampling Distribution Models. Central Limit Theorem

Sampling Distribution Models. Central Limit Theorem Sampling Distribution Models Central Limit Theorem Thought Questions 1. 40% of large population disagree with new law. In parts a and b, think about role of sample size. a. If randomly sample 10 people,

More information

Geometric Distribution The characteristics of a geometric experiment are: 1. There are one or more Bernoulli trials with all failures except the last

Geometric Distribution The characteristics of a geometric experiment are: 1. There are one or more Bernoulli trials with all failures except the last Geometric Distribution The characteristics of a geometric experiment are: 1. There are one or more Bernoulli trials with all failures except the last one, which is a success. In other words, you keep repeating

More information

1/18/2011. Chapter 6: Probability. Introduction to Probability. Probability Definition

1/18/2011. Chapter 6: Probability. Introduction to Probability. Probability Definition Chapter 6: Probability Introduction to Probability The role of inferential statistics is to use the sample data as the basis for answering questions about the population. To accomplish this goal, inferential

More information

STA 218: Statistics for Management

STA 218: Statistics for Management Al Nosedal. University of Toronto. Fall 2017 My momma always said: Life was like a box of chocolates. You never know what you re gonna get. Forrest Gump. Simple Example Random Experiment: Rolling a fair

More information

STAT/MA 416 Answers Homework 6 November 15, 2007 Solutions by Mark Daniel Ward PROBLEMS

STAT/MA 416 Answers Homework 6 November 15, 2007 Solutions by Mark Daniel Ward PROBLEMS STAT/MA 4 Answers Homework November 5, 27 Solutions by Mark Daniel Ward PROBLEMS Chapter Problems 2a. The mass p, corresponds to neither of the first two balls being white, so p, 8 7 4/39. The mass p,

More information

STT 315 Problem Set #3

STT 315 Problem Set #3 1. A student is asked to calculate the probability that x = 3.5 when x is chosen from a normal distribution with the following parameters: mean=3, sd=5. To calculate the answer, he uses this command: >

More information

Part Possible Score Base 5 5 MC Total 50

Part Possible Score Base 5 5 MC Total 50 Stat 220 Final Exam December 16, 2004 Schafer NAME: ANDREW ID: Read This First: You have three hours to work on the exam. The other questions require you to work out answers to the questions; be sure to

More information

UNC Charlotte 2009 Comprehensive March 9, 2009

UNC Charlotte 2009 Comprehensive March 9, 2009 March 9, 2009 1. Danica was driving in a 500 mile race. After 250 miles, Danica s average speed was 150 miles per hour. Approximately how fast should Danica drive the second half of the race if she wants

More information

3/30/2009. Probability Distributions. Binomial distribution. TI-83 Binomial Probability

3/30/2009. Probability Distributions. Binomial distribution. TI-83 Binomial Probability Random variable The outcome of each procedure is determined by chance. Probability Distributions Normal Probability Distribution N Chapter 6 Discrete Random variables takes on a countable number of values

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 2 MATH00040 SEMESTER / Probability

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 2 MATH00040 SEMESTER / Probability ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 2 MATH00040 SEMESTER 2 2017/2018 DR. ANTHONY BROWN 5.1. Introduction to Probability. 5. Probability You are probably familiar with the elementary

More information