Energetics of Electron Transfer Reactions

Size: px
Start display at page:

Download "Energetics of Electron Transfer Reactions"

Transcription

1 Energetics of Electron Transfer Reactions Dmitry Matyushov Arizona State University MIT, November 17, 24

2 Problems

3 Tunneling between localized states E D A LUMO E HOMO < E> Instantaneous energy gap E becomes the reaction coordinate

4 Reaction Coordinate

5 Linear Relation

6 Marcus-Hush Theory of Electron Transfer Two-parameters model: F act = (λ + F ) 2 4λ 2 X= λ is the reorganization energy F is the driving force. F i (X) F <δx 2 >=2λkT F i (X) = F i + (X X i) 2 4λ X 2λ = X 2 X 1 Energy gap law is the same for charge separation (CS) and charge recombination (CR) - F act -2 CS CR F

7 Charge-Transfer Processes in Condensed Phase Density of energy gaps (X = hω): FC i (ω) spectroscopy = h δ ( hω E(q) q,i = e βf i( hω) charge transfer <X>=ν abs/em optical spectroscopy FC i (X) 1.5 <δx 2 2 >=Γ abs/em ET kinetics X= energy gap/frequency

8 Spectral Band-Shape Intensity solvent-induced gas-phase ν/kk Convolution of gas-phase and solvent-induced bands: FC i (ν) = FC i,solvent (x)fc i,gas (ν x)dx

9 Inhomogeneous Solvent-Induced Broadening I abs/em (ν) = [ 2πσabs/em 2 ] 1/2 exp ( (ν ν abs/em) 2 ) 2σabs/em 2 2 ν gas 1.5 Intensity 1 ν solv R int.5 Γ abs/em frequency/ev σ 2 abs/em = Γ2 abs/em 8 ln(2), λ abs/em = σ2 abs/em 2kT.

10 What do we expect to see? Steady-state spectra. Solvent component of the band: ν st σ 2 /kt.5 solvent polarity.5 1 h ν st Consistency condition: σ 2 abs k B T = σ2 em k B T = h ν st.5 σ em σ abs Total width vs the total Stokes shift: σ 2 /kt 1.5 λ v ν v /kt solvent polarity.5 1 h ν st

11 What do we expect to see? Time-Resolved Spectra Time-resolved excitation: e t = t = g TRF broad-band excitation: t = e t = g Stokes shift correlation function: S Ω,i (t) = Ω(t) i Ω( ) i Ω( i Ω( ) i Equilibrium correlation function: C i (t) = δω(t)δω() i δω() 2 i Linear response (parabolic free energy surfaces): S Ω,i (t) = C i (t) λ i (t) = λ = Const

12 Experimental Evidence: Deviations from the Gaussian Picture. Asymmetry between CS and CR energy gap laws Asymmetry between steadystate absorption and emission lines Change in the time-resolved optical width Coumarin puzzle 14 absorption βσ 2 /kk 12 1 solvent polarity 8 emission ν st /kk

13 The Approximation of Fixed Charges e(1) Charge transfer + j + e(2) + j m + 1 m + 2 Interaction (i) = j e (i) j φ(i) j φ (i) j is the potential of the solvent at charge j.

14 The Approximation of Fixed Charges. Simulations 1: + - βλ i /(q * ) <(δu s ) 2 > 1 <(δu s ) 2 > y :

15 Polarizable Solute H (i) H (i) 1 2 j e(i) j φsolv j W (i) pol dipolar solute H (i) m i R 1 2 α ir 2 α i is the solute dipolar polarizability Two sources of polarizability : D-A coupling through m DA Coupling of D and A states to other electronic states m Dk D k m Am m DA m A

16 Q-Model Hamiltonian: H i = H (i) m i R 1 2 α ir 2 m Dk Free energy surfaces: F (X) = F + D m Am m DA ( α X F + α2 λ α α λ 1 A )2 α = ( 1 λ1 /λ 2 1) 3 When α, the parabolic surfaces are obtained F (X) = F + (X F λ) 2, λ 1 = λ 2 = λ 4λ

17 Q-Model: Derivation

18 Q-Model: Properties F 2 (X)=F 1 (X)+X F i (X) 2 linear asymptote 1 X band boundary X different curvatures, λ 1, λ 2 Connection to spectroscopic observables: λ i = βh 2 δν 2 i /2, α = h ν st + λ 2 λ 2 λ 1 Marcus-Hush term Correction from non-parabolicity F = h ν abs +ν em 2 λ 1 2 α (1+α) 2

19 Reorganization Energy of Polarizable Chromophores nuclear polarization response, µ p = a p m 2 λ i = a p (f i /f ei ) [ m +2a p α m i ] 2 dipole moment change polarizability change α = f e2 α 2 f e1 α 1, m = f e2 m 2 f e1 m 1 f ei = [ 1 2 a e α i ] 1 f i = [ 1 2a p α i ] 1 a e is the response of induced polarization, µ e = a e m 2

20 MC Simulations of Transitions in Polarizable Chromophores CS transition CR transition Energy gap: E = E m R 1 2 α R 2 Reorganization energy: dipole moment m polarizability α diameter σ dipole moment m polarizability α λ i = β [δ( E)] 2 i /2 λ i, ev Q-model.5.1 α /σ 3 JPCA, 18, 24, MC -βµ e -βµ p m=, α/σ 3 =.6, α = slope=a e σ βm /σ α =, α=, βm 2 /σ 3 =5. slope=a p σ βm /σ

21 1.5 TRF band-shape 1. α 2 =5 Å ³ m 2 =15 D I TRF (ω) 1 C 2 (t)= ω/ev m 1 =6 D α 1 =3 Å ³ I TRF (ω, t) e β α(t) ω Ω I 1 (2β ) α(t) 3 λ(t) ω Ω, JCP 21, 115, 8933

22 Time-Resolved Correlation Functions α 2 =1 Å ³ α 2 =4 Å ³ λ(t)/λ( ) 2 1 α 1 =3 Å ³ α 2 =5 Å ³ e (2) g (1) t = t = S Ω,2 (t) C 2 (t) S Ω,2 (t) = Ω(t) 2 Ω( ) 2 Ω( 2 Ω( ) 2 C 2 (t) = δω(t)δω() 2 δω() C 2 (t) S Ω (t) is NOT a good probe of nonlinear dynamics

23 Coumarin absorption.5 m 12 =5.8 D S 1 m 2 =14.9 D α 2 =3.2 Å ³ m=7.53 D βσ 2 /kk 12 1 solvent polarity S m 1 =7.4 D α 1 =25.8 Å ³ βσ i Q-model prediction for α > emission Stokes absorption h ν st, ev m Dk 8 emission k D ν st /kk m Am m DA m A

24 Model and Physical Picture Intensity 1 5 hybrid polarizable two-sphere m 12. R p 1 δ n δn A Nonequilibrium configuration em. abs ν/kk D Equilibrium configuration q n = q n δn γ n 2κ n E change in population q n q n

25 Hybrid Model Coupling between the D and A states is explicitely considered Coupling to all other states is accounted through the dipolar polarizability ᾱ = α 2 m 12 2 E DA Solute-solvent coupling: non-condon coupling m 1 R 1 2ᾱ1R 2 m 12 R m 12 R m 2 R 1 2ᾱ2R 2 Electron-phonon coupling: n γ 1nq n n 1 n γ 2nq n electronic population n 2

26 Calculation Procedure solid - 2MB dashed - gas phase Intensity.2.1 em. abs. 2 3 ν/kk FCWD( ν) = (δn(r) dx 1 δ( ν x E[R])FCWD ref ( ν ref + x/δn(r)) 2 acetonitrile Intensity 1 em. abs

27 Coumarin-153 band-shapes em. theory acn abs. experiment relative width, kk 1-1 em abs ν/kk.2.1 em ν/κκ abs. acet ν st s,v /kk ν st /kk vibrational solvent-induced ν st (calc)/kk

28 Spectral intensity and the Franck-Condon factor Lax, Kubo-Toyozawa, Davydov, 5 s. Spectral intensity: I abs/em (ν) m 12 2 F CW D(diagonal matrix elements), m 12 is the transition dipole arising from the interaction with the external electric field of the radiation m 12 E (t) In a polar medium, m 12 R R is the solvent local field. I abs/em (ν) m 12 2 F CW D(m 12 )

29 Hole Transfer in DNA Hole Acceptor Hole Donor k ET V (R) 2 exp[ E a (R)/kT ] Experiment: k ET exp[ β DA R DA ] β DA = β V + β λ, β λ = 1 4kT β V Å 1, λ R β λ = 1. Å 1 Mg 2+ H 2 O β DA (Exp).9Å 1

30 Energy Gap Law.5.4 G L C T G L A A C F act, ev Marcus-Hush Q-Model λ s, ev α ln(k ET ) CR CS F, ev ( F act = α F λ 1 α 2 /(1 + α) ) 2 α λ 1 β λ (Marcus Hush) = 1. Å 1, β λ (Q Model) =.26 Å 1 JPCB 17, 23,

31 Conclusions β(f i (X)-F 1 ) 8 4 X 2 1 βλ 1 =4 α 1 = 4 3-parameter model: λ 1, λ 2, F -1 1 βx I TRF (ω) C 2 (t)= α 2 =5 Å ³ m 2 =15 D Time-resolved band-shapes: λ(t) Const ω/ev m 1 =6 D α 1 =3 Å ³ βσ 2 /kk emission absorption solvent polarity ν st /kk D-A coupling + polarizability = band-shapes of intense transitions. G L C L T G A A C ln(k ET ) CR CS F, ev Energy gap law with λ 1 λ 2.

A Theory of Electron Transfer and Steady-State Optical Spectra of Chromophores with Varying Electronic Polarizability

A Theory of Electron Transfer and Steady-State Optical Spectra of Chromophores with Varying Electronic Polarizability J. Phys. Chem. A 1999, 103, 10981-10992 10981 A Theory of Electron Transfer Steady-State Optical Spectra of Chromophores with Varying Electronic Polarizability Dmitry V. Matyushov* Gregory A. Voth* Department

More information

12.2 MARCUS THEORY 1 (12.22)

12.2 MARCUS THEORY 1 (12.22) Andrei Tokmakoff, MIT Department of Chemistry, 3/5/8 1-6 1. MARCUS THEORY 1 The displaced harmonic oscillator (DHO) formalism and the Energy Gap Hamiltonian have been used extensively in describing charge

More information

Laser Induced Control of Condensed Phase Electron Transfer

Laser Induced Control of Condensed Phase Electron Transfer Laser Induced Control of Condensed Phase Electron Transfer Rob D. Coalson, Dept. of Chemistry, Univ. of Pittsburgh Yuri Dakhnovskii, Dept. of Physics, Univ. of Wyoming Deborah G. Evans, Dept. of Chemistry,

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mit.edu 5.74 Introductory Quantum Mechanics II Spring 009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Andrei Tokmakoff,

More information

11.1. FÖRSTER RESONANCE ENERGY TRANSFER

11.1. FÖRSTER RESONANCE ENERGY TRANSFER 11-1 11.1. FÖRSTER RESONANCE ENERGY TRANSFER Förster resonance energy transfer (FRET) refers to the nonradiative transfer of an electronic excitation from a donor molecule to an acceptor molecule: D *

More information

Dipole Solvation: Nonlinear Effects, Density Reorganization, and the Breakdown of the Onsager Saturation Limit

Dipole Solvation: Nonlinear Effects, Density Reorganization, and the Breakdown of the Onsager Saturation Limit Dipole Solvation: Nonlinear Effects, Density Reorganization, and the Breakdown of the Onsager Saturation Limit Anatoli Milischuk and Dmitry V. Matyushov* Department of Chemistry and Biochemistry, Arizona

More information

Effects of Solvent and Solute Polarizability on the Reorganization Energy of Electron Transfer

Effects of Solvent and Solute Polarizability on the Reorganization Energy of Electron Transfer Effects of Solvent and Solute Polarizability on the Reorganization Energy of Electron Transfer Shikha Gupta and Dmitry V. Matyushov* Department of Chemistry and Biochemistry and the Center for the Study

More information

Quantum Chemistry. NC State University. Lecture 5. The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy

Quantum Chemistry. NC State University. Lecture 5. The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy Quantum Chemistry Lecture 5 The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy NC State University 3.5 Selective absorption and emission by atmospheric gases (source:

More information

Photon Physics. Week 5 5/03/2013

Photon Physics. Week 5 5/03/2013 Photon Physics Week 5 5/3/213 1 Rate equations including pumping dn 2 = R 2 N * σ 21 ( ω L ω ) I L N 2 R 2 2 dn 1 = R 1 + N * σ 21 ( ω L ω ) I L N 1 + N 2 A 21 ss solution: dn 2 = dn 1 = N 2 = R 2 N *

More information

1. Strahlungsgesetze, Ableitung der Planck-schen Strahlungsformel, Einstein-Koeffizienten, Extinktinskoeffizient, Oszillatorenstärke

1. Strahlungsgesetze, Ableitung der Planck-schen Strahlungsformel, Einstein-Koeffizienten, Extinktinskoeffizient, Oszillatorenstärke 1. Strahlungsgesetze, Ableitung der Planck-schen Strahlungsformel, Einstein-Koeffizienten, Extinktinskoeffizient, Oszillatorenstärke Einheiten in diesem Kapitel: diesmal cgs. Energy volume density of blackbody

More information

Luminescence Process

Luminescence Process Luminescence Process The absorption and the emission are related to each other and they are described by two terms which are complex conjugate of each other in the interaction Hamiltonian (H er ). In an

More information

Of Electrons, Energy, and Excitons

Of Electrons, Energy, and Excitons Of,, and Gert van der Zwan July 17, 2014 1 / 35 Bacterial 2 / 35 Bacterial Bacterial LH1, LH2: excitonic interaction and energy transfer. RC, cytochromes: electron transfer reactions. Q, UQ: proton transfer

More information

Spectral Broadening Mechanisms

Spectral Broadening Mechanisms Spectral Broadening Mechanisms Lorentzian broadening (Homogeneous) Gaussian broadening (Inhomogeneous, Inertial) Doppler broadening (special case for gas phase) The Fourier Transform NC State University

More information

Energetics of protein charge transfer and photosynthesis

Energetics of protein charge transfer and photosynthesis Energetics of protein charge transfer and photosynthesis Dmitry Matyushov Arizona State University, Center for Biological Physics Photochemistry, July 7, 2009 Respiratory chain Electron transport chain

More information

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics Last Lecture Overview and Introduction 1. Basic optics and spectroscopy. Lasers 3. Ultrafast lasers and nonlinear optics 4. Time-resolved spectroscopy techniques Jigang Wang, Feb, 009 Today 1. Spectroscopy

More information

Solvent Reorganization Energy of Charge Transfer in DNA Hairpins

Solvent Reorganization Energy of Charge Transfer in DNA Hairpins J. Phys. Chem. B 2003, 107, 14509-14520 14509 Solvent Reorganization Energy of Charge Transfer in DNA Hairpins David N. LeBard, Mark Lilichenko, Dmitry V. Matyushov,*, Yuri A. Berlin, and Mark A. Ratner

More information

Energetics of Bacterial Photosynthesis

Energetics of Bacterial Photosynthesis 12424 J. Phys. Chem. B 2009, 113, 12424 12437 Energetics of Bacterial Photosynthesis David N. LeBard, and Dmitry V. Matyushov*, Center for Biological Physics, Arizona State UniVersity, P.O. Box 871604,

More information

Theory of electron transfer. Winterschool for Theoretical Chemistry and Spectroscopy Han-sur-Lesse, Belgium, December 2011

Theory of electron transfer. Winterschool for Theoretical Chemistry and Spectroscopy Han-sur-Lesse, Belgium, December 2011 Theory of electron transfer Winterschool for Theoretical Chemistry and Spectroscopy Han-sur-Lesse, Belgium, 12-16 December 2011 Electron transfer Electrolyse Battery Anode (oxidation): 2 H2O(l) O2(g) +

More information

Fluorescence Spectroscopy

Fluorescence Spectroscopy Fluorescence Spectroscopy Frequency and time dependent emission Emission and Excitation fluorescence spectra Stokes Shift: influence of molecular vibrations and solvent Time resolved fluorescence measurements

More information

7.1. FLUCTUATIONS AND RANDOMNESS: SOME DEFINITIONS 2

7.1. FLUCTUATIONS AND RANDOMNESS: SOME DEFINITIONS 2 Andrei Tokmakoff, MIT Dept. of Chemistry, 3/5/9 7-7. OBSERVING FLUCTUATIONS IN SPECTROSCOPY ere we will address how fluctuations are observed in spectroscopy and how dephasing influences the absorption

More information

Spectral Broadening Mechanisms. Broadening mechanisms. Lineshape functions. Spectral lifetime broadening

Spectral Broadening Mechanisms. Broadening mechanisms. Lineshape functions. Spectral lifetime broadening Spectral Broadening echanisms Lorentzian broadening (Homogeneous) Gaussian broadening (Inhomogeneous, Inertial) Doppler broadening (special case for gas phase) The Fourier Transform NC State University

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mit.edu 5.74 Introductory Quantum Mechanics II Spring 9 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Andrei Tokmakoff,

More information

Molecular spectroscopy

Molecular spectroscopy Molecular spectroscopy Origin of spectral lines = absorption, emission and scattering of a photon when the energy of a molecule changes: rad( ) M M * rad( ' ) ' v' 0 0 absorption( ) emission ( ) scattering

More information

Marcus Theory for Electron Transfer a short introduction

Marcus Theory for Electron Transfer a short introduction Marcus Theory for Electron Transfer a short introduction Minoia Andrea MPIP - Journal Club -Mainz - January 29, 2008 1 Contents 1 Intro 1 2 History and Concepts 2 2.1 Frank-Condon principle applied to

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.80 Lecture

More information

Optical Properties of Lattice Vibrations

Optical Properties of Lattice Vibrations Optical Properties of Lattice Vibrations For a collection of classical charged Simple Harmonic Oscillators, the dielectric function is given by: Where N i is the number of oscillators with frequency ω

More information

Theoretical Photochemistry WiSe 2016/17

Theoretical Photochemistry WiSe 2016/17 Theoretical Photochemistry WiSe 2016/17 Lecture 8 Irene Burghardt burghardt@chemie.uni-frankfurt.de) http://www.theochem.uni-frankfurt.de/teaching/ Theoretical Photochemistry 1 Topics 1. Photophysical

More information

Charge and Energy Transfer Dynamits in Molecular Systems

Charge and Energy Transfer Dynamits in Molecular Systems Volkhard May, Oliver Kühn Charge and Energy Transfer Dynamits in Molecular Systems Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents 1 Introduction 19 2 Electronic

More information

Theoretical models for the solvent effect

Theoretical models for the solvent effect Theoretical models for the solvent effect Benedetta Mennucci Dipartimento di Chimica e Chimica Industriale Web: http://benedetta.dcci.unipi.it Email: bene@dcci.unipi.it 8. Excited electronic states in

More information

Photon Physics. Week 4 26/02/2013

Photon Physics. Week 4 26/02/2013 Photon Physics Week 4 6//13 1 Classical atom-field interaction Lorentz oscillator: Classical electron oscillator with frequency ω and damping constant γ Eqn of motion: Final result: Classical atom-field

More information

Molecular spectroscopy Multispectral imaging (FAFF 020, FYST29) fall 2017

Molecular spectroscopy Multispectral imaging (FAFF 020, FYST29) fall 2017 Molecular spectroscopy Multispectral imaging (FAFF 00, FYST9) fall 017 Lecture prepared by Joakim Bood joakim.bood@forbrf.lth.se Molecular structure Electronic structure Rotational structure Vibrational

More information

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering Raman Spectroscopy What happens when light falls on a material? Transmission Reflection Absorption Luminescence Elastic Scattering Inelastic Scattering Raman, Fluorescence and IR Scattering Absorption

More information

Chem 442 Review of Spectroscopy

Chem 442 Review of Spectroscopy Chem 44 Review of Spectroscopy General spectroscopy Wavelength (nm), frequency (s -1 ), wavenumber (cm -1 ) Frequency (s -1 ): n= c l Wavenumbers (cm -1 ): n =1 l Chart of photon energies and spectroscopies

More information

Solvation and reorganization energies in polarizable molecular and continuum solvents

Solvation and reorganization energies in polarizable molecular and continuum solvents Solvation and reorganization energies in polarizable molecular and continuum solvents Joel S. Bader CuraGen Corporation, 322 East Main Street, Branford, Connecticut 06405 Christian M. Cortis Department

More information

Plan of the lectures

Plan of the lectures Plan of the lectures 1. Introductory remarks on metallic nanostructures Relevant quantities and typical physical parameters Applications. Linear electron response: Mie theory and generalizations 3. Nonlinear

More information

Optimal Prediction for Radiative Transfer: A New Perspective on Moment Closure

Optimal Prediction for Radiative Transfer: A New Perspective on Moment Closure Optimal Prediction for Radiative Transfer: A New Perspective on Moment Closure Benjamin Seibold MIT Applied Mathematics Mar 02 nd, 2009 Collaborator Martin Frank (TU Kaiserslautern) Partial Support NSF

More information

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree)

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree) Supplementary Figures. (002)(110) Tetragonal I4/mcm Intensity (a.u) (004)(220) 10 (112) (211) (202) 20 Supplementary Figure 1. X-ray diffraction (XRD) pattern of the sample. The XRD characterization indicates

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.80 Lecture

More information

Luminescence. Photoluminescence (PL) is luminescence that results from optically exciting a sample.

Luminescence. Photoluminescence (PL) is luminescence that results from optically exciting a sample. Luminescence Topics Radiative transitions between electronic states Absorption and Light emission (spontaneous, stimulated) Excitons (singlets and triplets) Franck-Condon shift(stokes shift) and vibrational

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Sample characterization The presence of Si-QDs is established by Transmission Electron Microscopy (TEM), by which the average QD diameter of d QD 2.2 ± 0.5 nm has been determined

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mit.edu 5.74 Introductory Quantum Mechanics II Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. p. 10-0 10..

More information

Survey on Laser Spectroscopic Techniques for Condensed Matter

Survey on Laser Spectroscopic Techniques for Condensed Matter Survey on Laser Spectroscopic Techniques for Condensed Matter Coherent Radiation Sources for Small Laboratories CW: Tunability: IR Visible Linewidth: 1 Hz Power: μw 10W Pulsed: Tunabality: THz Soft X-ray

More information

Spectroscopic properties of dipicolinic acid and its dianion

Spectroscopic properties of dipicolinic acid and its dianion Chemical Physics 322 (2006) 254 268 www.elsevier.com/locate/chemphys Spectroscopic properties of dipicolinic acid and its dianion John Rui-Hua Xie a, Vedene H. Smith Jr. b, Roland E. Allen a, * a Department

More information

Theoretical Photochemistry WiSe 2017/18

Theoretical Photochemistry WiSe 2017/18 Theoretical Photochemistry WiSe 2017/18 Lecture 7 Irene Burghardt (burghardt@chemie.uni-frankfurt.de) http://www.theochem.uni-frankfurt.de/teaching/ Theoretical Photochemistry 1 Topics 1. Photophysical

More information

Module 4 : Third order nonlinear optical processes. Lecture 28 : Inelastic Scattering Processes. Objectives

Module 4 : Third order nonlinear optical processes. Lecture 28 : Inelastic Scattering Processes. Objectives Module 4 : Third order nonlinear optical processes Lecture 28 : Inelastic Scattering Processes Objectives In this lecture you will learn the following Light scattering- elastic and inelastic-processes,

More information

PROOF COPY JCP. Modeling the free energy surfaces of electron transfer in condensed phases

PROOF COPY JCP. Modeling the free energy surfaces of electron transfer in condensed phases JOURNAL OF CHEMICAL PHYSICS VOLUME 113, NUMBER 13 1 OCTOBER 2000 Modeling the free energy surfaces of electron transfer in condensed phases Dmitry V. Matyushov a) and Gregory A. Voth Department of Chemistry

More information

Optical coherence spectroscopy in solution: Determining the system-bath correlation function

Optical coherence spectroscopy in solution: Determining the system-bath correlation function Optical coherence spectroscopy in solution: Determining the system-bath correlation function Lewis D. Book a, David C. Arnett b and Norbert F. Scherer a a Department of Chemistry and The James Franck Institute,

More information

Bistable Polyaromatic Aminoboranes: Bright Solid State Emission and Mechanochromism

Bistable Polyaromatic Aminoboranes: Bright Solid State Emission and Mechanochromism Supporting Information Bistable Polyaromatic Aminoboranes: Bright Solid State Emission and Mechanochromism Neena K. Kalluvettukuzhy and Pakkirisamy Thilagar* Department of Inorganic and Physical Chemistry,

More information

/2Mα 2 α + V n (R)] χ (R) = E υ χ υ (R)

/2Mα 2 α + V n (R)] χ (R) = E υ χ υ (R) Spectroscopy: Engel Chapter 18 XIV 67 Vibrational Spectroscopy (Typically IR and Raman) Born-Oppenheimer approx. separate electron-nuclear Assume elect-nuclear motion separate, full wave fct. ψ (r,r) =

More information

Lecture 2 Line Radiative Transfer for the ISM

Lecture 2 Line Radiative Transfer for the ISM Lecture 2 Line Radiative Transfer for the ISM Absorption lines in the optical & UV Equation of transfer Absorption & emission coefficients Line broadening Equivalent width and curve of growth Observations

More information

Vibrational and Rotational Analysis of Hydrogen Halides

Vibrational and Rotational Analysis of Hydrogen Halides Vibrational and Rotational Analysis of Hydrogen Halides Goals Quantitative assessments of HBr molecular characteristics such as bond length, bond energy, etc CHEM 164A Huma n eyes Near-Infrared Infrared

More information

Basic Photoexcitation and Modulation Spectroscopy

Basic Photoexcitation and Modulation Spectroscopy Basic Photoexcitation and Modulation Spectroscopy Intro Review lock-in detection Photoinduced absorption Electroabsorption (Stark) Spectroscopy Charge Modulation Photoexcite sample Take absorption spectra

More information

Photosynthetic and Protein Electron Transfer: Is Biology (Thermo) Dynamic?

Photosynthetic and Protein Electron Transfer: Is Biology (Thermo) Dynamic? Photosynthetic and Protein Electron Transfer: Is Biology (Thermo) Dynamic? University of Calgary, December 13, 2014 Dmitry Matyushov Department of Physics/Chemistry Center for Biological Physics Arizona

More information

Microscopic Hamiltonian dynamics perturbed by a conservative noise

Microscopic Hamiltonian dynamics perturbed by a conservative noise Microscopic Hamiltonian dynamics perturbed by a conservative noise CNRS, Ens Lyon April 2008 Introduction Introduction Fourier s law : Consider a macroscopic system in contact with two heat baths with

More information

1. Transition dipole moment

1. Transition dipole moment 1. Transition dipole moment You have measured absorption spectra of aqueous (n=1.33) solutions of two different chromophores (A and B). The concentrations of the solutions were the same. The absorption

More information

Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9)

Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9) Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9) XIV 67 Vibrational Spectroscopy (Typical for IR and Raman) Born-Oppenheimer separate electron-nuclear motion ψ (rr) = χ υ (R) φ el (r,r) -- product

More information

Boltzmann Distribution

Boltzmann Distribution Boltzmann Distribution 0,4 N 0,3 0,2 T1 T2 T3 Τ 1 >Τ 2 >Τ 3 0,1 0,0 0 1 2 3 4 5 6 7 8 9 10 Energy Electronic transitions hν hν E 2 E 1 induced Absorption spontaneous Emission induced Emission Β 12 Α 21

More information

Effect of Electric Field on Condensed-Phase Molecular Systems. II. Stark Effect on the Hydroxyl Stretch Vibration of Ice

Effect of Electric Field on Condensed-Phase Molecular Systems. II. Stark Effect on the Hydroxyl Stretch Vibration of Ice Effect of Electric Field on Condensed-Phase Molecular Systems. II. Stark Effect on the Hydroxyl Stretch Vibration of Ice Sunghwan Shin, Hani Kang, Daeheum Cho, Jin Yong Lee, *, and Heon Kang *, Department

More information

Physical Chemistry Laboratory II (CHEM 337) EXPT 9 3: Vibronic Spectrum of Iodine (I2)

Physical Chemistry Laboratory II (CHEM 337) EXPT 9 3: Vibronic Spectrum of Iodine (I2) Physical Chemistry Laboratory II (CHEM 337) EXPT 9 3: Vibronic Spectrum of Iodine (I2) Obtaining fundamental information about the nature of molecular structure is one of the interesting aspects of molecular

More information

Third-order nonlinear time domain probes of solvation dynamics

Third-order nonlinear time domain probes of solvation dynamics Third-order nonlinear time domain probes of solvation dynamics Taiha Joo, Yiwei Jia, Jae-Young Yu, Matthew J. Lang, and Graham R. Fleming Department of Chemistry and the James Franck Research Institute,

More information

Electronic transitions: Vibrational and rotational structure

Electronic transitions: Vibrational and rotational structure Electronic transitions: Vibrational and rotational structure An electronic transition is made up of vibrational bands, each of which is in turn made up of rotational lines Vibrational structure Vibrational

More information

Lecture 6 - spectroscopy

Lecture 6 - spectroscopy Lecture 6 - spectroscopy 1 Light Electromagnetic radiation can be thought of as either a wave or as a particle (particle/wave duality). For scattering of light by particles, air, and surfaces, wave theory

More information

Material Properties & Characterization - Surfaces

Material Properties & Characterization - Surfaces 1) XPS Spectrum analysis: The figure below shows an XPS spectrum measured on the surface of a clean insoluble homo-polyether. Using the formulas and tables in this document, answer the following questions:

More information

Ψ t = ih Ψ t t. Time Dependent Wave Equation Quantum Mechanical Description. Hamiltonian Static/Time-dependent. Time-dependent Energy operator

Ψ t = ih Ψ t t. Time Dependent Wave Equation Quantum Mechanical Description. Hamiltonian Static/Time-dependent. Time-dependent Energy operator Time Dependent Wave Equation Quantum Mechanical Description Hamiltonian Static/Time-dependent Time-dependent Energy operator H 0 + H t Ψ t = ih Ψ t t The Hamiltonian and wavefunction are time-dependent

More information

Net emission coefficients of low temperature thermal iron-helium plasma

Net emission coefficients of low temperature thermal iron-helium plasma Optica Applicata, Vol. XXXVIII, No. 2, 28 Net emission coefficients of low temperature thermal iron-helium plasma TOMASZ MOSCICKI, JACEK HOFFMAN, ZYGMUNT SZYMANSKI Institute of Fundamental Technological

More information

Observations 3: Data Assimilation of Water Vapour Observations at NWP Centres

Observations 3: Data Assimilation of Water Vapour Observations at NWP Centres Observations 3: Data Assimilation of Water Vapour Observations at NWP Centres OUTLINE: Data Assimilation A simple analogy: data fitting 4D-Var The observation operator : RT modelling Review of Radiative

More information

Structural dynamics of hydrogen bonded methanol oligomers: Vibrational transient hole burning studies of spectral diffusion

Structural dynamics of hydrogen bonded methanol oligomers: Vibrational transient hole burning studies of spectral diffusion JOURNAL OF CHEMICAL PHYSICS VOLUME 119, NUMBER 1 1 JULY 2003 Structural dynamics of hydrogen bonded methanol oligomers: Vibrational transient hole burning studies of spectral diffusion I. R. Piletic, K.

More information

Supporting Materials

Supporting Materials Supporting Materials Figure S1 Experimental Setup Page Figure S (a) (b) (c) Feynman Diagrams Page 3-6 Figure S3 D IR Spectra Page 7 Figure S4 Kinetic Model Page 8 Figure S5 Van t Hoff Plots Page 9 1 k

More information

Winter College on Optics and Energy February Photophysics for photovoltaics. G. Lanzani CNST of Milano Italy

Winter College on Optics and Energy February Photophysics for photovoltaics. G. Lanzani CNST of Milano Italy 13-4 Winter College on Optics and Energy 8-19 February 010 Photophysics for photovoltaics G. Lanzani CNST of IIT@POLIMI Milano Italy Winter College on Optics and Energy Guglielmo Lanzani CNST of IIT@POLIMI,

More information

AZ ) Brookhaven National Laboratory, Chemistry Department, Box 5000, Upton, NY ,

AZ ) Brookhaven National Laboratory, Chemistry Department, Box 5000, Upton, NY , Free energy functionals for polarization fluctuations: Pekar factor revisited Mohammadhasan Dinpajooh, 1 Marshall D. Newton, 2 and Dmitry V. Matyushov 3 1) School of Molecular Sciences, Arizona State University,

More information

Application of IR Raman Spectroscopy

Application of IR Raman Spectroscopy Application of IR Raman Spectroscopy 3 IR regions Structure and Functional Group Absorption IR Reflection IR Photoacoustic IR IR Emission Micro 10-1 Mid-IR Mid-IR absorption Samples Placed in cell (salt)

More information

Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy

Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy Linda M. Casson, Francis Ndi and Eric Teboul HORIBA Scientific, 3880 Park Avenue, Edison,

More information

Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths

Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths 4.1 The Natural Line Shape 4.2 Collisional Broadening 4.3 Doppler Broadening 4.4 Einstein Treatment of Stimulated Processes Width

More information

we will discuss the electronic excitation energy transfer (EET) between two molecules according to the general scheme

we will discuss the electronic excitation energy transfer (EET) between two molecules according to the general scheme Chapter 3 Excitation Energy Transfer 3.1 Introduction we will discuss the electronic excitation energy transfer EET) between two molecules according to the general scheme D + A D + A the excitation energy

More information

Two-Color three-pulse Photon Echoes

Two-Color three-pulse Photon Echoes Two-Color three-pulse Photon Echoes Intensity (normalized) 1 0.8 0.6 0.4 0.2 IR144 in Methanol 0 600 650 700 750 800 850 900 Wavelength (nm) 1 Intensity (normalized) 0.8 0.6 0.4 0.2 DTTCI in Methanol 0

More information

Rotational Brownian motion; Fluorescence correlation spectroscpy; Photobleaching and FRET. David A. Case Rutgers, Spring 2009

Rotational Brownian motion; Fluorescence correlation spectroscpy; Photobleaching and FRET. David A. Case Rutgers, Spring 2009 Rotational Brownian motion; Fluorescence correlation spectroscpy; Photobleaching and FRET David A. Case Rutgers, Spring 2009 Techniques based on rotational motion What we studied last time probed translational

More information

Collisional-Radiative Model of Molecular Hydrogen

Collisional-Radiative Model of Molecular Hydrogen 016.3 IAEA Collisional-Radiative Model of Molecular Hydrogen Keiji Sawada and Shinichi Hidaka Shinshu University, Japan Motoshi Goto NIFS, Japan Introduction : Our models elastic collision Collisional

More information

Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. II. Hybrid cumulant expansion

Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. II. Hybrid cumulant expansion Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. II. Hybrid cumulant expansion The MIT Faculty has made this article openly available. Please share how this

More information

Two-photon Absorption Process in Semiconductor Quantum Dots

Two-photon Absorption Process in Semiconductor Quantum Dots Two-photon Absorption Process in Semiconductor Quantum Dots J. López Gondar 1, R. Cipolatti 1 and G. E. Marques 2. 1 Instituto de Matemática, Universidade Federal do Rio de Janeiro C.P. 68530, Rio de Janeiro,

More information

Lecture 5. Anisotropy decay/data analysis. Enrico Gratton

Lecture 5. Anisotropy decay/data analysis. Enrico Gratton Lecture 5. Anisotropy decay/data analysis Enrico Gratton Anisotropy decay Energy-transfer distance distributions Time resolved spectra Excited-state reactions Basic physics concept in polarization The

More information

V( x) = V( 0) + dv. V( x) = 1 2

V( x) = V( 0) + dv. V( x) = 1 2 Spectroscopy 1: rotational and vibrational spectra The vibrations of diatomic molecules Molecular vibrations Consider a typical potential energy curve for a diatomic molecule. In regions close to R e (at

More information

Chemistry Instrumental Analysis Lecture 8. Chem 4631

Chemistry Instrumental Analysis Lecture 8. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 8 UV to IR Components of Optical Basic components of spectroscopic instruments: stable source of radiant energy transparent container to hold sample device

More information

Radiative Transfer and Molecular Lines Sagan Workshop 2009

Radiative Transfer and Molecular Lines Sagan Workshop 2009 Radiative Transfer and Molecular Lines Sagan Workshop 2009 Sara Seager Trent Schindler Trent Schindler MIT Lecture Contents Overview of Equations for Planetary Atmospheres Radiative Transfer Thermal Inversions

More information

Triplet state diffusion in organometallic and organic semiconductors

Triplet state diffusion in organometallic and organic semiconductors Triplet state diffusion in organometallic and organic semiconductors Prof. Anna Köhler Experimental Physik II University of Bayreuth Germany From materials properties To device applications Organic semiconductors

More information

Direct and Indirect Semiconductor

Direct and Indirect Semiconductor Direct and Indirect Semiconductor Allowed values of energy can be plotted vs. the propagation constant, k. Since the periodicity of most lattices is different in various direction, the E-k diagram must

More information

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA Luminescence Spectroscopy of Semiconductors IVAN PELANT Institute ofphysics, v.v.i. Academy ofsciences of the Czech Republic, Prague JAN VALENTA Department of Chemical Physics and Optics Charles University,

More information

Chemistry 543--Final Exam--Keiderling May 5, pm SES

Chemistry 543--Final Exam--Keiderling May 5, pm SES Chemistry 543--Final Exam--Keiderling May 5,1992 -- 1-5pm -- 174 SES Please answer all questions in the answer book provided. Make sure your name is clearly indicated and that the answers are clearly numbered,

More information

C. Show your answer in part B agrees with your answer in part A in the limit that the constant c 0.

C. Show your answer in part B agrees with your answer in part A in the limit that the constant c 0. Problem #1 A. A projectile of mass m is shot vertically in the gravitational field. Its initial velocity is v o. Assuming there is no air resistance, how high does m go? B. Now assume the projectile is

More information

[ ( )] + ρ VIII. NONLINEAR OPTICS -- QUANTUM PICTURE: 45 THE INTERACTION OF RADIATION AND MATTER: QUANTUM THEORY PAGE 88

[ ( )] + ρ VIII. NONLINEAR OPTICS -- QUANTUM PICTURE: 45 THE INTERACTION OF RADIATION AND MATTER: QUANTUM THEORY PAGE 88 THE INTERACTION OF RADIATION AND MATTER: QUANTUM THEORY PAGE 88 VIII. NONLINEAR OPTICS -- QUANTUM PICTURE: 45 A QUANTUM MECHANICAL VIEW OF THE BASICS OF N ONLINEAR OPTICS 46 In what follows we draw on

More information

PRINCIPLES OF NONLINEAR OPTICAL SPECTROSCOPY

PRINCIPLES OF NONLINEAR OPTICAL SPECTROSCOPY PRINCIPLES OF NONLINEAR OPTICAL SPECTROSCOPY Shaul Mukamel University of Rochester Rochester, New York New York Oxford OXFORD UNIVERSITY PRESS 1995 Contents 1. Introduction 3 Linear versus Nonlinear Spectroscopy

More information

Eran Rabani, S. A. Egorov, a) and B. J. Berne Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027

Eran Rabani, S. A. Egorov, a) and B. J. Berne Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027 JOURNAL OF CHEMICAL PHYSICS VOLUME 109, NUMBER 15 15 OCTOBER 1998 A comparison of exact quantum mechanical and various semiclassical treatments for the vibronic absorption spectrum: The case of fast vibrational

More information

n ( λ ) is observed. Further, the bandgap of the ZnTe semiconductor is

n ( λ ) is observed. Further, the bandgap of the ZnTe semiconductor is Optical Spectroscopy Lennon O Naraigh, 0000 Date of Submission: 0 th May 004 Abstract: This experiment is an exercise in the principles and practice of optical spectroscopy. The continuous emission spectrum

More information

What is spectroscopy?

What is spectroscopy? Absorption Spectrum What is spectroscopy? Studying the properties of matter through its interaction with different frequency components of the electromagnetic spectrum. With light, you aren t looking directly

More information

Lecture 2 Interstellar Absorption Lines: Line Radiative Transfer

Lecture 2 Interstellar Absorption Lines: Line Radiative Transfer Lecture 2 Interstellar Absorption Lines: Line Radiative Transfer 1. Atomic absorption lines 2. Application of radiative transfer to absorption & emission 3. Line broadening & curve of growth 4. Optical/UV

More information

( ) x10 8 m. The energy in a mole of 400 nm photons is calculated by: ' & sec( ) ( & % ) 6.022x10 23 photons' E = h! = hc & 6.

( ) x10 8 m. The energy in a mole of 400 nm photons is calculated by: ' & sec( ) ( & % ) 6.022x10 23 photons' E = h! = hc & 6. Introduction to Spectroscopy Spectroscopic techniques are widely used to detect molecules, to measure the concentration of a species in solution, and to determine molecular structure. For proteins, most

More information

LINEAR RESPONSE THEORY

LINEAR RESPONSE THEORY MIT Department of Chemistry 5.74, Spring 5: Introductory Quantum Mechanics II Instructor: Professor Andrei Tokmakoff p. 8 LINEAR RESPONSE THEORY We have statistically described the time-dependent behavior

More information

Spectroscopic Selection Rules

Spectroscopic Selection Rules E 0 v = 0 v = 1 v = 2 v = 4 v = 3 For a vibrational fundamental (Δv = ±1), the transition will have nonzero intensity in either the infrared or Raman spectrum if the appropriate transition moment is nonzero.

More information

Mie vs Rayleigh. Sun

Mie vs Rayleigh. Sun Mie vs Rayleigh Sun Chemists Probe Various Energy Levels of Molecules With Appropiate Energy Radiation It is convenient (and accurate enough for our purposes) to treat a molecule or system of molecules

More information

NYU Spin Dynamics in Single Molecule Magnets. Andrew D. Kent

NYU Spin Dynamics in Single Molecule Magnets. Andrew D. Kent Spin Dynamics in Single Molecule Magnets Andrew D. Kent Department of Physics, New York University Collaborators: Gregoire de Loubens, Enrique del Barco Stephen Hill Dmitry Garanin Myriam Sarachik, Yosi

More information

Luminescence basics. Slide # 1

Luminescence basics. Slide # 1 Luminescence basics Types of luminescence Cathodoluminescence: Luminescence due to recombination of EHPs created by energetic electrons. Example: CL mapping system Photoluminescence: Luminescence due to

More information