CHAPTER IV CHARACTERIZATION OF WEAK AND STRONG CHAOS

Size: px
Start display at page:

Download "CHAPTER IV CHARACTERIZATION OF WEAK AND STRONG CHAOS"

Transcription

1 CHAPTER IV CHARACTERIZATION OF WEAK AND 4.1. INTRODUCTION STRONG CHAOS The essential characteristic property of chaotic motion is its sensi - tive dependence on initial conditions which leads to unpredictability of the long time evolution of chaotic systems. This is characterized by the positive Lyapunov exponent. As mentioned in chapter-i chaotic motion with small positive maximal Lyapunov exponent is termed as weak chaos. Chaotic solution with relatively large positive maximal Lyapunov exponent is called strong chaos. Classification of weak and strong chaos by positive maximal Lyapunov exponent is not of great use for experimental time series where calculation of maximal Lyapunov exponent is a time consuming process. Further, we need to know the maximal Lyapunov exponent for a range of values of a control parameter to identify weak and strong chaotic nature. Instead of maximal Lyapunov exponent, in the present chapter, we consider the k-step difference quantity of a state variable of DVP oscillator and study its characteristic property for weak and strong chaos and n-band chaos. 39

2 iuz Figure 4.1. Variation of maximal Lyapunov exponent A of DVP oscillator equation as a function of f in the interval (.112,.115).

3 CL. L) ) N) Lo.5 1. N >C).5. Interval t Figure 4.2. Numerically calculated P(/xk), k=51,52,53,54 for f= P is nonstationary.

4 4.2. CHARACTERIZATION OF WEAK AND STRONG CHAOS USING PROBABILITY DISTRIBUTION OF P(L\xk) Let {x}, (n = 1 1 2,.., n) be a set of values of the variable x of the DVP equation in the Poincaré map. We consider the k-step difference quantity Xm+k - X,n, (4.1) where m = 1,2,.., N', N' < N - k. We calculated the probability distribution of {LXk} as follows. The maximum and minimum values of { /.Xk} are determined. The range of LXk is divided into a finite number (M) of equal intervals. We then counted the number of occurrences of /xk in each interval and obtained the probability distribution P(Lxk) (here after called as P) by dividing the numbers by the total number Weak chaos Figure (4.1) shows the variation of maximal Lyapunov exponent A of DVP oscillator equation as a function of f in the interval (.112,.115). In this figure, there are many regions labelled by.j. in which A is positive but very small value indicating weak chaos. For example, for f = a chaotic motion with A =.56 is found. Figure (4.2) shows the evolution of P for k ,53,54. In the numerical calculation first 14 data are neglected as transient and next 2 x io data points are used. It is evident that P changes continuously 4

5 P--.5 IT to.25 MIM CM to Interval i Figure 4.3. Numerically calculated P(L\x k), k=51,52,53,54 for f=o.1u (onset of chaos). P is nonstationary.

6 L i iou Figure 4.4. X 2 (k, 1) versus k for f= P is nonstationary.

7 U Figure 4.5. X 2 (k, 1) versus k for f= P is nonstationary.

8 with k. That is, the distribution is nonstationary. Figure (4.3) shows the evolution of P for k=51,52,53,54 at 1= (onset of chaos. Here again the distribution is nonstationary. This is further verified by the chi-square, x2 test. The test quantity is defined as [18] x2(k;j) = M (R - S)2 i=1 (R + Si)' (4.2) where Ri and Si are the probabilities of the i-th interval for P(Lxk+J) and P(zx k) respectively. In the eq.(4.2) intervals with R = Si = are excluded. If two probabilities differ we get a large x2. For two similar distributions x2 will be small. The numerically calculated x2 for f = is plotted in fig.(4.4). The analysis is carried out for the values upto 5. The non-decreasing x2 implies the nonstationary characteristics of P. Thus, a complete probability distribution is impossible for weak chaos. Another example is shown in fig.(4.5) for f= (onset of chaos). A possible mechanism of nonstationary probability distribution can be a recurrence of memory loss and recovery of initial conditions [145,146]. The key to searching for memory recovery is the value of the Lyapunov exponent. Chern and Otsuka [152] applied information theory and a local Lyapunov exponent to characterize the locally deforming nature in chaos. Particularly, using self-information and mutual information flows they have shown that memory recovery is possible for chaos with a very small positive Lyapunov exponent. Thus, 41

9 .5 It LC).3 II LO x a LO.3 >< a.. Interval I Figure 4.6. Stationary evolution of P for f =.118 (one-band strong chaos).

10 L I Figure 4.7. Numerically calculated x 2 (lc, 1) at f=o.118 (strong chaos).

11 ct.1.5 [e1ii LO x 3- ci L() ci to.5..1 to ><.5 3- D. 2 4 Interval I Figure 4.8. Evolution of P for a two-band chaotic attractor. The value off is.115.

12 iuu 15 2 Figure 4.9. Numerically calculated 2 (k, 2) at f=o.115 (strong chaos). P is stationary.

13 the physical mechanism of the nonstationary probability distribution is the recurrence of memory loss and the recovery of initial conditions Strong chaos Stationary probability distribution is found for strong chaos. Figure (4.6) shows P for f.118. The Lyapunov exponent ) is.343. The calculated x 2 is plotted in fig.(4.7). After k = 25, x 2 becomes. That is, the distribution has evolved into a stationary state. This suggests that the variable x can be described as if it were generated by a random number generator with a certain probability distribution. A possible mechanism for stationary probability distribution is a complete loss of memory to the initial condition Two-band chaos We studied the distribution P for two-band chaos. A two-band chaotic attractor is found to occur for f.115. Figure (4.8) shows P for k 51, 52, 53, 54. A simple switching between two classes of probability distribution can be clearly seen. This is because x keeps on alternating between the two bands of the chaotic attractor. x2 (k, 1) and X 2 (k, 2) are calculated. X 2 (k, 1) is found to be large while X 2 (k, 2) becomes almost zero for large value of k (fig.4.9). The distribution is stationary. 42

14 Cl) C In (l) C In Figure 4.1. (a) S versus (f - f) and (b) S versus X in the in-in scale where f= We found S CX (f - f) where c=1.87 and S cx where a=2.17.

15 Degree of nonstationarity of P Nonstationary P occurs for a range of values of the control parameter for which maximal Lyapunov exponent is relatively small. We have investigated the dependence of the degree of nonstationarity of P with the control parameter, Lyapunov exponent and correlation dimension. For this purpose, we define the quantity S, the degree of nonstationarity of P(Lx k), as N S= urn 1E x2 (k;j), (4.3) N oo N k=1 where X2 (k; j) is given by eq.(4.2). For strong chaos x2 - for large k and hence S =. Since x2 does not decay to zero for weak chaos in the limit k p oc evidently S is non-zero. The magnitude of S characterizes the degree of different nonstationary probability distributions. S is calculated for a range of values of f in the DVP oscillator. Figure (4.lOa) shows S versus (f fe) in the ln - lu scale, where f = Circles represent the numerical data and continuous line is the best straight line fit. Power-law variation of S with (f - f) is observed. S is found to approach zero as (f - where a is a constant. We found S 5.771(f - f) 187. Figure (4.1b) depicts S versus A. We note that as A increases S decays to zero. That is, transition from nonstationary P to stationary P occurs as A increases from zero. S is found to scale with A as S x (f - f 217 x

16 4.3. CONCLUSION We have studied the characteristics of probability distribution P of chaotic attractors of the DVP equation. Stationary probability distribution is found for chaotic attractors with large positive Lyapunov exponent corresponding to strong chaos. Nonstationary probability distribution is found to occur for chaotic attractor with sufficiently small positive Lyapunov exponent which is related to weak chaos. The above study suggests that the analysis of probability distribution characteristics of chaos can be used to distinguish weak and strong chaos. 44

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. Oscillatory solution

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. Oscillatory solution Oscillatory Motion Simple pendulum: linear Hooke s Law restoring force for small angular deviations d 2 θ dt 2 = g l θ θ l Oscillatory solution θ(t) =θ 0 sin(ωt + φ) F with characteristic angular frequency

More information

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. small angle approximation. Oscillatory solution

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. small angle approximation. Oscillatory solution Oscillatory Motion Simple pendulum: linear Hooke s Law restoring force for small angular deviations d 2 θ dt 2 = g l θ small angle approximation θ l Oscillatory solution θ(t) =θ 0 sin(ωt + φ) F with characteristic

More information

Chaotic motion. Phys 750 Lecture 9

Chaotic motion. Phys 750 Lecture 9 Chaotic motion Phys 750 Lecture 9 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t =0to

More information

Characterization of Attractors in Gumowski-Mira Map Using Fast Lyapunov Indicators

Characterization of Attractors in Gumowski-Mira Map Using Fast Lyapunov Indicators Letter Forma, 21, 151 158, 2006 Characterization of Attractors in Gumowski-Mira Map Using Fast Lyapunov Indicators L. M. SAHA 1 *, M. K. DAS 2 and Mridula BUDHRAJA 3 1 Department of Mathematics, Zakir

More information

Chaotic motion. Phys 420/580 Lecture 10

Chaotic motion. Phys 420/580 Lecture 10 Chaotic motion Phys 420/580 Lecture 10 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t

More information

Environmental Physics Computer Lab #8: The Butterfly Effect

Environmental Physics Computer Lab #8: The Butterfly Effect Environmental Physics Computer Lab #8: The Butterfly Effect The butterfly effect is the name coined by Lorenz for the main feature of deterministic chaos: sensitivity to initial conditions. Lorenz has

More information

THREE DIMENSIONAL SYSTEMS. Lecture 6: The Lorenz Equations

THREE DIMENSIONAL SYSTEMS. Lecture 6: The Lorenz Equations THREE DIMENSIONAL SYSTEMS Lecture 6: The Lorenz Equations 6. The Lorenz (1963) Equations The Lorenz equations were originally derived by Saltzman (1962) as a minimalist model of thermal convection in a

More information

NONLINEAR TIME SERIES ANALYSIS, WITH APPLICATIONS TO MEDICINE

NONLINEAR TIME SERIES ANALYSIS, WITH APPLICATIONS TO MEDICINE NONLINEAR TIME SERIES ANALYSIS, WITH APPLICATIONS TO MEDICINE José María Amigó Centro de Investigación Operativa, Universidad Miguel Hernández, Elche (Spain) J.M. Amigó (CIO) Nonlinear time series analysis

More information

CHAOS -SOME BASIC CONCEPTS

CHAOS -SOME BASIC CONCEPTS CHAOS -SOME BASIC CONCEPTS Anders Ekberg INTRODUCTION This report is my exam of the "Chaos-part" of the course STOCHASTIC VIBRATIONS. I m by no means any expert in the area and may well have misunderstood

More information

Lesson 4: Non-fading Memory Nonlinearities

Lesson 4: Non-fading Memory Nonlinearities Lesson 4: Non-fading Memory Nonlinearities Nonlinear Signal Processing SS 2017 Christian Knoll Signal Processing and Speech Communication Laboratory Graz University of Technology June 22, 2017 NLSP SS

More information

K. Pyragas* Semiconductor Physics Institute, LT-2600 Vilnius, Lithuania Received 19 March 1998

K. Pyragas* Semiconductor Physics Institute, LT-2600 Vilnius, Lithuania Received 19 March 1998 PHYSICAL REVIEW E VOLUME 58, NUMBER 3 SEPTEMBER 998 Synchronization of coupled time-delay systems: Analytical estimations K. Pyragas* Semiconductor Physics Institute, LT-26 Vilnius, Lithuania Received

More information

Stochastic Model for Adaptation Using Basin Hopping Dynamics

Stochastic Model for Adaptation Using Basin Hopping Dynamics Stochastic Model for Adaptation Using Basin Hopping Dynamics Peter Davis NTT Communication Science Laboratories 2-4 Hikaridai, Keihanna Science City, Kyoto, Japan 619-0237 davis@cslab.kecl.ntt.co.jp Abstract

More information

Maximum sum contiguous subsequence Longest common subsequence Matrix chain multiplication All pair shortest path Kna. Dynamic Programming

Maximum sum contiguous subsequence Longest common subsequence Matrix chain multiplication All pair shortest path Kna. Dynamic Programming Dynamic Programming Arijit Bishnu arijit@isical.ac.in Indian Statistical Institute, India. August 31, 2015 Outline 1 Maximum sum contiguous subsequence 2 Longest common subsequence 3 Matrix chain multiplication

More information

Dynamical Systems and Chaos Part I: Theoretical Techniques. Lecture 4: Discrete systems + Chaos. Ilya Potapov Mathematics Department, TUT Room TD325

Dynamical Systems and Chaos Part I: Theoretical Techniques. Lecture 4: Discrete systems + Chaos. Ilya Potapov Mathematics Department, TUT Room TD325 Dynamical Systems and Chaos Part I: Theoretical Techniques Lecture 4: Discrete systems + Chaos Ilya Potapov Mathematics Department, TUT Room TD325 Discrete maps x n+1 = f(x n ) Discrete time steps. x 0

More information

6.2 Brief review of fundamental concepts about chaotic systems

6.2 Brief review of fundamental concepts about chaotic systems 6.2 Brief review of fundamental concepts about chaotic systems Lorenz (1963) introduced a 3-variable model that is a prototypical example of chaos theory. These equations were derived as a simplification

More information

PHY411 Lecture notes Part 5

PHY411 Lecture notes Part 5 PHY411 Lecture notes Part 5 Alice Quillen January 27, 2016 Contents 0.1 Introduction.................................... 1 1 Symbolic Dynamics 2 1.1 The Shift map.................................. 3 1.2

More information

Contents Dynamical Systems Stability of Dynamical Systems: Linear Approach

Contents Dynamical Systems Stability of Dynamical Systems: Linear Approach Contents 1 Dynamical Systems... 1 1.1 Introduction... 1 1.2 DynamicalSystems andmathematical Models... 1 1.3 Kinematic Interpretation of a System of Differential Equations... 3 1.4 Definition of a Dynamical

More information

Revista Economica 65:6 (2013)

Revista Economica 65:6 (2013) INDICATIONS OF CHAOTIC BEHAVIOUR IN USD/EUR EXCHANGE RATE CIOBANU Dumitru 1, VASILESCU Maria 2 1 Faculty of Economics and Business Administration, University of Craiova, Craiova, Romania 2 Faculty of Economics

More information

Example Chaotic Maps (that you can analyze)

Example Chaotic Maps (that you can analyze) Example Chaotic Maps (that you can analyze) Reading for this lecture: NDAC, Sections.5-.7. Lecture 7: Natural Computation & Self-Organization, Physics 256A (Winter 24); Jim Crutchfield Monday, January

More information

Identical synchronization in chaotic jerk dynamical systems

Identical synchronization in chaotic jerk dynamical systems EJTP 3, No. 11 (2006) 33 70 Electronic Journal of Theoretical Physics Identical synchronization in chaotic jerk dynamical systems Vinod Patidar 1 and K. K. Sud 2 1 Department of Physics Banasthali Vidyapith

More information

Mechanisms of Chaos: Stable Instability

Mechanisms of Chaos: Stable Instability Mechanisms of Chaos: Stable Instability Reading for this lecture: NDAC, Sec. 2.-2.3, 9.3, and.5. Unpredictability: Orbit complicated: difficult to follow Repeatedly convergent and divergent Net amplification

More information

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET EXAM for DYNAMICAL SYSTEMS COURSE CODES: TIF 155, FIM770GU, PhD Time: Place: Teachers: Allowed material: Not allowed: August 22, 2018, at 08 30 12 30 Johanneberg Jan Meibohm,

More information

Discrete Time Coupled Logistic Equations with Symmetric Dispersal

Discrete Time Coupled Logistic Equations with Symmetric Dispersal Discrete Time Coupled Logistic Equations with Symmetric Dispersal Tasia Raymer Department of Mathematics araymer@math.ucdavis.edu Abstract: A simple two patch logistic model with symmetric dispersal between

More information

Nonlinear Dynamics. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna.

Nonlinear Dynamics. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna. Nonlinear Dynamics Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ 2 Introduction: Dynamics of Simple Maps 3 Dynamical systems A dynamical

More information

Bayesian Inference and the Symbolic Dynamics of Deterministic Chaos. Christopher C. Strelioff 1,2 Dr. James P. Crutchfield 2

Bayesian Inference and the Symbolic Dynamics of Deterministic Chaos. Christopher C. Strelioff 1,2 Dr. James P. Crutchfield 2 How Random Bayesian Inference and the Symbolic Dynamics of Deterministic Chaos Christopher C. Strelioff 1,2 Dr. James P. Crutchfield 2 1 Center for Complex Systems Research and Department of Physics University

More information

Power Series Solutions We use power series to solve second order differential equations

Power Series Solutions We use power series to solve second order differential equations Objectives Power Series Solutions We use power series to solve second order differential equations We use power series expansions to find solutions to second order, linear, variable coefficient equations

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction 1.1 What is Phase-Locked Loop? The phase-locked loop (PLL) is an electronic system which has numerous important applications. It consists of three elements forming a feedback loop:

More information

Experimental Characterization of Nonlinear Dynamics from Chua s Circuit

Experimental Characterization of Nonlinear Dynamics from Chua s Circuit Experimental Characterization of Nonlinear Dynamics from Chua s Circuit Patrick Chang, Edward Coyle, John Parker, Majid Sodagar NLD class final presentation 12/04/2012 Outline Introduction Experiment setup

More information

A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term

A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term ETASR - Engineering, Technology & Applied Science Research Vol., o.,, 9-5 9 A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term Fei Yu College of Information Science

More information

Coupled Replicator Equations for the Dynamics of Learning in Multiagent Systems

Coupled Replicator Equations for the Dynamics of Learning in Multiagent Systems Coupled Replicator Equations for the Dynamics of Learning in Multiagent Systems Yuzuru Sato 1, 2 and James P. Crutchfield 2, 1 Brain Science Institute, RIKEN, 2-1 Hirosawa, Saitama 351, Japan 2 Santa Fe

More information

698 Zou Yan-Li et al Vol. 14 and L 2, respectively, V 0 is the forward voltage drop across the diode, and H(u) is the Heaviside function 8 < 0 u < 0;

698 Zou Yan-Li et al Vol. 14 and L 2, respectively, V 0 is the forward voltage drop across the diode, and H(u) is the Heaviside function 8 < 0 u < 0; Vol 14 No 4, April 2005 cfl 2005 Chin. Phys. Soc. 1009-1963/2005/14(04)/0697-06 Chinese Physics and IOP Publishing Ltd Chaotic coupling synchronization of hyperchaotic oscillators * Zou Yan-Li( ΠΛ) a)y,

More information

2. Linear recursions, different cases We discern amongst 5 different cases with respect to the behaviour of the series C(x) (see (. 3)). Let R be the

2. Linear recursions, different cases We discern amongst 5 different cases with respect to the behaviour of the series C(x) (see (. 3)). Let R be the MATHEMATICS SOME LINEAR AND SOME QUADRATIC RECURSION FORMULAS. I BY N. G. DE BRUIJN AND P. ERDÖS (Communicated by Prow. H. D. KLOOSTERMAN at the meeting ow Novemver 24, 95). Introduction We shall mainly

More information

Synchronization of two chaotic oscillators via a negative feedback mechanism

Synchronization of two chaotic oscillators via a negative feedback mechanism International Journal of Solids and Structures 40 (2003) 5175 5185 www.elsevier.com/locate/ijsolstr Synchronization of two chaotic oscillators via a negative feedback mechanism Andrzej Stefanski *, Tomasz

More information

Deterministic Chaos Lab

Deterministic Chaos Lab Deterministic Chaos Lab John Widloski, Robert Hovden, Philip Mathew School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 I. DETERMINISTIC CHAOS LAB This laboratory consists of three major

More information

Generalized projective synchronization of a class of chaotic (hyperchaotic) systems with uncertain parameters

Generalized projective synchronization of a class of chaotic (hyperchaotic) systems with uncertain parameters Vol 16 No 5, May 2007 c 2007 Chin. Phys. Soc. 1009-1963/2007/16(05)/1246-06 Chinese Physics and IOP Publishing Ltd Generalized projective synchronization of a class of chaotic (hyperchaotic) systems with

More information

... it may happen that small differences in the initial conditions produce very great ones in the final phenomena. Henri Poincaré

... it may happen that small differences in the initial conditions produce very great ones in the final phenomena. Henri Poincaré Chapter 2 Dynamical Systems... it may happen that small differences in the initial conditions produce very great ones in the final phenomena. Henri Poincaré One of the exciting new fields to arise out

More information

Simple approach to the creation of a strange nonchaotic attractor in any chaotic system

Simple approach to the creation of a strange nonchaotic attractor in any chaotic system PHYSICAL REVIEW E VOLUME 59, NUMBER 5 MAY 1999 Simple approach to the creation of a strange nonchaotic attractor in any chaotic system J. W. Shuai 1, * and K. W. Wong 2, 1 Department of Biomedical Engineering,

More information

Analysis of Discrete-Time Systems

Analysis of Discrete-Time Systems TU Berlin Discrete-Time Control Systems 1 Analysis of Discrete-Time Systems Overview Stability Sensitivity and Robustness Controllability, Reachability, Observability, and Detectabiliy TU Berlin Discrete-Time

More information

Chaotifying 2-D piecewise linear maps via a piecewise linear controller function

Chaotifying 2-D piecewise linear maps via a piecewise linear controller function Chaotifying 2-D piecewise linear maps via a piecewise linear controller function Zeraoulia Elhadj 1,J.C.Sprott 2 1 Department of Mathematics, University of Tébéssa, (12000), Algeria. E-mail: zeraoulia@mail.univ-tebessa.dz

More information

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 8 Sep 1999

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 8 Sep 1999 BARI-TH 347/99 arxiv:cond-mat/9907149v2 [cond-mat.stat-mech] 8 Sep 1999 PHASE ORDERING IN CHAOTIC MAP LATTICES WITH CONSERVED DYNAMICS Leonardo Angelini, Mario Pellicoro, and Sebastiano Stramaglia Dipartimento

More information

Dynamical analysis and circuit simulation of a new three-dimensional chaotic system

Dynamical analysis and circuit simulation of a new three-dimensional chaotic system Dynamical analysis and circuit simulation of a new three-dimensional chaotic system Wang Ai-Yuan( 王爱元 ) a)b) and Ling Zhi-Hao( 凌志浩 ) a) a) Department of Automation, East China University of Science and

More information

Chaotic Vibrations. An Introduction for Applied Scientists and Engineers

Chaotic Vibrations. An Introduction for Applied Scientists and Engineers Chaotic Vibrations An Introduction for Applied Scientists and Engineers FRANCIS C. MOON Theoretical and Applied Mechanics Cornell University Ithaca, New York A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY

More information

Chapter 3. Gumowski-Mira Map. 3.1 Introduction

Chapter 3. Gumowski-Mira Map. 3.1 Introduction Chapter 3 Gumowski-Mira Map 3.1 Introduction Non linear recurrence relations model many real world systems and help in analysing their possible asymptotic behaviour as the parameters are varied [17]. Here

More information

Demonstration of Chaos

Demonstration of Chaos revised 1/27/08 Demonstration of Chaos Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706 Abstract A simple resonant inductor-resistor-diode series circuit can be used to

More information

Non-homogeneous random walks on a semi-infinite strip

Non-homogeneous random walks on a semi-infinite strip Non-homogeneous random walks on a semi-infinite strip Chak Hei Lo Joint work with Andrew R. Wade World Congress in Probability and Statistics 11th July, 2016 Outline Motivation: Lamperti s problem Our

More information

Relationships between phases of business cycles in two large open economies

Relationships between phases of business cycles in two large open economies Journal of Regional Development Studies2010 131 Relationships between phases of business cycles in two large open economies Ken-ichi ISHIYAMA 1. Introduction We have observed large increases in trade and

More information

898 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 17, NO. 6, DECEMBER X/01$ IEEE

898 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 17, NO. 6, DECEMBER X/01$ IEEE 898 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 17, NO. 6, DECEMBER 2001 Short Papers The Chaotic Mobile Robot Yoshihiko Nakamura and Akinori Sekiguchi Abstract In this paper, we develop a method

More information

Noise-induced unstable dimension variability and transition to chaos in random dynamical systems

Noise-induced unstable dimension variability and transition to chaos in random dynamical systems Noise-induced unstable dimension variability and transition to chaos in random dynamical systems Ying-Cheng Lai, 1,2 Zonghua Liu, 1 Lora Billings, 3 and Ira B. Schwartz 4 1 Department of Mathematics, Center

More information

Chaos Theory. Namit Anand Y Integrated M.Sc.( ) Under the guidance of. Prof. S.C. Phatak. Center for Excellence in Basic Sciences

Chaos Theory. Namit Anand Y Integrated M.Sc.( ) Under the guidance of. Prof. S.C. Phatak. Center for Excellence in Basic Sciences Chaos Theory Namit Anand Y1111033 Integrated M.Sc.(2011-2016) Under the guidance of Prof. S.C. Phatak Center for Excellence in Basic Sciences University of Mumbai 1 Contents 1 Abstract 3 1.1 Basic Definitions

More information

TWO DIMENSIONAL FLOWS. Lecture 5: Limit Cycles and Bifurcations

TWO DIMENSIONAL FLOWS. Lecture 5: Limit Cycles and Bifurcations TWO DIMENSIONAL FLOWS Lecture 5: Limit Cycles and Bifurcations 5. Limit cycles A limit cycle is an isolated closed trajectory [ isolated means that neighbouring trajectories are not closed] Fig. 5.1.1

More information

Complex Systems Methods 3. Statistical complexity of temporal sequences

Complex Systems Methods 3. Statistical complexity of temporal sequences Complex Systems Methods 3. Statistical complexity of temporal sequences Eckehard Olbrich MPI MiS Leipzig Potsdam WS 2007/08 Olbrich (Leipzig) 02.11.2007 1 / 24 Overview 1 Summary Kolmogorov sufficient

More information

MAS212 Assignment #2: The damped driven pendulum

MAS212 Assignment #2: The damped driven pendulum MAS Assignment #: The damped driven pendulum Sam Dolan (January 8 Introduction In this assignment we study the motion of a rigid pendulum of length l and mass m, shown in Fig., using both analytical and

More information

Phase-Space Reconstruction. Gerrit Ansmann

Phase-Space Reconstruction. Gerrit Ansmann Phase-Space Reconstruction Gerrit Ansmann Reprise: The Need for Non-Linear Methods. Lorenz oscillator x = 1(y x), y = x(28 z) y, z = xy 8z 3 Autoregressive process measured with non-linearity: y t =.8y

More information

Co-existence of Regular and Chaotic Motions in the Gaussian Map

Co-existence of Regular and Chaotic Motions in the Gaussian Map EJTP 3, No. 13 (2006) 29 40 Electronic Journal of Theoretical Physics Co-existence of Regular and Chaotic Motions in the Gaussian Map Vinod Patidar Department of Physics, Banasthali Vidyapith Deemed University,

More information

Lotka-Volterra Models Nizar Ezroura M53

Lotka-Volterra Models Nizar Ezroura M53 Lotka-Volterra Models Nizar Ezroura M53 The Lotka-Volterra equations are a pair of coupled first-order ODEs that are used to describe the evolution of two elements under some mutual interaction pattern.

More information

DETC EXPERIMENT OF OIL-FILM WHIRL IN ROTOR SYSTEM AND WAVELET FRACTAL ANALYSES

DETC EXPERIMENT OF OIL-FILM WHIRL IN ROTOR SYSTEM AND WAVELET FRACTAL ANALYSES Proceedings of IDETC/CIE 2005 ASME 2005 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference September 24-28, 2005, Long Beach, California, USA DETC2005-85218

More information

Bifurcations in the Quadratic Map

Bifurcations in the Quadratic Map Chapter 14 Bifurcations in the Quadratic Map We will approach the study of the universal period doubling route to chaos by first investigating the details of the quadratic map. This investigation suggests

More information

Analysis of Discrete-Time Systems

Analysis of Discrete-Time Systems TU Berlin Discrete-Time Control Systems TU Berlin Discrete-Time Control Systems 2 Stability Definitions We define stability first with respect to changes in the initial conditions Analysis of Discrete-Time

More information

CLASSIFICATION OF BIFURCATIONS AND ROUTES TO CHAOS IN A VARIANT OF MURALI LAKSHMANAN CHUA CIRCUIT

CLASSIFICATION OF BIFURCATIONS AND ROUTES TO CHAOS IN A VARIANT OF MURALI LAKSHMANAN CHUA CIRCUIT International Journal of Bifurcation and Chaos, Vol. 12, No. 4 (2002) 783 813 c World Scientific Publishing Company CLASSIFICATION OF BIFURCATIONS AND ROUTES TO CHAOS IN A VARIANT OF MURALI LAKSHMANAN

More information

Effects of Atomic Coherence and Injected Classical Field on Chaotic Dynamics of Non-degenerate Cascade Two-Photon Lasers

Effects of Atomic Coherence and Injected Classical Field on Chaotic Dynamics of Non-degenerate Cascade Two-Photon Lasers Commun. Theor. Phys. Beijing China) 48 2007) pp. 288 294 c International Academic Publishers Vol. 48 No. 2 August 15 2007 Effects of Atomic Coherence and Injected Classical Field on Chaotic Dynamics of

More information

Understanding Organic Reactions

Understanding Organic Reactions Understanding Organic Reactions Energy Diagrams For the general reaction: The energy diagram would be shown as: Understanding Organic Reactions Energy Diagrams Energy Diagrams Understanding Organic Reactions

More information

7.1 Linear Systems Stability Consider the Continuous-Time (CT) Linear Time-Invariant (LTI) system

7.1 Linear Systems Stability Consider the Continuous-Time (CT) Linear Time-Invariant (LTI) system 7 Stability 7.1 Linear Systems Stability Consider the Continuous-Time (CT) Linear Time-Invariant (LTI) system ẋ(t) = A x(t), x(0) = x 0, A R n n, x 0 R n. (14) The origin x = 0 is a globally asymptotically

More information

Multi-Scroll Chaotic Attractors in SC-CNN via Hyperbolic Tangent Function

Multi-Scroll Chaotic Attractors in SC-CNN via Hyperbolic Tangent Function electronics Article Multi-Scroll Chaotic Attractors in SC-CNN via Hyperbolic Tangent Function Enis Günay, * and Kenan Altun ID Department of Electrical and Electronics Engineering, Erciyes University,

More information

Confidence intervals and the Feldman-Cousins construction. Edoardo Milotti Advanced Statistics for Data Analysis A.Y

Confidence intervals and the Feldman-Cousins construction. Edoardo Milotti Advanced Statistics for Data Analysis A.Y Confidence intervals and the Feldman-Cousins construction Edoardo Milotti Advanced Statistics for Data Analysis A.Y. 2015-16 Review of the Neyman construction of the confidence intervals X-Outline of a

More information

A Highly Chaotic Attractor for a Dual-Channel Single-Attractor, Private Communication System

A Highly Chaotic Attractor for a Dual-Channel Single-Attractor, Private Communication System A Highly Chaotic Attractor for a Dual-Channel Single-Attractor, Private Communication System Banlue Srisuchinwong and Buncha Munmuangsaen Sirindhorn International Institute of Technology, Thammasat University

More information

Why are Discrete Maps Sufficient?

Why are Discrete Maps Sufficient? Why are Discrete Maps Sufficient? Why do dynamical systems specialists study maps of the form x n+ 1 = f ( xn), (time is discrete) when much of the world around us evolves continuously, and is thus well

More information

PHYSICS 210A : STATISTICAL PHYSICS HW ASSIGNMENT

PHYSICS 210A : STATISTICAL PHYSICS HW ASSIGNMENT PHYSICS 210A : STATISTICAL PHYSICS HW ASSIGNMENT #1 (1) Consider a system with K possible states i, with i {1,,K}, where the transition rate W ij between any two states is the same, with W ij = γ > 0 (a)

More information

Is the Hénon map chaotic

Is the Hénon map chaotic Is the Hénon map chaotic Zbigniew Galias Department of Electrical Engineering AGH University of Science and Technology, Poland, galias@agh.edu.pl International Workshop on Complex Networks and Applications

More information

DISCRIMINANT EXAM QUESTIONS

DISCRIMINANT EXAM QUESTIONS DISCRIMINANT EXAM QUESTIONS Question 1 (**) Show by using the discriminant that the graph of the curve with equation y = x 4x + 10, does not cross the x axis. proof Question (**) Show that the quadratic

More information

Newton s laws. Chapter 1. Not: Quantum Mechanics / Relativistic Mechanics

Newton s laws. Chapter 1. Not: Quantum Mechanics / Relativistic Mechanics PHYB54 Revision Chapter 1 Newton s laws Not: Quantum Mechanics / Relativistic Mechanics Isaac Newton 1642-1727 Classical mechanics breaks down if: 1) high speed, v ~ c 2) microscopic/elementary particles

More information

More Details Fixed point of mapping is point that maps into itself, i.e., x n+1 = x n.

More Details Fixed point of mapping is point that maps into itself, i.e., x n+1 = x n. More Details Fixed point of mapping is point that maps into itself, i.e., x n+1 = x n. If there are points which, after many iterations of map then fixed point called an attractor. fixed point, If λ

More information

Controlling Chaos in a State-Dependent Nonlinear System

Controlling Chaos in a State-Dependent Nonlinear System Electronic version of an article published as International Journal of Bifurcation and Chaos Vol. 12, No. 5, 2002, 1111-1119, DOI: 10.1142/S0218127402004942 World Scientific Publishing Company, https://www.worldscientific.com/worldscinet/ijbc

More information

COMPLEX DYNAMICS AND CHAOS CONTROL IN DUFFING-VAN DER POL EQUATION WITH TWO EXTERNAL PERIODIC FORCING TERMS

COMPLEX DYNAMICS AND CHAOS CONTROL IN DUFFING-VAN DER POL EQUATION WITH TWO EXTERNAL PERIODIC FORCING TERMS International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 9 No. III (September, 2015), pp. 197-210 COMPLEX DYNAMICS AND CHAOS CONTROL IN DUFFING-VAN DER POL EQUATION WITH TWO EXTERNAL

More information

Experimental Characterization of Nonlinear Dynamics from Chua s Circuit

Experimental Characterization of Nonlinear Dynamics from Chua s Circuit Experimental Characterization of Nonlinear Dynamics from Chua s Circuit John Parker*, 1 Majid Sodagar, 1 Patrick Chang, 1 and Edward Coyle 1 School of Physics, Georgia Institute of Technology, Atlanta,

More information

LYAPUNOV EXPONENT AND DIMENSIONS OF THE ATTRACTOR FOR TWO DIMENSIONAL NEURAL MODEL

LYAPUNOV EXPONENT AND DIMENSIONS OF THE ATTRACTOR FOR TWO DIMENSIONAL NEURAL MODEL Volume 1, No. 7, July 2013 Journal of Global Research in Mathematical Archives RESEARCH PAPER Available online at http://www.jgrma.info LYAPUNOV EXPONENT AND DIMENSIONS OF THE ATTRACTOR FOR TWO DIMENSIONAL

More information

Coupled Replicator Equations for the Dynamics of Learning in Multiagent Systems

Coupled Replicator Equations for the Dynamics of Learning in Multiagent Systems Coupled Replicator Equations for the Dynamics of Learning in Multiagent Systems Yuzuru Sato,, and James P. Crutchfield, Brain Science Institute, Institute of Physical and Chemical Research (RIKEN), - Hirosawa,

More information

Elements of probability theory

Elements of probability theory The role of probability theory in statistics We collect data so as to provide evidentiary support for answers we give to our many questions about the world (and in our particular case, about the business

More information

Detection of Nonlinearity and Stochastic Nature in Time Series by Delay Vector Variance Method

Detection of Nonlinearity and Stochastic Nature in Time Series by Delay Vector Variance Method International Journal of Engineering & Technology IJET-IJENS Vol:10 No:02 11 Detection of Nonlinearity and Stochastic Nature in Time Series by Delay Vector Variance Method Imtiaz Ahmed Abstract-- This

More information

Lyapunov exponent calculation of a two-degreeof-freedom vibro-impact system with symmetrical rigid stops

Lyapunov exponent calculation of a two-degreeof-freedom vibro-impact system with symmetrical rigid stops Chin. Phys. B Vol. 20 No. 4 (2011) 040505 Lyapunov exponent calculation of a two-degreeof-freedom vibro-impact system with symmetrical rigid stops Li Qun-Hong( ) and Tan Jie-Yan( ) College of Mathematics

More information

Bucket brigades - an example of self-organized production. April 20, 2016

Bucket brigades - an example of self-organized production. April 20, 2016 Bucket brigades - an example of self-organized production. April 20, 2016 Bucket Brigade Definition A bucket brigade is a flexible worker system defined by rules that determine what each worker does next:

More information

On the Asymptotic Convergence. of the Transient and Steady State Fluctuation Theorems. Gary Ayton and Denis J. Evans. Research School Of Chemistry

On the Asymptotic Convergence. of the Transient and Steady State Fluctuation Theorems. Gary Ayton and Denis J. Evans. Research School Of Chemistry 1 On the Asymptotic Convergence of the Transient and Steady State Fluctuation Theorems. Gary Ayton and Denis J. Evans Research School Of Chemistry Australian National University Canberra, ACT 0200 Australia

More information

Complex system approach to geospace and climate studies. Tatjana Živković

Complex system approach to geospace and climate studies. Tatjana Živković Complex system approach to geospace and climate studies Tatjana Živković 30.11.2011 Outline of a talk Importance of complex system approach Phase space reconstruction Recurrence plot analysis Test for

More information

Rotational Number Approach to a Damped Pendulum under Parametric Forcing

Rotational Number Approach to a Damped Pendulum under Parametric Forcing Journal of the Korean Physical Society, Vol. 44, No. 3, March 2004, pp. 518 522 Rotational Number Approach to a Damped Pendulum under Parametric Forcing Eun-Ah Kim and K.-C. Lee Department of Physics,

More information

HOW TO FIND SPATIAL PERIODIC ORBITS AROUND THE MOON IN THE TBP *

HOW TO FIND SPATIAL PERIODIC ORBITS AROUND THE MOON IN THE TBP * IJST, Transactions of Mechanical Engineering, Vol. 6, No. M1, pp 8-9 Printed in The Islamic Republic of Iran, 01 Shiraz University HOW TO FIND SPATIAL PERIODIC ORBITS AROUND THE MOON IN THE TBP * A. ARAM

More information

A New Circuit for Generating Chaos and Complexity: Analysis of the Beats Phenomenon

A New Circuit for Generating Chaos and Complexity: Analysis of the Beats Phenomenon A New Circuit for Generating Chaos and Complexity: Analysis of the Beats Phenomenon DONATO CAFAGNA, GIUSEPPE GRASSI Diparnto Ingegneria Innovazione Università di Lecce via Monteroni, 73 Lecce ITALY Abstract:

More information

Author(s) Okamura, Noriaki; Okamoto, Hisao; T.

Author(s) Okamura, Noriaki; Okamoto, Hisao; T. Title A New Classification of Strange Att Mutual Information Author(s) Okamura, Noriaki; Okamoto, Hisao; T Chaos Memorial Symposium in Asuka : Citation dedicated to professor Yoshisuke Ue 60th birthday,

More information

GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN SPROTT J AND K SYSTEMS BY ADAPTIVE CONTROL

GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN SPROTT J AND K SYSTEMS BY ADAPTIVE CONTROL GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN SPROTT J AND K SYSTEMS BY ADAPTIVE CONTROL Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University Avadi,

More information

dynamical zeta functions: what, why and what are the good for?

dynamical zeta functions: what, why and what are the good for? dynamical zeta functions: what, why and what are the good for? Predrag Cvitanović Georgia Institute of Technology November 2 2011 life is intractable in physics, no problem is tractable I accept chaos

More information

Attractor of a Shallow Water Equations Model

Attractor of a Shallow Water Equations Model Thai Journal of Mathematics Volume 5(2007) Number 2 : 299 307 www.math.science.cmu.ac.th/thaijournal Attractor of a Shallow Water Equations Model S. Sornsanam and D. Sukawat Abstract : In this research,

More information

ADAPTIVE CONTROLLER DESIGN FOR THE ANTI-SYNCHRONIZATION OF HYPERCHAOTIC YANG AND HYPERCHAOTIC PANG SYSTEMS

ADAPTIVE CONTROLLER DESIGN FOR THE ANTI-SYNCHRONIZATION OF HYPERCHAOTIC YANG AND HYPERCHAOTIC PANG SYSTEMS ADAPTIVE CONTROLLER DESIGN FOR THE ANTI-SYNCHRONIZATION OF HYPERCHAOTIC YANG AND HYPERCHAOTIC PANG SYSTEMS Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical

More information

Chaos suppression of uncertain gyros in a given finite time

Chaos suppression of uncertain gyros in a given finite time Chin. Phys. B Vol. 1, No. 11 1 1155 Chaos suppression of uncertain gyros in a given finite time Mohammad Pourmahmood Aghababa a and Hasan Pourmahmood Aghababa bc a Electrical Engineering Department, Urmia

More information

arxiv: v1 [nlin.cd] 22 Feb 2011

arxiv: v1 [nlin.cd] 22 Feb 2011 Generalising the logistic map through the q-product arxiv:1102.4609v1 [nlin.cd] 22 Feb 2011 R W S Pessoa, E P Borges Escola Politécnica, Universidade Federal da Bahia, Rua Aristides Novis 2, Salvador,

More information

Chapter 16 focused on decision making in the face of uncertainty about one future

Chapter 16 focused on decision making in the face of uncertainty about one future 9 C H A P T E R Markov Chains Chapter 6 focused on decision making in the face of uncertainty about one future event (learning the true state of nature). However, some decisions need to take into account

More information

Research Article. The Study of a Nonlinear Duffing Type Oscillator Driven by Two Voltage Sources

Research Article. The Study of a Nonlinear Duffing Type Oscillator Driven by Two Voltage Sources Jestr Special Issue on Recent Advances in Nonlinear Circuits: Theory and Applications Research Article JOURNAL OF Engineering Science and Technology Review www.jestr.org The Study of a Nonlinear Duffing

More information

arxiv:chao-dyn/ v1 5 Mar 1996

arxiv:chao-dyn/ v1 5 Mar 1996 Turbulence in Globally Coupled Maps M. G. Cosenza and A. Parravano Centro de Astrofísica Teórica, Facultad de Ciencias, Universidad de Los Andes, A. Postal 26 La Hechicera, Mérida 5251, Venezuela (To appear,

More information

Chaos and Cryptography

Chaos and Cryptography Chaos and Cryptography Vishaal Kapoor December 4, 2003 In his paper on chaos and cryptography, Baptista says It is possible to encrypt a message (a text composed by some alphabet) using the ergodic property

More information

Information Mining for Friction Torque of Rolling Bearing for Space Applications Using Chaotic Theory

Information Mining for Friction Torque of Rolling Bearing for Space Applications Using Chaotic Theory Research Journal of Applied Sciences, Engineering and Technology 5(22): 5223229, 213 ISSN: 24-7459; e-issn: 24-7467 Maxwell Scientific Organization, 213 Submitted: October 9, 212 Accepted: December 3,

More information

Application of Binary Sequences to Problems of Chaos

Application of Binary Sequences to Problems of Chaos Application of Binary Sequences to Problems of Chaos P. Singh, P. Mohr, D.D. Joseph Department of Aerospace Engineering and Mechanics, University of Minnesota 107 Akerman Hall, Minneapolis, M 55455 ABSTRACT

More information

Generating a Complex Form of Chaotic Pan System and its Behavior

Generating a Complex Form of Chaotic Pan System and its Behavior Appl. Math. Inf. Sci. 9, No. 5, 2553-2557 (2015) 2553 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.12785/amis/090540 Generating a Complex Form of Chaotic Pan

More information

How fast elements can affect slow dynamics

How fast elements can affect slow dynamics Physica D 180 (2003) 1 16 How fast elements can affect slow dynamics Koichi Fujimoto, Kunihiko Kaneko Department of Pure and Applied Sciences, Graduate school of Arts and Sciences, University of Tokyo,

More information