Problem Solutions for BST 695: Special Topics in Statistical Theory, Kui Zhang, Solutions from Previous Homework

Size: px
Start display at page:

Download "Problem Solutions for BST 695: Special Topics in Statistical Theory, Kui Zhang, Solutions from Previous Homework"

Transcription

1 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 Solutos from Prevous Homework

2 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 000, Problem Page, Problem () Let X ~ U (0,) ad let Y a(l( X)). Fd the pdf for the radom varable Y. () Let the radom varables X f x e for 0 x. x/ ~ X ( ) (.) Fd the momet geeratg fucto for each radom varable. (.) Fd the dstrbuto fucto for Y X X. x x (3) Let X ~ fx ( x, p) p ( p) ( x0,,, ) ad let x p~ g( p, ) p ( p) / B(, ), 0 p, 0, 0, where Soluto: ( a) ( ) B(, ). Fd EX. ( ) y () The pdf of Y s fy( y) exp( ) I( al(), ) ( y). a a () M X () t. t Let Y X X, Z X, the y z z fyz, ( y, z) exp( )exp( )(0 z y ). y y y Thus, fy( y) fy, Z( y, z) dz [exp( ) exp( )]. 0 For, y fy ( y) yexp( ), whch s also equal to (3) EX ( ) EEX ( ( P)) EP ( ). y y lm 0 [exp( ) exp( )].

3 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 000, Problem Page, Problem The game of craps s played by lettg the thrower toss dce utl he ws or loses. The thrower ws o the frst toss f he gets a total of 7 or ; he loses f he gets a total of, 3, or. If he gets ay other total o hs frst toss, that total s called hs pot. He the tosses the two dce repeatedly utl he obtas a total of 7 or hs pot. He ws f he gets hs pot ad loses f he gets a total of 7. What s the thrower's probablty of wg? Soluto: Let X deote the umber of tosses whe he ws, the PX ( ) P{get a total of 7 or }=8/36. For k, we have: PX ( k) P{frst toss gets 4,secod to k- tosses does ot gets 4 or 7, ktoss gets 4} P{frst toss gets 5,secod to k- tosses does ot gets 5 or 7, k toss gets 5} P{frst toss gets 6,secod to k- tosses does ot gets 6 or 7, k toss gets 6} P{frst toss gets 8,secod to k- tosses does ot gets 8 or 7, k toss gets 8} P{frst toss gets 9,secod to k- tosses does ot gets 9 or 7, k toss gets 9} P{frst toss gets 0,secod to k- tosses does ot gets 0 or 7, k toss gets 0} k k k ( ) ( ) ( ) ( ) ( ) ( ) k k k ( ) ( ) ( ) ( ) ( ) ( ) k k k ( ) ( ) ( ) ( ) ( ) ( ) Actually, we use the followg probablty table for oe toss: Total p /36 /36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 /36 /36 The fal probablty s PX ( k) k

4 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 00, Problem 4 Page 4, problem 4 As a smple model for the movemet of dseased people from oe locato to aother, cosder two urs (deoted Ur ad Ur ), where a whte ball deotes a o-dseased perso ad a black ball deotes a dseased perso. Ur cotas whte balls ad black ball; Ur cotas whte ball ad black balls. Cosder the followg EXPERIMENT: "oe ball s radomly draw from Ur ad s put Ur ; the, two balls are radomly draw from Ur." () For ths expermet, let X deote the umber of whte balls cotaed the sample of two balls draw from Ur. Derve rgorously the probablty dstrbuto of the radom varable X. () For ths expermet, f both balls selected from Ur are whte, what s the probablty that the ball selected from Ur was also whte? (3) Usg these same two urs, cosder the followg alteratve EXPERIMENT: "oe ball s radomly draw from Ur ad s put to Ur ; the, balls are selected oe-at-a-tme wthout replacemet from Ur utl a whte ball s obtaed." For ths alteratve expermet, let Y deote the umber of balls selected from Ur utl a whte ball s obtaed (e.g., f the frst ball selected from Ur s black ad the secod oe s whte, the Y ). Derve rgorously the probablty dstrbuto of the radom varable Y. Soluto: () X ca takes values from 0,,ad. Let A ={ balls are whte whe we radomly select two balls from Ur }, the PX ( ) PA ( )( 0,,). Let B0 {the ball from Ur s black} ad B {the ball from Ur s whte}. The 0 PB ( ) /3 ad PB ( ) /3. Thus we have PA ( ) PA ( B) PA ( B) PA ( B) PB ( ) PA ( B) PB ( ) Whle PA ( 0 B 0) s the probablty to have 0 whte balls whe we take balls wthout 3 4 replacemet from 4 balls cotag 3 black balls, thus PA ( 0 B0) / /. Smlarly, 4 we have PA ( 0 B0) / /6. The PA ( 0) 5/8. Smlarly, we have PA ( ) /8, PA ( ) /8. Thus 4

5 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 PX ( 0) 5 /8, PX ( ) /8, PX ( ) /8. PB ( A) PA ( B) PB ( ) /6*/3 () Ths s correspodg to calculate PB ( A). PA ( ) PA ( ) /8 (3) We ca follow the smlar calculato from () to do ths, we have PY ( ) /4*/3/4*/3 5/, PY ( ) 3 / 4*/ 3*/ 3 / 4* / 3* / 3 / 36, PY ( 3) 3 / 4* / 3*/ */ 3 / 4*/ 3** / 3 7 / 36, PY ( 4) 3/4**/3*/**/3 /. 5

6 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 00 September, Problem Page 7, Problem Assume that the geders of cosecutve chldre bor to a partcular couple are depedet of oe aother, ad further assume that the probablty of ay partcular chld beg a grl s equal to, 0< <. Cosder the followg three "famly plag" strateges: Strategy #: The couple decdes to have chldre utl the frst grl s bor. Strategy #: The couple decdes to have chldre utl they have both a grl ad a boy. Strategy #3: The couple decdes to have chldre utl they have ether two grls or two boys. () Fd explct expressos for the probablty dstrbuto ad expected value for the total umber of chldre bor to ths couple uder strategy. () Fd explct expressos for the probablty dstrbuto ad expected value for the total umber of chldre bor to ths couple uder strategy. Show that ths probablty dstrbuto s a vald probablty dstrbuto fucto. (3) Fd explct expressos for the probablty dstrbuto ad expected value for the total umber of chldre bor to ths couple uder strategy 3. (4) What ca you say regardg whch of these three strateges produces the smallest expected umber of chldre? What ca you say regardg whch of these three strateges produces the largest expected umber of chldre? Soluto: X total umber of chldre. x () PX ( x) ( ), x,,, thus X follows a geometrc dstrbuto wth the parameter, ad EX /. () x x PX ( x) ( ) ( ), x,3,. Usg the results from the geometrc dstrbuto, we ca show ths s a vald pdf: ( ( ) x ( ) x ) ( ( ) x ( ) x ) ( ) x, x ad easly get EX ( ) ( ( )). ( ) (3) PX ( ) P(Grl,Grl)+ P (boy,boy)= ( ), PX ( 3) P (Grl,Boy,Boy)+ P (Grl,Boy,Grl)+ P (Boy,Grl,Grl)+ P (Boy,Grl, Boy), PX ( 3) ( ) ( ). EX. 6

7 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 (4) We frst deote the expectatos from () to (3) as f ( ), f ( ), ad f ( ) 3. To dscuss the questo, we do a par-wse comparso: f( ) f( ) ( ) ( ), thus f( ) f( ) for all 0. ( ) 3 ( ) 3( ) f( ) ( ) f ( ) ( ). Cosder the fucto gx ( ) x 3x, t s easy to prove that gx ( ) s creasg for x [0,0.5], whle g(0.5) 0. Thus gx ( ) 0 for x [0,0.5]. Because whe 0, we have 0 ( ) 0.5. Ths mples f3( ) f( ) 0 for all 0. 3 f( ) f3( ) ( ). Cosder the fucto 3 g( ). Because g( ) s a cotuous fucto respect to, lm 0 g( ), d g( ) lm g( ), ad for all 0. These mply that: () g( ) d s a deceasg fucto; () a uque 0 such that g( 0) 0; (3) whe 0 0, g( ) 0; (4) 0, g( ) 0 ; (5) t s easy to get Therefore, the strategy has the largest expected umber of chldre. The strategy 3 has the smallest expected umber of chldre whe 0.403, otherwse the strategy has the smallest expected umber of chldre. 7

8 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 00 September, Problem 3 Page 8, Problem 3 () Suppose that X s the cocetrato ( parts per mllo) of a certa arbore pollutat, ad suppose that the radom varable Y l X has a dstrbuto that ca be adequately modeled by the desty fucto f y e y / Y ( ) ( ),,0. (.) Fd a explct expresso for F ( y ), the cumulatve dstrbuto fucto (CDF) Y assocated wth the desty fucto fy ( y ). If ad, use ths CDF to fd the exact umercal value of PX ( 4 X ). (.) For the desty fucto f ( y) gve above, derve a explct expresso for a geeratg Y fucto ( t ) that ca be used to geerate the absolute cetral momets Y r v E( Y EY ) for r a o-egatve teger, ad the use ( t ) r Var( Y ), the varace of Y. Y drectly to fd () Let U be depedetly ad detcally dstrbuted as Uform(0,) for,. Let X be defed as X U U. Show that the probablty desty fucto for the radom varable x,0 x X s the followg fucto: f( x) x, x. Soluto: () EY y exp( ), y ; FY ( y) y exp( ), y. ad cosder PX ( 4 X) PX ( 4) / PX ( ) PY ( l(4)) / PY ( l()) ( F (l(4))) / ( F (l())) Y Y ( t ) E (exp( Y EY t ) E (exp( Y t )) Y t. d Var Y dt () Let Y U, the the jot pdf of ( X, Y ) s t ( ) t 0. f( x, y) (0 y, y x y ). 8

9 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 From ths, t s easy to get the margal pdf of X. 9

10 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, August, Problem 4 Page, Problem 4 Suppose X has a ch-square dstrbuto v/ x/ fx ( x) x e, x0, v0, v/ ( v /) ad Y has a beta dstrbuto gve by ( ) fy ( y) y ( y), 0, 0,0 y. ( ) ( ) () Obta formula for r EX ad r EY, where r s a postve teger. () If r [ v/ ]*, where [ s ]* deotes the largest teger s, show that (3) Fd r EY r EX ( ) [( v)( v4) ( v r)]. What codto must r satsfy?. (4) Assume that X ad Y are depedet, ad let Z X / Y. Fd EZ ( ). Soluto: () r r v/ x/ ( rv)/ x/ EX x x e dx x e dx 0 v/ 0 v/ ( v/) ( v/) ( rv)/ ( rv/) r ( rv/) v/. ( v/) ( v/) EY r r r y r y dy ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 ( ) ( ) ( r) ( ) ( r) () From (), we have r r ( v/ r) EX ( ). r ( v/) ( v/) ( v/ r) ( v) ( v r) (3) From (), we have r ( ) ( r) EY, but requre r. ( ) ( r) ( v /) ( ) ( ) (4) EX ( / Y) EXEY ( ) ( ) v. ( v /) ( ) ( ). 0

11 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, Jauary, Problem Page 3, Problem ( ) c Cosder the pdf f( x) x, x, c 0. c () Show that the dstrbuto of X s a member of the expoetal famly. () Let Y l( X).Fd the dstrbuto of Y. (3) Fd the frst ad secod momets of Y. (4) Derve the momet geeratg fucto of Y. Soluto: () f( x) exp{ (/ c)log( x)}( x ). c () Let gx ( ) log( x), we have gx ( ) s creasg, pdf of Y s y y (/ c) y y/ c fy( y) fx( g ( y)) e ( e ) e e ( y 0). c c (3) yc / z ; EY ye dy cze dz c 0 c 0 EY y e dy c z e dz c ze dz c 0 c 0 0 (4) yc / z z. M t e e dy e dz t c c ct yt y/ c z( ct ) Y () ( / ) 0 0. g ( y) exp( y), ad d e dy y e y, thus the

12 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, Jue, Problem 3 Page 7, Problem 3 Aswer each of the followg questos: () Let the radom varable X has probablty desty fucto. x( ) f( x ) e h( x), x Derve the momet geeratg fucto M X ( t) ad from t fd EX ad VarX. () Let U ~ Uform (0,) ad let TU ( ) be a mappg from (0,) to (-,) as follows: Fd each of the probabltes: (.) PT ( [, /]). [0,/ 4) [, / ) T [/ 4,/ ) [ /,3 / 8) T [ /, 5 / 8) [3 / 8, 3 / 4) T [5 / 8,3 / 4) [3 / 4,7 / 8) T [3 / 4,7 / 8] [7 / 8,] T (7 / 8,] (, / ] T (.) PT ( (3/8,7/8)). (.3) PT ( [ /,3/8) [7/8,]). (3) A far de s cast utl a 6 appears. What s the probablty that t wll take more tha 5 trals? Soluto: () Because f( x ) s vald pdf, thus : We have: x ( ) x ( ) f ( x ) d e h( x) dx e h( x) dxe. ( ) ( ) ( ) ( ) () Xt xt x t t X ( ) ; M t Ee e f x dx e e hxdx e d d ( t) ( ) ( t) ( ) EX M X( t) t0 e t0 '( t) e t0 '( ) ; dt dt

13 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 d d ( t) ( ) ( t) ( ) EX M () X t t0 '( te ) t0 '( te ) t0 dt dt ''( te ) ( '( t)) e ''( ) ( '( )) ; ( t) ( ) ( t) ( ) t0 t0 VarX EX EX ( ) "( ). (.) PT ( [, / ]) PU ( (0,/ 4) (7 / 8,)) / 4 / 8 3 / 8. (.) PT ( (3 / 8,7 / 8)) PU ( (/,5 / 8) (5 / 8,3 / 4)) / 8 / 8 / 4. (.3) PT ( [ /,3/8) [7/8,]) PU ( (/4,/) (3/4,7/8)) /4/8 3/8. (3) Let X deote the umber of trals, the X has geometrc dstrbuto wth the parameter p /6, thus the probablty s: ( 5) ( 5) ( ) x PX PX p p x0 3

14 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, Jauary, Problem 5 Page, Problem 5 I ths problem we wll use the Pareto dstrbuto whch s defed as follows: f x x x ( ) (, ), 0, 0,. () Show that for ths dstrbuto r EX f ad oly f r. () Show that the momet geeratg fucto for the radom varable Y l( X) s: Soluto: t l( ) e MY () t, t. t Use ths to show that El( X) l( ) /. () r r ( ) ( r) EX x x dx x dx. The ( r), ths s equvalet to r. () r EX exsts f ad oly f M () t Ee Ee EX Y Yt t l X t t ( ) ( t) x x dx x dx t tlog e t ( t) t t From (), we kow that MY ( t ) exsts f t.. EY tlog tlog d e e (( t) log ) t0 t0 ( ) log /. dt t ( t) 4

15 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, July, Problem 3 Page 5, Problem 3 The tme to death ( days) after a autologous boe marrow trasplat follows a log ormal dstrbuto wth 3.77 ad.084. Ht: For the log-ormal dstrbuto, we ca wrte ((logt ) / ) f() t ad St () PT ( t) [(l t )/ ], where () ad () represet t the pdf ad cdf, respectvely, of a stadard ormal radom varable. () Fd the mea ad meda tmes to death. () Fd the probablty that a dvdual survves 0, 50 ad 00 days followg a trasplat. (3) I survval aalyss, the hazard fucto s used to measure the rsk that a dvdual expereces the evet of terest. The hgher the hazard fucto at a gve tme pot, the greater the rsk. Takg advatage of the fact that the hazard rate may be wrtte as ht () f()/ t St (), plot the hazard rate of the tme to death at t = 0., t =0.35, t =, t = 0, t = 50, ad t = 00 days. What does the shape of ths fucto tell you about the hazard of death over tme? (4) Derve the geeral formula for the varace of a radom varable T that has a log ormal dstrbuto wth parameters ad. (Ht: You may fd t useful to use the mgf of a ormal radom varable.) Soluto: () Accordg to the results of the log-ormal dstrbuto, we have meda of Y s e To get the meda of Y, y0 0, we have EY / e The X l( y ). 0 / PY ( y0) P( X l( y0)) P( ) X l( y0) Because ~ (0,), thus we have 0, the y0 e. () See the followg table: Survval Tme ( t ) (l t 3.77) (l t 3.77) ( ) St () PT ( t) sqrt(.084) sqrt(.084) 5

16 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 t (3) See the followg table ad fgure 3. It ca be see that the hazard rate creases sharply the drops. (l t 3.77) (l t 3.77) ( ) sqrt(.084) sqrt(.084) f () t (l t 3.77) ( ) St () PT ( t) ht () f()/ t St () sqrt(.084) (4) The calculato based o the momet geeratg fucto has bee llustrated the class: ( ) VarT e e. 6

17 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, Fgure. 7

18 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, Fgure. 8

19 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 hazard rate tme t Fgure 3. The hazard rate. 9

20 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, July, Problem Page 30, Problem Aswer the followg questos. () A commttee s to be formed whch s to cota 4 republcas ad 3 democrats out of respectve groups of 0 republcas ad 8 democrats. a. How may dstct commttees ca be formed? b. Suppose that oe of the republcas s amed George. What s the probablty that George s o the commttee? () How may 3-dgt eve postve tegers are there? Note that whe we say a 3-dgt umber (XYZ), we mea that X s ot zero. (3) A expermet s performed whch a co s flpped ad the a de s tossed. Cosder Soluto: the outcome of the expermet to be a bvarate observato ( X, Y ) where X s the result of the co toss ad Y s the umber o the de. a. What s the sample space of the expermet? b. Fd the probablty of a head ad a eve umber. c. Fd the probablty of a tal ad a or 3. d. Fd the probablty of a head ad a umber greater tha or equal to () (.) () (.) P / () 9*0* (3) (3.) The sample space cotas elemets wth equal probablty (3) (3.) P(X=head, Y=eve)=/4. (3) (3.3) P(X=tal, Y= or 3)=/6. (3) (3.4) P(X=head, Y=3, or 4, or 5, or 6)=/3. 0

21 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, July, Problem Page 30, problem Cosder the dstrbuto fucto, where 0, 0, 0. x x f( x;,, ) exp,0 x ( ) () Is ths a member of the expoetal famly of dstrbutos? Justfy your aswer. () Fd the r th momet. Ht: Make a chage of varable y ( x/ ). (3) Gve that the radom varable N has a Posso dstrbuto wth parameter X ad that X s a radom varable wth the dstrbuto of f( x;,, ). Fd the mea ad varace of N. Soluto: x () Ths s ot a member of expoetal famly of dstrbutos because exp wrtte as exp( w(,, ) c( x)). ca ot be x () If we do the trasformato y ( ) momet s:, the x / y ad dx x x x EX x dxy ( ) r r ( ) ( ) exp( ( ) ) ( ( ) ) 0 0 exp( ) ( ) r r/ / / y y y y dy r ( r / ) exp( ). ( ) ( ) r r/ y y dy 0 / y. Thus, the r th (3) ( / ) EN ( ) EEN [ ( X)] EX ( ). ( ) Var( N) E[ Var( N X )] Var[ E( N X )] E( X ) Var( X ) EX ( ) EX ( ) [ EX ( )] ( ) ( / )( ( / )) ( / ).

22 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, Jauary, Problem Page 33, Problem To play a lottery, a cotestat purchases a dollar tcket ad chooses 5 dstct umbers from the tegers through 49. The 6 th umber s the chose from a separate lst of the tegers through 4. To w the lottery, you must match each of the frst fve umbers (the order of ths sequece does ot matter) ad match the 6th umber. A player ca select ay sequece of admssble umbers, so several players could potetally match the wg set of umbers ad share the prze. () What s the chace of wg (or sharg) the prze, f you purchase oe tcket ad choose the 6 umbers at radom? () Suppose you purchase 00 tckets, ad choose the 6 umbers o each tcket at radom, ad depedetly from oe tcket to the ext. Gve a expresso for the probablty that you ca w (or share) the prze. (3) A smaller prze s gve f you ether pck exactly 4 of the frst 5 umbers or pck the frst 5 umber correctly but ot the 6th umber. What s the chace of wg ths smaller prze, f you purchase oe tcket ad select the 6 umbers at radom? Soluto: () Defe the radom varable X f you w the prze ad X 0 otherwse, the P(You w the prze) P( X ) th P(You match the frst 5 umbers ad match the 6 umber) th P(You match the frst 5 umbers) P(match the 6 umber) () Defe A as the evet that you match the frst 5 umbers ad match the 6 th umber for the th tcket (,,,00). The you ca w (or share) s: p P( A ) P( X ) (,,00). The probablty that P (you ca w (or share) the prze) th = P (You match the frst 5 umbers ad 6 umber for at least oe of tckets)

23 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 =- P (You ca ot w (or share) the prze) = P( A) ( c ) ( c P A P A ) 00 = = PA ( ) ( ) (3) P(You w the smaller prze) P(You match exactly 4 of the frst 5 umbers) P th (You match the frst 5 umbers ad ot match the 6 umber) P(You match exactly 4 of the frst 5 umbers) th P(You match the frst 5 umbers) P(You do ot match the 6 umber) You ca get the frst part by ths way. Ths s the samplg wthout replacemet ad we ca use the u-ordered sample space to calculate the probablty. The umber of elemets the sample space s 49, because we choose 5 from 49 wthout replacemet. For a set of 5 umbers, you have way to match exactly 4 of them ad you have way to choose aother umber 4 that s ot ths set

24 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, Jauary, Problem Page 33, Problem Assume that X has a Normal(0, ) dstrbuto ad that X s depedet of X ad also has a Normal(0, ) dstrbuto. Let Y a X b X ad let Y ax bx. Usg the formato about the dstrbuto of X ad X, () What are the expected values ad varaces of Y ad Y? () Calculate the Cov( Y, Y ) as a fucto of a, a, b, b. (3) What are the margal dstrbutos of Y ad Y? (4) Show how you would determe a, a, b, b, so that Y ad Y are bvarate Normally Soluto: dstrbuted wth: EY ( ) EY ( ) 0, Var( Y) Var( Y), ad Cor( Y, Y). () EY ae X be X ( ) ( ) ( ) 0, EY ( ) ae ( X) be ( X) 0. VarY ( ) var( ax bx ) var( ax) var( bx ) a b. VarY ( ) var( ax bx) var( ax) var( bx) a b. () E( YY ) E[ aa Xab XXabXX bb X] aa bb, ad EY ( ) EY ( ) 0, thus Cov( Y, Y) aa bb. (3) Y ~ (0, a b ) ad Y ~ (0, a b ). (4) a, a, b, b must stratfy the followg codtos: aa bb. To show that Y ad Y has a bvarate ormal, we frt get a b, a b, ad The Jacoba s: J X. ab ab by ab by ab X ay ay ad ab ab. The jot pdf of ( X, X ) s f XX x x ( x, x) exp( ), thus the jot pdf of ( Y, Y ) s 4

25 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 ( byby) ( ayay) f ( y, y ) exp( ) J YY ( ab ab ) ( a b ) y ( aa bb ) y y ( a b ) y J exp( ) ( ) ab ab y /( a b ) ( aa bb ) y y /(( a b )( a b )) y /( a J exp( ( ab ab) / (( a b )( a b)) b ) ). Deote a b, a b, ad ( aa bb ) /(( a b )( a b )), the we have ( aa bb ) / (( a b )( a b )) ( ab a b) / (( a b )( a b )), Ad J y y y y f ( y, y ) exp( ( YY ( ). 5

26 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, Jue, Problem Page 36, Problem Let X be the umber of heads that occurs 3 flps of a co for whch p(0 p ) s the probablty of obtag a head o each flp. Gve X x where x {0,,,3}, cosder a secod expermet cosstg of flppg the same co utl a addtoal x heads occur. Let Y be the umber of tals that occur ths secod expermet before we observe the addtoal x heads. () What s the codtoal probablty mass fucto of Y X? () Verfy that the codtoal pmf of Y X belogs to the expoetal famly. (3) Fd the jot pmf of X ad Y. (4) Evaluate E( Y ). Soluto: 3 x 3x () X has bomal(3, p ), thus PX ( x) p( p) ( x0,,,3). The codtoal pmf of x Y gve X x s: f( y x) P( Y y X x) P(Amog x y tossg, there are y tals ad the last tossg s head) x y p x y ( p ) ( y 0,, ). y () c( p) x y x y f y x p p p y p y y x y x ( ) ( ) exp( log( )) t y x p, ( ) belogs to the expoetal famly. (3) The jot pmf of X ad Y s: x y. Defe hy ( ) y y,ad wp ( ) log( p), we ca see that the codtoal pmf of Y X x y 3 f x y f y x f x p p p p x y y x x y x 3x XY, (, ) ( ( ) X( ) ( ) ( ) ( 0,,,3; 0,, ). (4) EY ( ) EEY [ ( X)], where Y X has a egatve bomal dstrbuto wth the parameter X ad p, thus p EY ( X) ( X ) ad p, 6

27 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 p p p EY ( ) E[( X) ( E( X)) ( 3 p). p p p 7

28 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, Jauary, Problem Page 7, Problem Let the cotuous radom varable X wth support [-,] have desty fucto, x x0 fx ( x). x 0 x () Let the radom varable T X. Fd PT ( /4). () Fd the momet geeratg fucto for X. (3) Let U be dstrbuted Uform ( /,/ ). Let U ad U be a..d sample from ths Soluto: () dstrbuto. Show that the desty fucto of the radom varable X U U s the fucto f X ( x) from part (). PT PX PX PX P( X /) P( X /) ( / 4) ( / 4) ( / ) ( / ) / ( xdx ) ( x) dx/8/8/4. / () The momet geeratg fucto for X s: (3) For x 0, we have For x 0, we have 0 Xt xt xt 0 M () t Ee e ( x) dx e ( x) dx X exp( t) exp( t) t t t t t t (exp( t ) exp( t ) ). t F ( x) P( U U x) du du X uu x, / u, u/ x/ xu x/ dudu ( x u /) du / / / x/ x/ x/ / (/ ) / (/ ) / xu u u (/) x x/. 8

29 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 F ( x) P( U U x) du du X uu x, / u, u/ x/ / / xu du / / du du x / / du x(/) x /. Therefore, X U U has the pdf fucto f X ( x) from part (). 9

30 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 Solutos from Gradg 30

31 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, July, Problem Page 4, Problem As a customer, you receve a promoto letter from a compay. The letter cotas several umbers, such as AB-03, ZH-009, etc. You ca w the prze f oe of your umbers matches oe of thrtee dfferet wg umbers ther lst. There are oe frst prze of $00,000, two secod przes of $50,000 each, ad 0 thrd przes of $5,000 each. However, to be elgble to w, you eed to mal the promoto letter back to the compay at a cost of $0.4 postage. No purchase s requred. From the structure of the umbers that you receved, t s obvous that umbers set out cosst of two letters followed by four dgts. Assumg that the umbers you receved were geerated at radom. () If the letter oly cotas oe umber, what s the probablty that you ca w a prze? How much moey do you expect to w? () If the letter cotas four umbers, what s the probablty that you ca w at least oe prze? (3) If the letter cotas umbers, please fd the smallest that you thk t s worth $0.4 to mal the letter ad justfy your aswer. Soluto: () (5 pots) Let S be the sample space ad A be the evet of wg. The the umber of elemets the sample space s: ad the umber of elemets A s 3. So the probablty of A s: PA ( ) A / S 3 / (0 6 ) () (5 pots) Let X be the amout of moey you wll w. The the support set of X s {00000,50000,5000}. Ad 4 PX ( 00000) / (0 6 ), 4 PX ( 50000) / (0 6 ), ad 4 PX ( 5000) 0 / (0 6 ), so the expected value of X s 4 EX ( ) / (0 6 ) () (5 pots) Let A (,,3,4) be the evet of wg for the th umber. From (), we kow that PA 6 ( ).96 0 (,,3, 4). The the probablty that you ca w at least oe prze s:. Sce 4 4 c 4 c P( A) P(( A) ) P( A ) too. We have: A are depedet, so P( A) PA ( ) ( PA ( )) c 4 6 c A are depedet 3

32 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 (3) (5 pots) Let X (,, ) be the amout of moey you wll w for the th umber. The Y X s the total moey you wll w. We wat to fd a smallest such that EY ( ) 0.4. Sce EX ( ) ad EY ( ) E( X ) *0.037, we ca get. 3

33 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, July, Problem 3 Page 43, Problem 3 Soluto: () (7 pots) Suppose that X, X,, Xm ad Y, Y,, Y are depedet radom samples, we have: EX ( ) E( X)) EX ( ) m m m m m m ; m Var( X ) Var( X ) Var( X ) Var( X ) m m m m Smlarly, we have EY ( ) ad m m. Var( Y ) m, the: EX ( Y) EX ( ) EY ( ) ad Var( X Y ) Var( X ) Var( Y ). m () (8 pots) The mgf of the ormal dstrbuto (, ) s: I addto, ( x) ( x) tx tx tx Mt () Ee ( ) e e dx e dx ( x( t)) ( t) t t ( x( t)) e dxe e dx t t exp( ). m m t X t X m m m () ( / ) X X m ( t/ m) t/ m ( / m) t t M t Ee Ee M t m exp( ) exp( ). Thus, the momet geeratg fucto of X Y s: M () t M () t M () t M () t M ( t) XY X Y X Y ( / mt ) t ( / )( t) ( t) exp( )exp( ) ( / m / ) t ( ) t exp( ). Therefore, X Y has a ormal dstrbuto of (, / m / ). 33

34 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 (3) (5 pots) From (), we kow that X Y has a ormal dstrbuto of (,4.5/ ), we wat to fd such that X Y ( ) P X Y P 4.5 / 4.5 / ( ( ) ) ( ) X Y ( ) Sce Y has a stadard ormal dstrbuto, thus we eed / 4.5 /.96, 4.5 / that s Thus 8. 34

35 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, Jauary, Problem Page 45, problem Two far dce are rolled. Let A be the evet that the sum of pots o the faces show s odd ad B be the evet that at least oe three (umber 3) s obtaed. Fd the probabltes of the followg evets: () A B. () A B. (3) A B. (4) ( AB) A. Soluto: A {(,),(,),(,4),(4,),(,6),(6,),(,3),(3,),(,5), (5, ),(3, 4),(4,3),(3,6),(6,3),(4,5),(5, 4),(5,6),(6,5)} B {(3,3),(,3),(3,),(,3),(3,),(3,4),(4,3),(3,5),(5,3),(3,6),(6,3)} 35

36 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, Jauary, Problem Page 45, problem Problem. Let X,, X be a radom sample from the expoetal dstrbuto wth the commo pdf: f ( x) exp( x) for 0 x. Let X () X () X ( ) be ther order statstcs. Please aswer the followg questos: () For j, what s the jot pdf of X () ad X ( j)? (Ht: Please provde the fal aswer. So you oly eed to specfy the fucto ad ts support set. () For j, let S X() ad T X( j) X( ), please derve the jot pdf of S ad T. (3) For j, derve the pdf of T X( j) X( ) usg the jot pdf of S ad T (). Soluto: () The jot pdf s: for 0 x y.! f( x, y) ( )!( j )!( j)! exp( )exp( )[ exp( )] [exp( ) exp( )] j x y x x y [exp( y)] j () Do the trasformato S X() ad T X( j) X( ), the X () S ad X ( j) S T. The Jacob s ad ths s a oe to oe trasformato from ( X(), X ( j) ) to ( ST, ). The jot pdf of S ad T s:! f(,) s t ( )!( j )!( j)! j j exp( s)exp( s t)[ exp( s)] [exp( s) exp( s t)] [exp( s t)]! ( )!( j )!( j)! [exp( s)] [ exp( s)] [exp( t)] [ exp( t)] for 0 s,0 t. (3) The margal pdf of T s: j j 36

37 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 f () t T 0 0 f(,) s t ds! [exp( t)] [exp( t)] ( )!( j)!( j)! [exp( )] [ ( )] s exp s ds y y dy y s 0 j j! [exp( t)] [exp( t)] ( )!( j)!( j)! [ ] ( exp( )) y j j! j j ( )!( )! [exp( t)] [exp( t)]. ( )!( j )!( j)!! ( )! ( j)!( j)! j j [exp( t)] [ exp( t)]. 37

38 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 00 July Problem Page 53, Problem A system uses two fuses wth lfetme deoted by Y ad Y, where Y ad Y are depedet ad have expoetal dstrbutos wth meas ad, respectvely, where 0 s a parameter. () Cosder System whch oly eeds oe fuse to work. The other fuse s the used as a backup. Therefore, the lfetme of System, deoted by Z, s the sum of the lfetmes of the two fuses,.e., Z Y Y. Fd the probablty desty fucto of Z. () Cosder System whch fals f ether fuse fals. Therefore, the lfetme of System, deoted by Z, s a fucto of ( Y, Y ) as defed by Z m( Y, Y ). Fd the probablty desty fucto of Z. (3) Calculate the expected lfetme of the systems () ad (). Based o the expected lfetmes that you calculated, whch system has a loger expected lfetme? Does ths make practcal sese? Justfy your aswer. Soluto: The pdf of Y ad Y are respectvely. The cdf of Y ad Y are fy ( y ) exp( y)( y 0) ad fy ( y ) exp( y)( y 0), PY ( y ) FY ( y ) exp( y) ( y 0) ad PY ( y ) FY ( y ) exp( y)( y 0), respectvely. B.. Because Y ad Y are depedet, so the jot pdf of Y ad Y s For y 0, f ( y, y ) f ( y ) f ( y ) Y, Y Y Y exp( y) exp( y)( y 0, y 0). 38

39 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 PY ( Y y) f ( y, y ) dydy y yy, y, 0, y0 Y Y y y y { [ exp( y 0 0 )] dy} fy ( y ) dy So the pdf of Z Y Y, y [ exp( ( y y 0 )] exp( y) dy y y exp( y ) dy exp( y) exp( y ) dy exp( y) exp( y)[ exp( y)] exp( y) exp( y) 0 0 f ( ) Z z for z 0, s (5 pots) B.. For z 0, d d fz ( z ) F ( ) ( Z z P Y Y z) dz dz d [ exp( z) exp( z)] ( pots) dz exp( z) exp( z) So the pdf of Z, PZ ( z) PZ ( z) P(m( YY, ) z) PY ( zpy ) ( z) [ PY ( z)][ PY ( z)] 3 exp( z)exp( z) exp( z) f ( ) Z z for z 0, s (5 pots) d d fz ( z ) P( Z z) [ exp( z)] exp( z). ( pots) dz dz EZ E( Y Y ) EY EY 3. ( pots) B.3. Note the Z has a expoetal dstrbuto wth parameter, so EZ 3 Therefore we have EZ EZ. ( pots). 3 I practcal, because both Y ad Y have the support of (0, ) ( pot`). So Z YY Y m( Y, Y) Z( pot), therefore we have EZ EZ. 39

40 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 00 July, Problem 3 Page 53, Problem 3 The umber of customers to shop a grocery store a day, X, ca be descrbed as the follow x probablty mass fucto: f( x ) exp( ) for x 0,,, where 0 s a ukow x! parameter. We are terested estmatg the probablty of o customer a day, ( ) PX ( 0). Let X,, X dstrbuto: be a radom sample from a populato wth the above () Fd the Cramer-Rao lower boud for a ubased estmator of ( ). () Fd the uformly mmum varace of ubased estmator (UMVUE) of ( ) ad deote t by ( ˆ ). (3) Compare the varace of ( ˆ ) ad the Cramer-Rao lower boud from () for ay gve by drectly calculatg the varace of ( ˆ ). 0 Soluto: ( ) PX ( 0) exp( ) exp( ) ( pot). 0! x () Sce f( x ) exp( ) belogs to the expoetal famly ad X x!,, X are a radom sample from f( x ), so the CRLB of a ubased estmator of ( ) s d [ ( )] CRLB d ( pot). E[ log f ( X )] d d ( ) exp( ) exp( ) d d ( pot). x Because log f( x ) log[ exp( )] xlog( ) log( x!), so we have x! x log f( x ) ad x log f( x ). So X E[ log f( X )] E EX ( pots). 40

41 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 [ exp( )] So CRLB= ( ) exp( ) ( pot). x () Sce f( x ) exp( ) belogs to the expoetal famly ad the parameter space 0 x! cotas a ope set, so T X s a complete, suffcet statstc ( pots) ad the pmf of t ( ) T s ft ( t ) exp( ) ( pot). t! Defe hx (,, X) f X 0 ad hx (,, X) 0 otherwse. The Eh( X,, X) P( h( X,, X) ) P( X 0) ( ) so hx (,, X ) s a ubased estmator of ( ) ( pots). E( h( X,, X) T t) P( h( X,, X) T t) PhX ( (,, X), Tt) PT ( t) PX ( 0, X t) PX ( 0, X t) P( X t) P( X t) t [( ) ] exp( ( ) ) PX ( exp( ) 0) P( X ) t t! t P( X ) [ ] exp( ) t t! ( ) t T So the UMVUE of ( ) s ( ) ( ) X ( pot). (3 pots) T X (3) Sce ( ) ( ) X s the UMVUE of ( ), so E( ) exp( ) ( pot). 4

42 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 t X X ( ) t E[( ) ] E[( ) ] ( ) exp( ) t0 t! ( ) t ( ) exp( ) t0 t! ( ) t ( ) (3 pots) exp( ) ( ) exp( ) t0 ( ) t! exp( ) exp( ) exp( )exp( ) ( ) exp( ) So the varace of Sce ( ˆ ) s ( pot), exp( )exp( ) [exp( )] exp( )[exp( ) ] exp( ) ( ) /! ( ) /!, so the varace of UMVUE of ( ) 0 s greater tha the CRLB of ubased estmator of ( )( pot). 4

43 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 00 July, Problem 4 Page 54, Problem 4 Oe observato, X, from the followg probablty desty fucto: x 0, where 0 s a ukow parameter. x f( x ) exp( ) for () Show that X has the mootoe lkelhood rato (MLR). () Fd the maxmum lkelhood estmator (MLE) of based o X. (3) Fd the restrcted rage MLE of based o X for 0, where 0 s a kow postve costat. (4) Costruct a UMP level (0 ) test for H0 : 0 vs. H: 0 based o X ad fd the rejecto rego. Soluto: () For ay 0 ad x 0 ( pot), we f f Sce 0, so X X x exp( ) ( x ) exp[( ) x] ( pots) ( x ) x exp( ) ad X has the MLR ( pots). () The lkelhood fucto s fx ( x ) 0, so s a creasg fucto of x, so f ( x ) x x log L( x) log( ), ad log L( x). Let log L( x) 0 X x L( x) f( x ) exp( )( x 0) ( pot), so, we have a uque soluto ˆ x ( pots). I addto, x log L( x) ( ) 0 x 3 x x ( pots), the MLE of s ˆ X. (3) The lkelhood fucto s x L( x) f( x ) exp( )( x 0). If 0 x, the we kow that L( x) acheves ts maxmum at x from () ( pot). 43

44 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 x If 0 x, the we kow that log L( x) ( x) 0 for all 0 x, so L( x) s a creasg fucto of ad acheves ts maxmum at 0 ( pots). Therefore the restrcted rage MLE of based o X for 0 s ˆ X, 0 X ; ( pot) 0, 0 X. (4) X s a suffcet statstc ad t has the MLR accordg to () ( pot), so accordg to the Karl-Rub theorem ( pot), the UMP level test for H0 : 0 vs. H: 0 based o X has the followg rejecto rego: R { X c} ( pot), where c satsfes P ( X c) ( 0 pot). Because x x c P ( X c) exp( ) dx exp( ) exp( ) 0, so we have c c c log( ). The rejecto rego s : 0 R { X 0 log( )} ( pots). 44

45 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 0 Jauary, Problem 3 Page 56, Problem 3 Suppose X has a gamma (, ) desty wth 3 : Codtoal o X f x x x x ( ) (, ) exp( ), 0, 3, 0. x, the dstrbuto of Y s x exp( yx) for y 0. () Fd E( Y ) ad Var ( Y ) accordg to: E( Y) E[ E( Y X)] ad Var( Y ) E[ Var[ Y X ]] Var[ E( Y X )]. () Wrte dow a expresso for the jot desty of X ad Y. (3) Determe the margal desty of Y. (4) Determe the codtoal desty of X gve Y y. Soluto (0 pots): The codtoal pdf of Y gve X Part ( pots): x s f ( y x) xexp( yx) for y 0. E( Y X x) yfyx x( y x) dy yx exp( xy) dy 0 0 x YX x ( pots) (they ca also drectly use the codtoal pdf of Y s a expoetal dstrbuto wth parameter x, so EY ( X x) ). x So EY ( X) We have: ( pot). X EY ( ) EEY [ ( X)) E f( x, ) dx X 0 x ( ) x exp( xdx ) x exp( xdx ) 0 x ( ) 0 ( ) ( ) ( ) Smlarly, we have ( pots) VarY ( X x) EY ( X x) [ EY ( X x)] YX x 0 0 ad E( Y X x) y f ( y x) dy y x exp( xy) dy x (3 pots) (they ca also drectly use the x 45

46 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 codtoal pdf of Y s a expoetal dstrbuto wth parameter x, so Var( Y X x) ), so x we have Var( Y X ) ad EVarY [ ( X)] E[ ] ( pot). X X We have: Var( E( Y X )) Var( ) E( ) ( E ) E( ) ( ) X X X X E( ) f( x, ) dx 0 X x ( ) x exp( xdx ) x exp( xdx ) 0 x ( ) 0 ( ) ( ). ( ) ( )( ) So the varace of Y s: ( pots) Var( Y ) E( ) E( ) ( ) X X ( pot) ( ) ( )( ) ( ) ( ) Part ( pots): The jot pdf of X ad Y s fxy, ( x, y) f( x, ) fyx x( y x) ( pots) ( ) x exp( xx ) exp( xy) x exp( ( yx ) ) ( ) ( ) for x 0 ad y 0. Part 3 (3 pots): The margal dstrbuto of Y s for y 0. 0 X, Y ( ) x 0 f ( y) f ( x, y) dx Y exp( ( yxdx ) ) (3 pots) ( ) ( ) ( ) ( y) ( y) 46

47 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 Part 4 (3 pots): The codtoal dstrbuto of X gve Y y s: fxy y( x y) fx, Y( x, y)/ fy( y) ( ) x exp( ( y) x) / [ ] (3 pots) ( ) ( y) ( y) ( ) x exp( ( y) x) ( ) for x 0, whch s a gamma (, y). 47

48 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 0 Jauary, Problem 4 Page 57, Problem 4 Suppose Y ~ depedet Posso ( ),,,, where 0 s ukow parameter ad are fxed postve costats. () Fd a oe dmesoal suffcet statstc for. () Fd the maxmum lkelhood estmator of, ˆ. (3) Show ˆ s a ubased estmator of ad calculate the mea squared error (MSE) of ˆ. (4) A alteratve estmator of s * ( Y / ). Show * s a ubased estmator of ad calculate the mea squared error (MSE) of *. (5) Dscuss whch estmator of ˆ ad * s better for. Soluto (0 pots): Part (4 pots): The jot pdf s: ( ) f( y,, y ) f ( ) exp( ) Y y y! exp( ) y y y! y ( pot) Let T T Y, ( y ( (,, y gt y ),, y) ) exp( y ), ad hy (,, y), y! the f ( y,, y ) g( T( y,, y) )* h( y,, y). ( pots). Accordg to the factorzato theorem ( pot), T Y s a oe dmesoal suffcet statstc for. Part (5 pots): The lkelhood fucto s: So we have: y y L( y,, y) exp( ) ( pot). y! y log L( y,, y) ( )log( ) log( ) y y! 48

49 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 log L ( y,, y ) y ( pot). log (,, ) 0, we have ˆ y /. ( pot) Let L y y y log L( y,, y ) ˆ y ˆ 0 ( pots), so log L( y,, y ) acheve ts maxmum at ˆ y /, so ˆ Y / s the MLE of. Part 3(4 pots): Because Y ~ depedet Posso ( ), so EY ( ) ad Var( Y ). E( ˆ ) E( Y / ) E( Y)/ ( pots) So ˆ s a ubased estmator of. EY ( )/ / Sce ˆ s a ubased estmator of, the MSE of ˆ s the varace of ˆ. Ad sce Y are depedet, we have MSE( ˆ ) Var( ˆ ) Var( Y / ) Var( Y )/( ) ( pots) [ ( )]/( ) [ ]/( ) / Part 4 (4 pots): Var Y So * s a ubased estmator of. E( *) E( Y / ) ( / ) E Y ( pots) EY ( )/ / Sce * s a ubased estmator of, the MSE of * depedet, we have: Part 5 (3 pots): s the varace of * MSE( *) Var( ˆ *) Var( Y / ) Var( Y / ) ( / ) ar( )/ Var Y V Y ( pots) / /. Ad sce Y are 49

50 Problem Solutos for BST 695: Specal Topcs Statstcal Theory, Ku Zhag, 0 Compare the MSE of ˆ ad * for : ˆ MSE( ) MSE( *) ( ) 4 ( ) *( ) 4( ) 4( ) ( ) 0 So ˆ s a better estmator tha * because t has a smaller MSE. (3 pots) To prove the geeral case, we eed the equalty betwee the arthmetc mea ad the harmoc mea. Specfcally, we have the followg equalty to the root of mea square, arthmetc mea, geometrc mea, ad harmoc mea:. 50

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA THE ROYAL STATISTICAL SOCIETY 3 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA PAPER I STATISTICAL THEORY & METHODS The Socety provdes these solutos to assst caddates preparg for the examatos future years ad

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

1 Solution to Problem 6.40

1 Solution to Problem 6.40 1 Soluto to Problem 6.40 (a We wll wrte T τ (X 1,...,X where the X s are..d. wth PDF f(x µ, σ 1 ( x µ σ g, σ where the locato parameter µ s ay real umber ad the scale parameter σ s > 0. Lettg Z X µ σ we

More information

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 THE ROYAL STATISTICAL SOCIETY 06 EAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 The Socety s provdg these solutos to assst cadtes preparg for the examatos 07. The solutos are teded as learg ads ad should

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for Chapter 4-5 Notes: Although all deftos ad theorems troduced our lectures ad ths ote are mportat ad you should be famlar wth, but I put those

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Random Variables and Probability Distributions

Random Variables and Probability Distributions Radom Varables ad Probablty Dstrbutos * If X : S R s a dscrete radom varable wth rage {x, x, x 3,. } the r = P (X = xr ) = * Let X : S R be a dscrete radom varable wth rage {x, x, x 3,.}.If x r P(X = x

More information

Qualifying Exam Statistical Theory Problem Solutions August 2005

Qualifying Exam Statistical Theory Problem Solutions August 2005 Qualfyg Exam Statstcal Theory Problem Solutos August 5. Let X, X,..., X be d uform U(,),

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections ENGI 441 Jot Probablty Dstrbutos Page 7-01 Jot Probablty Dstrbutos [Navd sectos.5 ad.6; Devore sectos 5.1-5.] The jot probablty mass fucto of two dscrete radom quattes, s, P ad p x y x y The margal probablty

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

Class 13,14 June 17, 19, 2015

Class 13,14 June 17, 19, 2015 Class 3,4 Jue 7, 9, 05 Pla for Class3,4:. Samplg dstrbuto of sample mea. The Cetral Lmt Theorem (CLT). Cofdece terval for ukow mea.. Samplg Dstrbuto for Sample mea. Methods used are based o CLT ( Cetral

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

Simulation Output Analysis

Simulation Output Analysis Smulato Output Aalyss Summary Examples Parameter Estmato Sample Mea ad Varace Pot ad Iterval Estmato ermatg ad o-ermatg Smulato Mea Square Errors Example: Sgle Server Queueg System x(t) S 4 S 4 S 3 S 5

More information

22 Nonparametric Methods.

22 Nonparametric Methods. 22 oparametrc Methods. I parametrc models oe assumes apror that the dstrbutos have a specfc form wth oe or more ukow parameters ad oe tres to fd the best or atleast reasoably effcet procedures that aswer

More information

Parameter, Statistic and Random Samples

Parameter, Statistic and Random Samples Parameter, Statstc ad Radom Samples A parameter s a umber that descrbes the populato. It s a fxed umber, but practce we do ot kow ts value. A statstc s a fucto of the sample data,.e., t s a quatty whose

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

Law of Large Numbers

Law of Large Numbers Toss a co tmes. Law of Large Numbers Suppose 0 f f th th toss came up H toss came up T s are Beroull radom varables wth p ½ ad E( ) ½. The proporto of heads s. Itutvely approaches ½ as. week 2 Markov s

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA THE ROYAL STATISTICAL SOCIETY EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA PAPER II STATISTICAL THEORY & METHODS The Socety provdes these solutos to assst caddates preparg for the examatos future years ad for

More information

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions Iteratoal Joural of Computatoal Egeerg Research Vol, 0 Issue, Estmato of Stress- Stregth Relablty model usg fte mxture of expoetal dstrbutos K.Sadhya, T.S.Umamaheswar Departmet of Mathematcs, Lal Bhadur

More information

Chapter 8. Inferences about More Than Two Population Central Values

Chapter 8. Inferences about More Than Two Population Central Values Chapter 8. Ifereces about More Tha Two Populato Cetral Values Case tudy: Effect of Tmg of the Treatmet of Port-We tas wth Lasers ) To vestgate whether treatmet at a youg age would yeld better results tha

More information

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 00 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER I STATISTICAL THEORY The Socety provdes these solutos to assst caddates preparg for the examatos future years ad for the

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

Continuous Distributions

Continuous Distributions 7//3 Cotuous Dstrbutos Radom Varables of the Cotuous Type Desty Curve Percet Desty fucto, f (x) A smooth curve that ft the dstrbuto 3 4 5 6 7 8 9 Test scores Desty Curve Percet Probablty Desty Fucto, f

More information

Module 7. Lecture 7: Statistical parameter estimation

Module 7. Lecture 7: Statistical parameter estimation Lecture 7: Statstcal parameter estmato Parameter Estmato Methods of Parameter Estmato 1) Method of Matchg Pots ) Method of Momets 3) Mamum Lkelhood method Populato Parameter Sample Parameter Ubased estmato

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations HP 30S Statstcs Averages ad Stadard Devatos Average ad Stadard Devato Practce Fdg Averages ad Stadard Devatos HP 30S Statstcs Averages ad Stadard Devatos Average ad stadard devato The HP 30S provdes several

More information

Chapter 3 Sampling For Proportions and Percentages

Chapter 3 Sampling For Proportions and Percentages Chapter 3 Samplg For Proportos ad Percetages I may stuatos, the characterstc uder study o whch the observatos are collected are qualtatve ature For example, the resposes of customers may marketg surveys

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

f f... f 1 n n (ii) Median : It is the value of the middle-most observation(s).

f f... f 1 n n (ii) Median : It is the value of the middle-most observation(s). CHAPTER STATISTICS Pots to Remember :. Facts or fgures, collected wth a defte pupose, are called Data.. Statstcs s the area of study dealg wth the collecto, presetato, aalyss ad terpretato of data.. The

More information

(b) By independence, the probability that the string 1011 is received correctly is

(b) By independence, the probability that the string 1011 is received correctly is Soluto to Problem 1.31. (a) Let A be the evet that a 0 s trasmtted. Usg the total probablty theorem, the desred probablty s P(A)(1 ɛ ( 0)+ 1 P(A) ) (1 ɛ 1)=p(1 ɛ 0)+(1 p)(1 ɛ 1). (b) By depedece, the probablty

More information

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uverst Mchael Bar Sprg 5 Mdterm xam, secto Soluto Thursda, Februar 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes exam.. No calculators of a kd are allowed..

More information

The Occupancy and Coupon Collector problems

The Occupancy and Coupon Collector problems Chapter 4 The Occupacy ad Coupo Collector problems By Sarel Har-Peled, Jauary 9, 08 4 Prelmares [ Defto 4 Varace ad Stadard Devato For a radom varable X, let V E [ X [ µ X deote the varace of X, where

More information

STATISTICAL INFERENCE

STATISTICAL INFERENCE (STATISTICS) STATISTICAL INFERENCE COMPLEMENTARY COURSE B.Sc. MATHEMATICS III SEMESTER ( Admsso) UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITY P.O., MALAPPURAM, KERALA, INDIA -

More information

Third handout: On the Gini Index

Third handout: On the Gini Index Thrd hadout: O the dex Corrado, a tala statstca, proposed (, 9, 96) to measure absolute equalt va the mea dfferece whch s defed as ( / ) where refers to the total umber of dvduals socet. Assume that. The

More information

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model Chapter 3 Asmptotc Theor ad Stochastc Regressors The ature of eplaator varable s assumed to be o-stochastc or fed repeated samples a regresso aalss Such a assumpto s approprate for those epermets whch

More information

Chapter -2 Simple Random Sampling

Chapter -2 Simple Random Sampling Chapter - Smple Radom Samplg Smple radom samplg (SRS) s a method of selecto of a sample comprsg of umber of samplg uts out of the populato havg umber of samplg uts such that every samplg ut has a equal

More information

Lecture 9: Tolerant Testing

Lecture 9: Tolerant Testing Lecture 9: Tolerat Testg Dael Kae Scrbe: Sakeerth Rao Aprl 4, 07 Abstract I ths lecture we prove a quas lear lower boud o the umber of samples eeded to do tolerat testg for L dstace. Tolerat Testg We have

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uversty Mchael Bar Sprg 5 Mdterm am, secto Soluto Thursday, February 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes eam.. No calculators of ay kd are allowed..

More information

Chapter 8: Statistical Analysis of Simulated Data

Chapter 8: Statistical Analysis of Simulated Data Marquette Uversty MSCS600 Chapter 8: Statstcal Aalyss of Smulated Data Dael B. Rowe, Ph.D. Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 08 by Marquette Uversty MSCS600 Ageda 8. The Sample

More information

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015 Fall 05 Homework : Solutos Problem : (Practce wth Asymptotc Notato) A essetal requremet for uderstadg scalg behavor s comfort wth asymptotc (or bg-o ) otato. I ths problem, you wll prove some basc facts

More information

M2S1 - EXERCISES 8: SOLUTIONS

M2S1 - EXERCISES 8: SOLUTIONS MS - EXERCISES 8: SOLUTIONS. As X,..., X P ossoλ, a gve that T ˉX, the usg elemetary propertes of expectatos, we have E ft [T E fx [X λ λ, so that T s a ubase estmator of λ. T X X X Furthermore X X X From

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

Bayes Estimator for Exponential Distribution with Extension of Jeffery Prior Information

Bayes Estimator for Exponential Distribution with Extension of Jeffery Prior Information Malaysa Joural of Mathematcal Sceces (): 97- (9) Bayes Estmator for Expoetal Dstrbuto wth Exteso of Jeffery Pror Iformato Hadeel Salm Al-Kutub ad Noor Akma Ibrahm Isttute for Mathematcal Research, Uverst

More information

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen.

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen. .5 x 54.5 a. x 7. 786 7 b. The raked observatos are: 7.4, 7.5, 7.7, 7.8, 7.9, 8.0, 8.. Sce the sample sze 7 s odd, the meda s the (+)/ 4 th raked observato, or meda 7.8 c. The cosumer would more lkely

More information

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018 Chrs Pech Fal Practce CS09 Dec 5, 08 Practce Fal Examato Solutos. Aswer: 4/5 8/7. There are multle ways to obta ths aswer; here are two: The frst commo method s to sum over all ossbltes for the rak of

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

Introduction to Probability

Introduction to Probability Itroducto to Probablty Nader H Bshouty Departmet of Computer Scece Techo 32000 Israel e-mal: bshouty@cstechoacl 1 Combatorcs 11 Smple Rules I Combatorcs The rule of sum says that the umber of ways to choose

More information

Multiple Linear Regression Analysis

Multiple Linear Regression Analysis LINEA EGESSION ANALYSIS MODULE III Lecture - 4 Multple Lear egresso Aalyss Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur Cofdece terval estmato The cofdece tervals multple

More information

Random Variate Generation ENM 307 SIMULATION. Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü. Yrd. Doç. Dr. Gürkan ÖZTÜRK.

Random Variate Generation ENM 307 SIMULATION. Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü. Yrd. Doç. Dr. Gürkan ÖZTÜRK. adom Varate Geerato ENM 307 SIMULATION Aadolu Üverstes, Edüstr Mühedslğ Bölümü Yrd. Doç. Dr. Gürka ÖZTÜK 0 adom Varate Geerato adom varate geerato s about procedures for samplg from a varety of wdely-used

More information

Chapter -2 Simple Random Sampling

Chapter -2 Simple Random Sampling Chapter - Smple Radom Samplg Smple radom samplg (SRS) s a method of selecto of a sample comprsg of umber of samplg uts out of the populato havg umber of samplg uts such that every samplg ut has a equal

More information

Lecture 02: Bounding tail distributions of a random variable

Lecture 02: Bounding tail distributions of a random variable CSCI-B609: A Theorst s Toolkt, Fall 206 Aug 25 Lecture 02: Boudg tal dstrbutos of a radom varable Lecturer: Yua Zhou Scrbe: Yua Xe & Yua Zhou Let us cosder the ubased co flps aga. I.e. let the outcome

More information

CHAPTER 3 POSTERIOR DISTRIBUTIONS

CHAPTER 3 POSTERIOR DISTRIBUTIONS CHAPTER 3 POSTERIOR DISTRIBUTIONS If scece caot measure the degree of probablt volved, so much the worse for scece. The practcal ma wll stck to hs apprecatve methods utl t does, or wll accept the results

More information

Lecture 9. Some Useful Discrete Distributions. Some Useful Discrete Distributions. The observations generated by different experiments have

Lecture 9. Some Useful Discrete Distributions. Some Useful Discrete Distributions. The observations generated by different experiments have NM 7 Lecture 9 Some Useful Dscrete Dstrbutos Some Useful Dscrete Dstrbutos The observatos geerated by dfferet eermets have the same geeral tye of behavor. Cosequetly, radom varables assocated wth these

More information

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best Error Aalyss Preamble Wheever a measuremet s made, the result followg from that measuremet s always subject to ucertaty The ucertaty ca be reduced by makg several measuremets of the same quatty or by mprovg

More information

MEASURES OF DISPERSION

MEASURES OF DISPERSION MEASURES OF DISPERSION Measure of Cetral Tedecy: Measures of Cetral Tedecy ad Dsperso ) Mathematcal Average: a) Arthmetc mea (A.M.) b) Geometrc mea (G.M.) c) Harmoc mea (H.M.) ) Averages of Posto: a) Meda

More information

Module 7: Probability and Statistics

Module 7: Probability and Statistics Lecture 4: Goodess of ft tests. Itroducto Module 7: Probablty ad Statstcs I the prevous two lectures, the cocepts, steps ad applcatos of Hypotheses testg were dscussed. Hypotheses testg may be used to

More information

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 2

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 2 THE ROYAL STATISTICAL SOCIETY 06 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE The Socety s provdg these solutos to assst caddates preparg for the examatos 07. The solutos are teded as learg ads ad should

More information

Lecture 2 - What are component and system reliability and how it can be improved?

Lecture 2 - What are component and system reliability and how it can be improved? Lecture 2 - What are compoet ad system relablty ad how t ca be mproved? Relablty s a measure of the qualty of the product over the log ru. The cocept of relablty s a exteded tme perod over whch the expected

More information

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements Aoucemets No-Parametrc Desty Estmato Techques HW assged Most of ths lecture was o the blacboard. These sldes cover the same materal as preseted DHS Bometrcs CSE 90-a Lecture 7 CSE90a Fall 06 CSE90a Fall

More information

Simple Linear Regression

Simple Linear Regression Statstcal Methods I (EST 75) Page 139 Smple Lear Regresso Smple regresso applcatos are used to ft a model descrbg a lear relatoshp betwee two varables. The aspects of least squares regresso ad correlato

More information

THE ROYAL STATISTICAL SOCIETY 2010 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 2 STATISTICAL INFERENCE

THE ROYAL STATISTICAL SOCIETY 2010 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 2 STATISTICAL INFERENCE THE ROYAL STATISTICAL SOCIETY 00 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE STATISTICAL INFERENCE The Socety provdes these solutos to assst caddates preparg for the examatos future years ad for the

More information

Fridayʼs lecture" Problem solutions" Joint densities" 1."E(X) xf (x) dx (x,y) dy X,Y Marginal distributions" The distribution of a ratio" Problems"

Fridayʼs lecture Problem solutions Joint densities 1.E(X) xf (x) dx (x,y) dy X,Y Marginal distributions The distribution of a ratio Problems Frdayʼs lecture" Jot destes" Margal dstrbutos" The dstrbuto of a rato" Problems" Problem solutos" 1." E(X) = xf X (x)dx = x f X,Y (x,y)dy dx 2. E(X) " = kp X (k) = p X (1) + 2p X (2) +... = xf X,Y (x,y)dxdy

More information

arxiv: v1 [math.st] 24 Oct 2016

arxiv: v1 [math.st] 24 Oct 2016 arxv:60.07554v [math.st] 24 Oct 206 Some Relatoshps ad Propertes of the Hypergeometrc Dstrbuto Peter H. Pesku, Departmet of Mathematcs ad Statstcs York Uversty, Toroto, Otaro M3J P3, Caada E-mal: pesku@pascal.math.yorku.ca

More information

1. The weight of six Golden Retrievers is 66, 61, 70, 67, 92 and 66 pounds. The weight of six Labrador Retrievers is 54, 60, 72, 78, 84 and 67.

1. The weight of six Golden Retrievers is 66, 61, 70, 67, 92 and 66 pounds. The weight of six Labrador Retrievers is 54, 60, 72, 78, 84 and 67. Ecoomcs 3 Itroducto to Ecoometrcs Sprg 004 Professor Dobk Name Studet ID Frst Mdterm Exam You must aswer all the questos. The exam s closed book ad closed otes. You may use your calculators but please

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

LINEAR REGRESSION ANALYSIS

LINEAR REGRESSION ANALYSIS LINEAR REGRESSION ANALYSIS MODULE V Lecture - Correctg Model Iadequaces Through Trasformato ad Weghtg Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur Aalytcal methods for

More information

A New Family of Transformations for Lifetime Data

A New Family of Transformations for Lifetime Data Proceedgs of the World Cogress o Egeerg 4 Vol I, WCE 4, July - 4, 4, Lodo, U.K. A New Famly of Trasformatos for Lfetme Data Lakhaa Watthaacheewakul Abstract A famly of trasformatos s the oe of several

More information

JAM 2015: General Instructions during Examination

JAM 2015: General Instructions during Examination JAM 05 JAM 05: Geeral Istructos durg Examato. Total durato of the JAM 05 examato s 80 mutes.. The clock wll be set at the server. The coutdow tmer at the top rght corer of scree wll dsplay the remag tme

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

CHAPTER 6. d. With success = observation greater than 10, x = # of successes = 4, and

CHAPTER 6. d. With success = observation greater than 10, x = # of successes = 4, and CHAPTR 6 Secto 6.. a. We use the samle mea, to estmate the oulato mea µ. Σ 9.80 µ 8.407 7 ~ 7. b. We use the samle meda, 7 (the mddle observato whe arraged ascedg order. c. We use the samle stadard devato,

More information

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy Bouds o the expected etropy ad KL-dvergece of sampled multomal dstrbutos Brado C. Roy bcroy@meda.mt.edu Orgal: May 18, 2011 Revsed: Jue 6, 2011 Abstract Iformato theoretc quattes calculated from a sampled

More information

Multiple Regression. More than 2 variables! Grade on Final. Multiple Regression 11/21/2012. Exam 2 Grades. Exam 2 Re-grades

Multiple Regression. More than 2 variables! Grade on Final. Multiple Regression 11/21/2012. Exam 2 Grades. Exam 2 Re-grades STAT 101 Dr. Kar Lock Morga 11/20/12 Exam 2 Grades Multple Regresso SECTIONS 9.2, 10.1, 10.2 Multple explaatory varables (10.1) Parttog varablty R 2, ANOVA (9.2) Codtos resdual plot (10.2) Trasformatos

More information

Lecture 1. (Part II) The number of ways of partitioning n distinct objects into k distinct groups containing n 1,

Lecture 1. (Part II) The number of ways of partitioning n distinct objects into k distinct groups containing n 1, Lecture (Part II) Materals Covered Ths Lecture: Chapter 2 (2.6 --- 2.0) The umber of ways of parttog dstct obects to dstct groups cotag, 2,, obects, respectvely, where each obect appears exactly oe group

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Marquette Uverst Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Coprght 08 b Marquette Uverst Maxmum Lkelhood Estmato We have bee sag that ~

More information

Idea is to sample from a different distribution that picks points in important regions of the sample space. Want ( ) ( ) ( ) E f X = f x g x dx

Idea is to sample from a different distribution that picks points in important regions of the sample space. Want ( ) ( ) ( ) E f X = f x g x dx Importace Samplg Used for a umber of purposes: Varace reducto Allows for dffcult dstrbutos to be sampled from. Sestvty aalyss Reusg samples to reduce computatoal burde. Idea s to sample from a dfferet

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

MA 524 Homework 6 Solutions

MA 524 Homework 6 Solutions MA 524 Homework 6 Solutos. Sce S(, s the umber of ways to partto [] to k oempty blocks, ad c(, s the umber of ways to partto to k oempty blocks ad also the arrage each block to a cycle, we must have S(,

More information

CLASS NOTES. for. PBAF 528: Quantitative Methods II SPRING Instructor: Jean Swanson. Daniel J. Evans School of Public Affairs

CLASS NOTES. for. PBAF 528: Quantitative Methods II SPRING Instructor: Jean Swanson. Daniel J. Evans School of Public Affairs CLASS NOTES for PBAF 58: Quattatve Methods II SPRING 005 Istructor: Jea Swaso Dael J. Evas School of Publc Affars Uversty of Washgto Ackowledgemet: The structor wshes to thak Rachel Klet, Assstat Professor,

More information

STA302/1001-Fall 2008 Midterm Test October 21, 2008

STA302/1001-Fall 2008 Midterm Test October 21, 2008 STA3/-Fall 8 Mdterm Test October, 8 Last Name: Frst Name: Studet Number: Erolled (Crcle oe) STA3 STA INSTRUCTIONS Tme allowed: hour 45 mutes Ads allowed: A o-programmable calculator A table of values from

More information

Statistics Descriptive and Inferential Statistics. Instructor: Daisuke Nagakura

Statistics Descriptive and Inferential Statistics. Instructor: Daisuke Nagakura Statstcs Descrptve ad Iferetal Statstcs Istructor: Dasuke Nagakura (agakura@z7.keo.jp) 1 Today s topc Today, I talk about two categores of statstcal aalyses, descrptve statstcs ad feretal statstcs, ad

More information

Chapter 11 The Analysis of Variance

Chapter 11 The Analysis of Variance Chapter The Aalyss of Varace. Oe Factor Aalyss of Varace. Radomzed Bloc Desgs (ot for ths course) NIPRL . Oe Factor Aalyss of Varace.. Oe Factor Layouts (/4) Suppose that a expermeter s terested populatos

More information

Lecture 8: Linear Regression

Lecture 8: Linear Regression Lecture 8: Lear egresso May 4, GENOME 56, Sprg Goals Develop basc cocepts of lear regresso from a probablstc framework Estmatg parameters ad hypothess testg wth lear models Lear regresso Su I Lee, CSE

More information

THE ROYAL STATISTICAL SOCIETY 2009 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULAR FORMAT MODULE 2 STATISTICAL INFERENCE

THE ROYAL STATISTICAL SOCIETY 2009 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULAR FORMAT MODULE 2 STATISTICAL INFERENCE THE ROYAL STATISTICAL SOCIETY 009 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULAR FORMAT MODULE STATISTICAL INFERENCE The Socety provdes these solutos to assst caddates preparg for the examatos future

More information

LECTURE - 4 SIMPLE RANDOM SAMPLING DR. SHALABH DEPARTMENT OF MATHEMATICS AND STATISTICS INDIAN INSTITUTE OF TECHNOLOGY KANPUR

LECTURE - 4 SIMPLE RANDOM SAMPLING DR. SHALABH DEPARTMENT OF MATHEMATICS AND STATISTICS INDIAN INSTITUTE OF TECHNOLOGY KANPUR amplg Theory MODULE II LECTURE - 4 IMPLE RADOM AMPLIG DR. HALABH DEPARTMET OF MATHEMATIC AD TATITIC IDIA ITITUTE OF TECHOLOGY KAPUR Estmato of populato mea ad populato varace Oe of the ma objectves after

More information