Physics 2210 Fall smartphysics 14 Rotational kinematics 15 Parallel Axis Theorem and Torque 11/09/2015

Size: px
Start display at page:

Download "Physics 2210 Fall smartphysics 14 Rotational kinematics 15 Parallel Axis Theorem and Torque 11/09/2015"

Transcription

1 Physics 2210 Fall 2015 smartphysics 14 Rotational kinematics 15 Parallel Axis Theorem and Torque 11/09/2015

2 Exam 3 Results

3 Unit 14 Main Points 2/2

4 This table will be provided on the front page of exam 4 and the final exam Units of Moment of Inertia kgm 2 I = 1 12 Ml2 I = 1 3 Ml2

5 Example 14.3 (1/4) A right, circular cone is made of solid aluminum, with uniform density ρ=2.70x10 3 kg/m 3. Its base, of radius b=18cm sits on the xy plane, and its axis of symmetry lies along the z-axis. The height, measured from the center of the base to the apex, is h=38cm. Calculate I z, the moment-of-inertia about the z-axis, of the cone shown. (%i1) /* Break cone into a stack of cylinders of radius r, radial thickness dr and height z. The mass dm of each cylinder is given by rho*l*z*dr where L=2*pi*r is the circumference and in xmaxima we will omit the dr. The moment of inertia of this cylinder is then dm*r^2. We also need to know a as a function of r and we know it decreases linearly from h to 0 for r from 0 to b */ z: h*(1 - r/b); (%o1) h (1 - -) (%i2) L: 2*%pi*r, numer; (%o2) (%i3) m: rho*l*z; (%o3)... continued r b r h r (1 - -) rho r b

6 Example 14.3 (2/4) Right, circular cone; uniform density ρ=2.70x10 3 kg/m 3 ; Base: radius b=18cm, Height, h=38cm. Calculate I z (%i4) f: m*r^2; 3 r (%o4) h r (1 - -) rho b (%i5) assume(b>0); (%o5) [b > 0] (%i6) assume(h>0); (%o6) [h > 0] (%i7) integrate(f, r); h (4 r - 5 b r ) rho (%o7) b (%i8) Iz: integrate(f, r, 0, b); 4 (%o8) b h rho (%i9) Iz, rho=2.7e3, b=0.18, h=0.38; (%o9) Answer: Iz = kg*m^2

7 Example 14.3 (3/4) Right, circular cone; uniform density ρ=2.70x10 3 kg/m 3 ; Base: radius b=18cm, Height, h=38cm. Calculate I z (%i1) /* Alternate solution: break up cone into a stack of horizontal disks each of thickness dz, radius r (function of z). We start by writing r as a function of z */ r: b*(1 - z/h); z (%o1) b (1 - -) h (%i2) /* mass of disk is dm=rho*a*dz, we omit dz, A=pi*r^2 */ A: %pi*r^2, numer; 2 z 2 (%o2) b (1 - -) h m: rho*a; 2 z 2 (%o3) b rho (1 - -) h (%i4) /* moment of inertia of each disk is dm/2*r^2 */ f: m/2*r^2; 4 z 4 (%o4) b rho (1 - -) h... continued

8 Example 14.3 (4/4) Right, circular cone; uniform density ρ=2.70x10 3 kg/m 3 ; Base: radius b=18cm, Height, h=38cm. Calculate I z (%i5) integrate(f, z); z z 2 z 2 z (%o5) b rho ( z) h 5 h h h (%i6) integrate(f, z, 0, h); 4 (%o6) b h rho Which is the same answer as before... continued

9 Unit 15: Parallel Axis Theorem Objects rotate naturally (without external forces) around their center-of-mass. Moment-of-inertia is usually tabulated/listed about a symmetry axis through the center-of-mass I = 1 12 Ml2 I = 1 3 Ml2

10 Rotation of a rigid body about arbitrary axis can be separated into A. rotation of the CM about the axis, and B. rotation of the object about the CM. These occur at the SAME angular velocity for a rigid body (SPECIAL CASE) When you stand still on a carousel, as your CM goes through ONE rotation around the axis of the carousel, you also execute exactly ONE rotation about your CM. y CM CM CM z CM x CM CM

11 Parallel Axis Theorem continued So the kinetic energy of the body can be written in two parts K = K + K CC Where K is the kinetic energy of the body ABOUT the CM (i.e. in the CM frame) K = 1 2 I CCω 2 I CC is the moment-of-inertia of the object about an (imaginary) axis parallel to the actual rotation axis, that goes through its CM) The CM is executing circular motion at radius R CC (perpendicular distance r from rotation axis to the CM): V CC = R CC ω K CC = 1 2 MV CC 2 = 1 2 MR CC 2 ω 2 Adding the two terms together we have K = K + K CC = 1 2 I CCω MR CC 2 ω 2 = 1 2 I CC + MR 2 CC ω 2 By definition: K = 1 2 Iω2 Where "I is by this definition the moment of inertia about the ACTUAL axis of rotation. 2 I = I CC + MR CC

12 Unit 15 1 of 3 Example 15.1: I = 1 12 Ml2 I = 1 3 Ml2 In this case: D = R CC = l 2, 2 I EEE = I CC + MR CC = 1 12 Ml2 + M l 2 = Ml2 = 1 3 Ml2 2

13 Poll = X CC 3M 0 + M. L 3M + M = L 4 A ball of mass 3M at x=0 is connected to a ball of mass M at x=l by a massless rod. Consider the three rotation axes A, B and C as shown, all parallel to the y axis. For which rotation axis is the moment of inertia of the object smallest? (It may help you to figure out where the center of mass of the object is.) A. A B. B C. C

14 Unit 15 For a more in-depth look at the Cross Product See the introduction to Cross Products in the Khan Academy ucts/v/linear-algebra-cross-productintroduction 2 of 3 Vector/Cross Product θ r F F NOTE: sin(180 θ) = sinθ

15 Angular Velocity as a (pseudo-) Vector φ φ

16 Cross Product: (a) Magnitude A second product of multiplying TWO vectors is used extensively for describing rotational dynamics: The product here is a vector A B known as cross product, vector product, exterior Product Basic Definition: (a) Magnitude of A B: A B = A B sin θ Whereθ A,B is the smaller (< π radians) angle between A and B. You can think of A B as the product of A with B A, the component of B perpendicular to A. Alternatively, you can think of A B as the area of the parallelogram formed by vectors A and B. B B θ A,B θ A,B A B = A B sin θ B A = B sin θ A,B A A B = A B A B sin θ A,B A

17 Cross Product: (b) Direction The cross/vector product A B is perpendicular to both A and B. i.e. A B is perpendicular to the parallelogram formed by vectors A and B, which in this case in the plane of this page. Question remains: Is A B into the page or out of the page? Answer: determine the pointing direction of A B with the Right Hand Rule: In this CASE: A B points OUT of the page B θ A,B B sin θ A,B A

18 Torque τ = r F r Poll τ 1 τ 2 r : Vector from the rotation axis 90 perpendicularly 30 to the point of application of the force τ 1 = L 2 F sss 999 = 1 2 LL τ 2 = L F sss 333 = 1 2 LL In Case 1, a force F is pushing perpendicular on an object a distance L/2 from the rotation axis. In Case 2 the same force is pushing at an angle of 30 degrees a distance L from the axis. In which case is the torque due to the force about the rotation axis biggest? We mean here the magnitude of the torque A. Case 1 B. Case 2 C. Same r F r

19 Torque and Angular Acceleration 1/3 We apply a force F of constant magnitude F on a point r from the origin (rotation axis): it acts at a distance r from the rotation axis, but at an angle of φ relative to r Only the tangential (to the circle of motion) component of the force, F t, does work: F t = F sin φ S = rθ As the body rotates through an angle θ we maintain the relative orientation of the moving r to F. The force now acted through a distance of S = rθ and has done work: W = F t S = rθf sin φ Applying work-kinetic- energy theorem: K = W = rr sin φ θ Differentiating with respect to time: we then get (noting rr sin φ is constant): dd dd = dθ rr sin φ dd = z y rr sin φ ω r F F F r φ F t x

20 Torque and Angular Acceleration 2/3 y The quantity (which we are keeping constant here) τ rr sin φ is called torque unit of torque: N m S = rθ Torque is the rotational analog to force F Note that in the case shown, F makes a positive angle φ (CCW) r φ from r and so τ is positive. If φ is negative then τ is negative. z F r Rotational kinetic energy is given by K = 1 2 Iω2. Its time derivative is then dd dd = 1 2 I d dd ω2 = 1 dd I 2ω 2 dd = III So we have III = rr sin φ ω = τω Iα = τ α = τ I Which is like Newton s 2 nd Law for rotation. Compare to a = F m F t x

21 Torque and Angular Acceleration 3/3 Important notes: The angle φ is measured from the pointing directions of the vector r to that of the force vector F. φ > 0 When measuring the angle between two vectors, they should be drawn tail-to-tail r F z y S = rθ The vector r is the vector drawn perpendicularly from the rotation axis to the point of application of the force. Angle φ is positive if rotation from(the direction of) r to F is counter-clock-wise (CCW): it means that the force/torque tends to push the body to rotate in the positive (CCW) direction. r The diagram to the right here shows th φ < 0 case φ < 0 smartphysics uses θ for both this angle and the angular position: it s confusing F r F F r φ F t x

22 Unit 15 3 of 3

Physics 2210 Fall smartphysics 16 Rotational Dynamics 11/13/2015

Physics 2210 Fall smartphysics 16 Rotational Dynamics 11/13/2015 Physics 10 Fall 015 smartphysics 16 Rotational Dynamics 11/13/015 A rotor consists of a thin rod of length l=60 cm, mass m=10.0 kg, with two spheres attached to the ends. Each sphere has radius R=10 cm,

More information

Rotational Kinetic Energy

Rotational Kinetic Energy Lecture 17, Chapter 10: Rotational Energy and Angular Momentum 1 Rotational Kinetic Energy Consider a rigid body rotating with an angular velocity ω about an axis. Clearly every point in the rigid body

More information

Classical Mechanics Lecture 15

Classical Mechanics Lecture 15 Classical Mechanics Lecture 5 Today s Concepts: a) Parallel Axis Theorem b) Torque & Angular Acceleration Mechanics Lecture 5, Slide Unit 4 Main Points Mechanics Lecture 4, Slide Unit 4 Main Points Mechanics

More information

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics Circular Motion, Pt 2: Angular Dynamics Mr. Velazquez AP/Honors Physics Formulas: Angular Kinematics (θ must be in radians): s = rθ Arc Length 360 = 2π rads = 1 rev ω = θ t = v t r Angular Velocity α av

More information

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration 1 Handout 6: Rotational motion and moment of inertia Angular velocity and angular acceleration In Figure 1, a particle b is rotating about an axis along a circular path with radius r. The radius sweeps

More information

Chapter 10. Rotation of a Rigid Object about a Fixed Axis

Chapter 10. Rotation of a Rigid Object about a Fixed Axis Chapter 10 Rotation of a Rigid Object about a Fixed Axis Angular Position Axis of rotation is the center of the disc Choose a fixed reference line. Point P is at a fixed distance r from the origin. A small

More information

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work Translational vs Rotational / / 1/ Δ m x v dx dt a dv dt F ma p mv KE mv Work Fd / / 1/ θ ω θ α ω τ α ω ω τθ Δ I d dt d dt I L I KE I Work / θ ω α τ Δ Δ c t s r v r a v r a r Fr L pr Connection Translational

More information

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1 Physics 201 p. 1/1 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/1 Rotational Kinematics and Energy Rotational Kinetic Energy, Moment of Inertia All elements inside the rigid

More information

Chapter 10: Rotation

Chapter 10: Rotation Chapter 10: Rotation Review of translational motion (motion along a straight line) Position x Displacement x Velocity v = dx/dt Acceleration a = dv/dt Mass m Newton s second law F = ma Work W = Fdcosφ

More information

Rotation. PHYS 101 Previous Exam Problems CHAPTER

Rotation. PHYS 101 Previous Exam Problems CHAPTER PHYS 101 Previous Exam Problems CHAPTER 10 Rotation Rotational kinematics Rotational inertia (moment of inertia) Kinetic energy Torque Newton s 2 nd law Work, power & energy conservation 1. Assume that

More information

1.1. Rotational Kinematics Description Of Motion Of A Rotating Body

1.1. Rotational Kinematics Description Of Motion Of A Rotating Body PHY 19- PHYSICS III 1. Moment Of Inertia 1.1. Rotational Kinematics Description Of Motion Of A Rotating Body 1.1.1. Linear Kinematics Consider the case of linear kinematics; it concerns the description

More information

Rotational Motion and Torque

Rotational Motion and Torque Rotational Motion and Torque Introduction to Angular Quantities Sections 8- to 8-2 Introduction Rotational motion deals with spinning objects, or objects rotating around some point. Rotational motion is

More information

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10 Units of Chapter 10 Determining Moments of Inertia Rotational Kinetic Energy Rotational Plus Translational Motion; Rolling Why Does a Rolling Sphere Slow Down? General Definition of Torque, final Taking

More information

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics Chapter 1: Rotation of Rigid Bodies Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics Translational vs Rotational / / 1/ m x v dx dt a dv dt F ma p mv KE mv Work Fd P Fv / / 1/ I

More information

Rotational Kinematics and Dynamics. UCVTS AIT Physics

Rotational Kinematics and Dynamics. UCVTS AIT Physics Rotational Kinematics and Dynamics UCVTS AIT Physics Angular Position Axis of rotation is the center of the disc Choose a fixed reference line Point P is at a fixed distance r from the origin Angular Position,

More information

Chapters 10 & 11: Rotational Dynamics Thursday March 8 th

Chapters 10 & 11: Rotational Dynamics Thursday March 8 th Chapters 10 & 11: Rotational Dynamics Thursday March 8 th Review of rotational kinematics equations Review and more on rotational inertia Rolling motion as rotation and translation Rotational kinetic energy

More information

Rotational Dynamics continued

Rotational Dynamics continued Chapter 9 Rotational Dynamics continued 9.4 Newton s Second Law for Rotational Motion About a Fixed Axis ROTATIONAL ANALOG OF NEWTON S SECOND LAW FOR A RIGID BODY ROTATING ABOUT A FIXED AXIS I = ( mr 2

More information

Rotation. Rotational Variables

Rotation. Rotational Variables Rotation Rigid Bodies Rotation variables Constant angular acceleration Rotational KE Rotational Inertia Rotational Variables Rotation of a rigid body About a fixed rotation axis. Rigid Body an object that

More information

Calculating Moments of Inertia

Calculating Moments of Inertia Calculating Moments of Inertia Lana Sheridan 1 Definitions The moment of inertia, I of an object for a particular axis is the constant that links the applied torque τ about that axis to the angular acceleration

More information

Physics 141 Rotational Motion 1 Page 1. Rotational Motion 1. We're going to turn this team around 360 degrees.! Jason Kidd

Physics 141 Rotational Motion 1 Page 1. Rotational Motion 1. We're going to turn this team around 360 degrees.! Jason Kidd Physics 141 Rotational Motion 1 Page 1 Rotational Motion 1 We're going to turn this team around 360 degrees.! Jason Kidd Rigid bodies To a good approximation, a solid object behaves like a perfectly rigid

More information

= 2 5 MR2. I sphere = MR 2. I hoop = 1 2 MR2. I disk

= 2 5 MR2. I sphere = MR 2. I hoop = 1 2 MR2. I disk A sphere (green), a disk (blue), and a hoop (red0, each with mass M and radius R, all start from rest at the top of an inclined plane and roll to the bottom. Which object reaches the bottom first? (Use

More information

Chapter 10: Rotation. Chapter 10: Rotation

Chapter 10: Rotation. Chapter 10: Rotation Chapter 10: Rotation Change in Syllabus: Only Chapter 10 problems (CH10: 04, 27, 67) are due on Thursday, Oct. 14. The Chapter 11 problems (Ch11: 06, 37, 50) will be due on Thursday, Oct. 21 in addition

More information

14. Rotational Kinematics and Moment of Inertia

14. Rotational Kinematics and Moment of Inertia 14. Rotational Kinematics and Moment of nertia A) Overview n this unit we will introduce rotational motion. n particular, we will introduce the angular kinematic variables that are used to describe the

More information

= o + t = ot + ½ t 2 = o + 2

= o + t = ot + ½ t 2 = o + 2 Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

More information

PHYSICS 149: Lecture 21

PHYSICS 149: Lecture 21 PHYSICS 149: Lecture 21 Chapter 8: Torque and Angular Momentum 8.2 Torque 8.4 Equilibrium Revisited 8.8 Angular Momentum Lecture 21 Purdue University, Physics 149 1 Midterm Exam 2 Wednesday, April 6, 6:30

More information

Notes on Torque. We ve seen that if we define torque as rfsinθ, and the N 2. i i

Notes on Torque. We ve seen that if we define torque as rfsinθ, and the N 2. i i Notes on Torque We ve seen that if we define torque as rfsinθ, and the moment of inertia as N, we end up with an equation mr i= 1 that looks just like Newton s Second Law There is a crucial difference,

More information

Chapter 8 continued. Rotational Dynamics

Chapter 8 continued. Rotational Dynamics Chapter 8 continued Rotational Dynamics 8.4 Rotational Work and Energy Work to accelerate a mass rotating it by angle φ F W = F(cosθ)x x = s = rφ = Frφ Fr = τ (torque) = τφ r φ s F to s θ = 0 DEFINITION

More information

Chapter 8 continued. Rotational Dynamics

Chapter 8 continued. Rotational Dynamics Chapter 8 continued Rotational Dynamics 8.4 Rotational Work and Energy Work to accelerate a mass rotating it by angle φ F W = F(cosθ)x x = rφ = Frφ Fr = τ (torque) = τφ r φ s F to x θ = 0 DEFINITION OF

More information

PHYS 211 Lecture 21 - Moments of inertia 21-1

PHYS 211 Lecture 21 - Moments of inertia 21-1 PHYS 211 Lecture 21 - Moments of inertia 21-1 Lecture 21 - Moments of inertia Text: similar to Fowles and Cassiday, Chap. 8 As discussed previously, the moment of inertia I f a single mass m executing

More information

Physics 2210 Fall smartphysics Rotational Statics 11/18/2015

Physics 2210 Fall smartphysics Rotational Statics 11/18/2015 Physics 2210 Fall 2015 smartphysics 17-18 Rotational Statics 11/18/2015 τ TT = L T 1 sin 150 = 1 T 2 1L Poll 11-18-01 τ TT = L 2 T 2 sin 150 = 1 4 T 2L 150 150 τ gg = L 2 MM sin +90 = 1 2 MMM +90 MM τ

More information

CIRCULAR MOTION AND ROTATION

CIRCULAR MOTION AND ROTATION 1. UNIFORM CIRCULAR MOTION So far we have learned a great deal about linear motion. This section addresses rotational motion. The simplest kind of rotational motion is an object moving in a perfect circle

More information

Chapter 8 Lecture Notes

Chapter 8 Lecture Notes Chapter 8 Lecture Notes Physics 2414 - Strauss Formulas: v = l / t = r θ / t = rω a T = v / t = r ω / t =rα a C = v 2 /r = ω 2 r ω = ω 0 + αt θ = ω 0 t +(1/2)αt 2 θ = (1/2)(ω 0 +ω)t ω 2 = ω 0 2 +2αθ τ

More information

Torque and Rotation Lecture 7

Torque and Rotation Lecture 7 Torque and Rotation Lecture 7 ˆ In this lecture we finally move beyond a simple particle in our mechanical analysis of motion. ˆ Now we consider the so-called rigid body. Essentially, a particle with extension

More information

31 ROTATIONAL KINEMATICS

31 ROTATIONAL KINEMATICS 31 ROTATIONAL KINEMATICS 1. Compare and contrast circular motion and rotation? Address the following Which involves an object and which involves a system? Does an object/system in circular motion have

More information

Chapter 10. Rotation

Chapter 10. Rotation Chapter 10 Rotation Rotation Rotational Kinematics: Angular velocity and Angular Acceleration Rotational Kinetic Energy Moment of Inertia Newton s nd Law for Rotation Applications MFMcGraw-PHY 45 Chap_10Ha-Rotation-Revised

More information

Two-Dimensional Rotational Kinematics

Two-Dimensional Rotational Kinematics Two-Dimensional Rotational Kinematics Rigid Bodies A rigid body is an extended object in which the distance between any two points in the object is constant in time. Springs or human bodies are non-rigid

More information

Physics 207: Lecture 24. Announcements. No labs next week, May 2 5 Exam 3 review session: Wed, May 4 from 8:00 9:30 pm; here.

Physics 207: Lecture 24. Announcements. No labs next week, May 2 5 Exam 3 review session: Wed, May 4 from 8:00 9:30 pm; here. Physics 07: Lecture 4 Announcements No labs next week, May 5 Exam 3 review session: Wed, May 4 from 8:00 9:30 pm; here Today s Agenda ecap: otational dynamics and torque Work and energy with example Many

More information

Prof. Rupak Mahapatra. Physics 218, Chapter 15 & 16

Prof. Rupak Mahapatra. Physics 218, Chapter 15 & 16 Physics 218 Chap 14 & 15 Prof. Rupak Mahapatra Physics 218, Chapter 15 & 16 1 Angular Quantities Position Angle θ Velocity Angular Velocity ω Acceleration Angular Acceleration α Moving forward: Force Mass

More information

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2)

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) We will limit our study of planar kinetics to rigid bodies that are symmetric with respect to a fixed reference plane. As discussed in Chapter 16, when

More information

Chapter 8 continued. Rotational Dynamics

Chapter 8 continued. Rotational Dynamics Chapter 8 continued Rotational Dynamics 8.6 The Action of Forces and Torques on Rigid Objects Chapter 8 developed the concepts of angular motion. θ : angles and radian measure for angular variables ω :

More information

Slide 1 / 37. Rotational Motion

Slide 1 / 37. Rotational Motion Slide 1 / 37 Rotational Motion Slide 2 / 37 Angular Quantities An angle θ can be given by: where r is the radius and l is the arc length. This gives θ in radians. There are 360 in a circle or 2π radians.

More information

Advanced Higher Physics. Rotational Motion

Advanced Higher Physics. Rotational Motion Wallace Hall Academy Physics Department Advanced Higher Physics Rotational Motion Solutions AH Physics: Rotational Motion Problems Solutions Page 1 013 TUTORIAL 1.0 Equations of motion 1. (a) v = ds, ds

More information

Physics 2210 Fall smartphysics Conservation of Angular Momentum 11/20/2015

Physics 2210 Fall smartphysics Conservation of Angular Momentum 11/20/2015 Physics 2210 Fall 2015 smartphysics 19-20 Conservation of Angular Momentum 11/20/2015 Poll 11-18-03 In the two cases shown above identical ladders are leaning against frictionless walls and are not sliding.

More information

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 8: Rotation of a Rigid Object About a Fixed Axis Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ New Territory Object In the past, point particle (no rotation,

More information

PH 221-3A Fall 2009 ROTATION. Lectures Chapter 10 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 221-3A Fall 2009 ROTATION. Lectures Chapter 10 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 1-3A Fall 009 ROTATION Lectures 16-17 Chapter 10 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 10 Rotation In this chapter we will study the rotational motion of rigid bodies

More information

EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid

EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body undergoing rotational motion. APPLICATIONS The crank

More information

Chap10. Rotation of a Rigid Object about a Fixed Axis

Chap10. Rotation of a Rigid Object about a Fixed Axis Chap10. Rotation of a Rigid Object about a Fixed Axis Level : AP Physics Teacher : Kim 10.1 Angular Displacement, Velocity, and Acceleration - A rigid object rotating about a fixed axis through O perpendicular

More information

We define angular displacement, θ, and angular velocity, ω. What's a radian?

We define angular displacement, θ, and angular velocity, ω. What's a radian? We define angular displacement, θ, and angular velocity, ω Units: θ = rad ω = rad/s What's a radian? Radian is the ratio between the length of an arc and its radius note: counterclockwise is + clockwise

More information

Chapter 8- Rotational Kinematics Angular Variables Kinematic Equations

Chapter 8- Rotational Kinematics Angular Variables Kinematic Equations Chapter 8- Rotational Kinematics Angular Variables Kinematic Equations Chapter 9- Rotational Dynamics Torque Center of Gravity Newton s 2 nd Law- Angular Rotational Work & Energy Angular Momentum Angular

More information

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 8: Rotation of a Rigid Object About a Fixed Axis Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ New Territory Object In the past, point particle (no rotation,

More information

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION I. Moment of Inertia: Since a body has a definite size and shape, an applied nonconcurrent force system may cause the body to both translate and rotate.

More information

Physics 1A Lecture 10B

Physics 1A Lecture 10B Physics 1A Lecture 10B "Sometimes the world puts a spin on life. When our equilibrium returns to us, we understand more because we've seen the whole picture. --Davis Barton Cross Products Another way to

More information

Chapter 10.A. Rotation of Rigid Bodies

Chapter 10.A. Rotation of Rigid Bodies Chapter 10.A Rotation of Rigid Bodies P. Lam 7_23_2018 Learning Goals for Chapter 10.1 Understand the equations govern rotational kinematics, and know how to apply them. Understand the physical meanings

More information

Relating Linear and Angular Kinematics. a rad = v 2 /r = rω 2

Relating Linear and Angular Kinematics. a rad = v 2 /r = rω 2 PH2213 : Advanced Examples from Chapter 10 : Rotational Motion NOTE: these are somewhat advanced examples of how we can apply the methods from this chapter, so are beyond what will be on the final exam

More information

Rotation. Kinematics Rigid Bodies Kinetic Energy. Torque Rolling. featuring moments of Inertia

Rotation. Kinematics Rigid Bodies Kinetic Energy. Torque Rolling. featuring moments of Inertia Rotation Kinematics Rigid Bodies Kinetic Energy featuring moments of Inertia Torque Rolling Angular Motion We think about rotation in the same basic way we do about linear motion How far does it go? How

More information

AP Physics C: Rotation II. (Torque and Rotational Dynamics, Rolling Motion) Problems

AP Physics C: Rotation II. (Torque and Rotational Dynamics, Rolling Motion) Problems AP Physics C: Rotation II (Torque and Rotational Dynamics, Rolling Motion) Problems 1980M3. A billiard ball has mass M, radius R, and moment of inertia about the center of mass I c = 2 MR²/5 The ball is

More information

DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS OPTION B-1A: ROTATIONAL DYNAMICS Essential Idea: The basic laws of mechanics have an extension when equivalent principles are applied to rotation. Actual

More information

Chapter 9. Rotational Dynamics

Chapter 9. Rotational Dynamics Chapter 9 Rotational Dynamics In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of translation and rotation. 1) Torque Produces angular

More information

Physics 4A Solutions to Chapter 10 Homework

Physics 4A Solutions to Chapter 10 Homework Physics 4A Solutions to Chapter 0 Homework Chapter 0 Questions: 4, 6, 8 Exercises & Problems 6, 3, 6, 4, 45, 5, 5, 7, 8 Answers to Questions: Q 0-4 (a) positive (b) zero (c) negative (d) negative Q 0-6

More information

Angular velocity and angular acceleration CHAPTER 9 ROTATION. Angular velocity and angular acceleration. ! equations of rotational motion

Angular velocity and angular acceleration CHAPTER 9 ROTATION. Angular velocity and angular acceleration. ! equations of rotational motion Angular velocity and angular acceleration CHAPTER 9 ROTATION! r i ds i dθ θ i Angular velocity and angular acceleration! equations of rotational motion Torque and Moment of Inertia! Newton s nd Law for

More information

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion Torque and angular momentum In Figure, in order to turn a rod about a fixed hinge at one end, a force F is applied at a

More information

Lecture II: Rigid-Body Physics

Lecture II: Rigid-Body Physics Rigid-Body Motion Previously: Point dimensionless objects moving through a trajectory. Today: Objects with dimensions, moving as one piece. 2 Rigid-Body Kinematics Objects as sets of points. Relative distances

More information

Quantitative Skills in AP Physics 1

Quantitative Skills in AP Physics 1 This chapter focuses on some of the quantitative skills that are important in your AP Physics 1 course. These are not all of the skills that you will learn, practice, and apply during the year, but these

More information

Motion Of An Extended Object. Physics 201, Lecture 17. Translational Motion And Rotational Motion. Motion of Rigid Object: Translation + Rotation

Motion Of An Extended Object. Physics 201, Lecture 17. Translational Motion And Rotational Motion. Motion of Rigid Object: Translation + Rotation Physics 01, Lecture 17 Today s Topics q Rotation of Rigid Object About A Fixed Axis (Chap. 10.1-10.4) n Motion of Extend Object n Rotational Kinematics: n Angular Velocity n Angular Acceleration q Kinetic

More information

Phys 270 Final Exam. Figure 1: Question 1

Phys 270 Final Exam. Figure 1: Question 1 Phys 270 Final Exam Time limit: 120 minutes Each question worths 10 points. Constants: g = 9.8m/s 2, G = 6.67 10 11 Nm 2 kg 2. 1. (a) Figure 1 shows an object with moment of inertia I and mass m oscillating

More information

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 20: Rotational Motion. Slide 20-1

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 20: Rotational Motion. Slide 20-1 Physics 1501 Fall 2008 Mechanics, Thermodynamics, Waves, Fluids Lecture 20: Rotational Motion Slide 20-1 Recap: center of mass, linear momentum A composite system behaves as though its mass is concentrated

More information

Rotational Dynamics continued

Rotational Dynamics continued Chapter 9 Rotational Dynamics continued 9.1 The Action of Forces and Torques on Rigid Objects Chapter 8 developed the concepts of angular motion. θ : angles and radian measure for angular variables ω :

More information

Tute M4 : ROTATIONAL MOTION 1

Tute M4 : ROTATIONAL MOTION 1 Tute M4 : ROTATIONAL MOTION 1 The equations dealing with rotational motion are identical to those of linear motion in their mathematical form. To convert equations for linear motion to those for rotational

More information

In-Class Problems 30-32: Moment of Inertia, Torque, and Pendulum: Solutions

In-Class Problems 30-32: Moment of Inertia, Torque, and Pendulum: Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 TEAL Fall Term 004 In-Class Problems 30-3: Moment of Inertia, Torque, and Pendulum: Solutions Problem 30 Moment of Inertia of a

More information

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 8 Lecture Pearson Physics Rotational Motion and Equilibrium Prepared by Chris Chiaverina Chapter Contents Describing Angular Motion Rolling Motion and the Moment of Inertia Torque Static Equilibrium

More information

Work - kinetic energy theorem for rotational motion *

Work - kinetic energy theorem for rotational motion * OpenStax-CNX module: m14307 1 Work - kinetic energy theorem for rotational motion * Sunil Kumar Singh This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0

More information

Rolling, Torque & Angular Momentum

Rolling, Torque & Angular Momentum PHYS 101 Previous Exam Problems CHAPTER 11 Rolling, Torque & Angular Momentum Rolling motion Torque Angular momentum Conservation of angular momentum 1. A uniform hoop (ring) is rolling smoothly from the

More information

Phys 106 Practice Problems Common Quiz 1 Spring 2003

Phys 106 Practice Problems Common Quiz 1 Spring 2003 Phys 106 Practice Problems Common Quiz 1 Spring 2003 1. For a wheel spinning with constant angular acceleration on an axis through its center, the ratio of the speed of a point on the rim to the speed

More information

Angular Displacement. θ i. 1rev = 360 = 2π rads. = "angular displacement" Δθ = θ f. π = circumference. diameter

Angular Displacement. θ i. 1rev = 360 = 2π rads. = angular displacement Δθ = θ f. π = circumference. diameter Rotational Motion Angular Displacement π = circumference diameter π = circumference 2 radius circumference = 2πr Arc length s = rθ, (where θ in radians) θ 1rev = 360 = 2π rads Δθ = θ f θ i = "angular displacement"

More information

Rotational & Rigid-Body Mechanics. Lectures 3+4

Rotational & Rigid-Body Mechanics. Lectures 3+4 Rotational & Rigid-Body Mechanics Lectures 3+4 Rotational Motion So far: point objects moving through a trajectory. Next: moving actual dimensional objects and rotating them. 2 Circular Motion - Definitions

More information

Uniform Circular Motion:-Circular motion is said to the uniform if the speed of the particle (along the circular path) remains constant.

Uniform Circular Motion:-Circular motion is said to the uniform if the speed of the particle (along the circular path) remains constant. Circular Motion:- Uniform Circular Motion:-Circular motion is said to the uniform if the speed of the particle (along the circular path) remains constant. Angular Displacement:- Scalar form:-?s = r?θ Vector

More information

RIGID BODY MOTION (Section 16.1)

RIGID BODY MOTION (Section 16.1) RIGID BODY MOTION (Section 16.1) There are cases where an object cannot be treated as a particle. In these cases the size or shape of the body must be considered. Rotation of the body about its center

More information

Physics 121, March 25, Rotational Motion and Angular Momentum. Department of Physics and Astronomy, University of Rochester

Physics 121, March 25, Rotational Motion and Angular Momentum. Department of Physics and Astronomy, University of Rochester Physics 121, March 25, 2008. Rotational Motion and Angular Momentum. Physics 121. March 25, 2008. Course Information Topics to be discussed today: Review of Rotational Motion Rolling Motion Angular Momentum

More information

Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as:

Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as: Coordinator: Dr.. Naqvi Monday, January 05, 015 Page: 1 Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as: ) (1/) MV, where M is the

More information

Rotational Mechanics Part III Dynamics. Pre AP Physics

Rotational Mechanics Part III Dynamics. Pre AP Physics Rotational Mechanics Part III Dynamics Pre AP Physics We have so far discussed rotational kinematics the description of rotational motion in terms of angle, angular velocity and angular acceleration and

More information

Exam 3 Practice Solutions

Exam 3 Practice Solutions Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at

More information

Static Equilibrium, Gravitation, Periodic Motion

Static Equilibrium, Gravitation, Periodic Motion This test covers static equilibrium, universal gravitation, and simple harmonic motion, with some problems requiring a knowledge of basic calculus. Part I. Multiple Choice 1. 60 A B 10 kg A mass of 10

More information

What is the initial velocity (magnitude and direction) of the CM? Ans: v CM (0) = ( 7 /2) v 0 ; tan 1 ( 3 /2) 41 above horizontal.

What is the initial velocity (magnitude and direction) of the CM? Ans: v CM (0) = ( 7 /2) v 0 ; tan 1 ( 3 /2) 41 above horizontal. Reading: Systems of Particles, Rotations 1, 2. Key concepts: Center of mass, momentum, motion relative to CM, collisions; vector product, kinetic energy of rotation, moment of inertia; torque, rotational

More information

Phys101 Lectures 19, 20 Rotational Motion

Phys101 Lectures 19, 20 Rotational Motion Phys101 Lectures 19, 20 Rotational Motion Key points: Angular and Linear Quantities Rotational Dynamics; Torque and Moment of Inertia Rotational Kinetic Energy Ref: 10-1,2,3,4,5,6,8,9. Page 1 Angular Quantities

More information

Work and kinetic Energy

Work and kinetic Energy Work and kinetic Energy Problem 66. M=4.5kg r = 0.05m I = 0.003kgm 2 Q: What is the velocity of mass m after it dropped a distance h? (No friction) h m=0.6kg mg Work and kinetic Energy Problem 66. M=4.5kg

More information

PHYSICS 220. Lecture 15. Textbook Sections Lecture 15 Purdue University, Physics 220 1

PHYSICS 220. Lecture 15. Textbook Sections Lecture 15 Purdue University, Physics 220 1 PHYSICS 220 Lecture 15 Angular Momentum Textbook Sections 9.3 9.6 Lecture 15 Purdue University, Physics 220 1 Last Lecture Overview Torque = Force that causes rotation τ = F r sin θ Work done by torque

More information

Fundamentals Physics. Chapter 10 Rotation

Fundamentals Physics. Chapter 10 Rotation Fundamentals Physics Tenth Edition Halliday Chapter 10 Rotation 10-1 Rotational Variables (1 of 15) Learning Objectives 10.01 Identify that if all parts of a body rotate around a fixed axis locked together,

More information

A Ferris wheel in Japan has a radius of 50m and a mass of 1.2 x 10 6 kg. If a torque of 1 x 10 9 Nm is needed to turn the wheel when it starts at

A Ferris wheel in Japan has a radius of 50m and a mass of 1.2 x 10 6 kg. If a torque of 1 x 10 9 Nm is needed to turn the wheel when it starts at Option B Quiz 1. A Ferris wheel in Japan has a radius of 50m and a mass of 1. x 10 6 kg. If a torque of 1 x 10 9 Nm is needed to turn the wheel when it starts at rest, what is the wheel s angular acceleration?

More information

Concept Question: Normal Force

Concept Question: Normal Force Concept Question: Normal Force Consider a person standing in an elevator that is accelerating upward. The upward normal force N exerted by the elevator floor on the person is 1. larger than 2. identical

More information

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction)

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction) Kinematics (special case) a = constant 1D motion 2D projectile Uniform circular Dynamics gravity, tension, elastic, normal, friction Motion with a = constant Newton s Laws F = m a F 12 = F 21 Time & Position

More information

Simple and Physical Pendulums Challenge Problem Solutions

Simple and Physical Pendulums Challenge Problem Solutions Simple and Physical Pendulums Challenge Problem Solutions Problem 1 Solutions: For this problem, the answers to parts a) through d) will rely on an analysis of the pendulum motion. There are two conventional

More information

Motion Part 4: Projectile Motion

Motion Part 4: Projectile Motion Motion Part 4: Projectile Motion Last modified: 28/03/2017 CONTENTS Projectile Motion Uniform Motion Equations Projectile Motion Equations Trajectory How to Approach Problems Example 1 Example 2 Example

More information

Relating Translational and Rotational Variables

Relating Translational and Rotational Variables Relating Translational and Rotational Variables Rotational position and distance moved s = θ r (only radian units) Rotational and translational speed d s v = dt v = ω r = ds dt = d θ dt r Relating period

More information

Solution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved:

Solution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved: 8) roller coaster starts with a speed of 8.0 m/s at a point 45 m above the bottom of a dip (see figure). Neglecting friction, what will be the speed of the roller coaster at the top of the next slope,

More information

Physics 106b/196b Problem Set 9 Due Jan 19, 2007

Physics 106b/196b Problem Set 9 Due Jan 19, 2007 Physics 06b/96b Problem Set 9 Due Jan 9, 2007 Version 3: January 8, 2007 This problem set focuses on dynamics in rotating coordinate systems (Section 5.2), with some additional early material on dynamics

More information

Chapter 11. Angular Momentum

Chapter 11. Angular Momentum Chapter 11 Angular Momentum Angular Momentum Angular momentum plays a key role in rotational dynamics. There is a principle of conservation of angular momentum. In analogy to the principle of conservation

More information

Physics 8, Fall 2011, equation sheet work in progress

Physics 8, Fall 2011, equation sheet work in progress 1 year 3.16 10 7 s Physics 8, Fall 2011, equation sheet work in progress circumference of earth 40 10 6 m speed of light c = 2.9979 10 8 m/s mass of proton or neutron 1 amu ( atomic mass unit ) = 1 1.66

More information

PH1104/PH114S MECHANICS

PH1104/PH114S MECHANICS PH04/PH4S MECHANICS SEMESTER I EXAMINATION 06-07 SOLUTION MULTIPLE-CHOICE QUESTIONS. (B) For freely falling bodies, the equation v = gh holds. v is proportional to h, therefore v v = h h = h h =.. (B).5i

More information

ROTATORY MOTION. ii) iii) iv) W = v) Power = vi) Torque ( vii) Angular momentum (L) = Iω similar to P = mv 1 Iω. similar to F = ma

ROTATORY MOTION. ii) iii) iv) W = v) Power = vi) Torque ( vii) Angular momentum (L) = Iω similar to P = mv 1 Iω. similar to F = ma OTATOY MOTION Synopsis : CICULA MOTION :. In translatory motion, every particle travels the same distance along parallel paths, which may be straight or curved. Every particle of the body has the same

More information

Textbook Reference: Wilson, Buffa, Lou: Chapter 8 Glencoe Physics: Chapter 8

Textbook Reference: Wilson, Buffa, Lou: Chapter 8 Glencoe Physics: Chapter 8 AP Physics Rotational Motion Introduction: Which moves with greater speed on a merry-go-round - a horse near the center or one near the outside? Your answer probably depends on whether you are considering

More information