Example problem in Birge & Louveaux, Introduction to Stochastic Programming. SLPwR: Farmer Problem page 1 D.L.Bricker

Size: px
Start display at page:

Download "Example problem in Birge & Louveaux, Introduction to Stochastic Programming. SLPwR: Farmer Problem page 1 D.L.Bricker"

Transcription

1 Example problem in Birge & Louveaux, Introduction to Stochastic Programming SLPwR: Farmer Problem page 1 D.L.Bricker

2 A farmer raises wheat, corn, and sugar beets on 500 acres of land. Before the planting season he wants to decide how much land to devote to each crop. At least 200 tons of wheat and 240 tons of corn are needed for cattle feed, which can be purchased from a wholesaler if not raised on the farm. Any grain in excess of the cattle feed requirement can be sold at $170 and $150 per ton of wheat and corn, respectively. The wholesaler sells the grain for 40% more (namely $238 and $210 per ton, respectively.) Up to 6000 tons of sugar beets can be sold for $36 per ton; any additional amounts can be sold for $10/ton. SLPwR: Farmer Problem page 2 D.L.Bricker

3 Crop yields are uncertain, depending upon weather conditions during the growing season. Three scenarios have been identified ("good", "fair", and "bad"), each equally likely. (In this data, only the yields are scenario-dependent, while in reality the purchase prices and sales revenues from grain would be higher in year with poor yield, etc.) Wheat yield Corn yield Beet yield Scenario (tons/acre) (tons/acre) (tons/acre) 1. Good Fair Bad SLPwR: Farmer Problem page 3 D.L.Bricker

4 General Stochastic LP model: K Z = min cx+ p q y (0.1) subject to k= 1 k k k Tx+ Wy = h, k= 1, K; (0.2) x k k k X (0.3) In this example, only qk and the right-hand-side hk are fixed. T k varies by scenario, while the cost vector SLPwR: Farmer Problem page 4 D.L.Bricker

5 Decision variables are First stage: x1 = acres of land planted in wheat x2 = acres of land planted in corn x3 = acres of land planted in beets Second stage: w1 = tons of wheat sold w2 = tons of corn sold w3 = tons of beets sold at $36/T w4 = tons of beets sold at $10/T y1 = tons of wheat purchased y2 = tons of corn purchased SLPwR: Farmer Problem page 5 D.L.Bricker

6 The stochastic decision problem is 3 3 k k= 1 ( ) Minimize 150x x x3 + Q x subject to x + x + x x j 0, j=1,2,3 where Qi ( x) is the optimal solution of the second stage (recourse) problem after the scenario has been determined, given that the first stage variables x have been selected. SLPwR: Farmer Problem page 6 D.L.Bricker

7 ( ) Q x = Minimum -170w 150w 36w 10w + 238y + 210y s.t. y1 w x1 y2 w x2 w3 + w4 24x3 y 0, y 0, w1 0, w 2 0, 0 w3 6000, w ( ) Q x = Minimum -170w 150w 36w 10w + 238y + 210y s.t. y1 w x1 y2 w x2 w3 + w4 20x3 y 0, y 0, w1 0, w 2 0, 0 w3 6000, w ( ) Q x = Minimum 170w 150w 36w 10w + 238y + 210y s.t. y1 w x1 y 2 w x2 w3 + w4 16x3 y 0, y 0, w 0, w 0, 0 w 6000, w SLPwR: Farmer Problem page 7 D.L.Bricker

8 Solving Certainty Equivalent All random parameters (in this case, T) are replaced by their expected values. Tableau b z X[1] [2] [3] ] SLPwR: Farmer Problem page 8 D.L.Bricker

9 Solution Optimal Solution Found by solving certainty equivalent problem, i.e., replacing all random parameters by their expected values Second Stage Total cost: Stage One Variables: i variable value 1 X[1] 120 Wheat acres 2 X[2] 80 Corn acres 3 X[3] 300 Beet acres 4 slack i variable value 1 Y[1] 0 2 Y[2] 0 3 W1 100 Wheat sold 4 W2 0 5 W Beets sold 6 W4 0 7 surplus surplus slack slack 4 0 Does this mean that the farmer's expected revenues will actually be ? SLPwR: Farmer Problem page 9 D.L.Bricker

10 Evaluating this Trial Solution for Expected Cost: First stage: i X[i] Wheat acres 2 80 Corn acres Beet acres 4 0 Second stage costs: scenario k cost p[k] First stage cost: Expected second stage cost: Total: Using this planting plan, therefore, yields an expected revenue. SLPwR: Farmer Problem page 10 D.L.Bricker

11 Tableau of Deterministic Equivalent LP b z X[1] X[2] [3] ] continued. SLPwR: Farmer Problem page 11 D.L.Bricker

12 (Tableau, continued) SLPwR: Farmer Problem page 12 D.L.Bricker

13 "Picture" of LP Tableau **** ****** ****** ****** * **** * * * * * * * * * * * ** * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * ** * * * * SLPwR: Farmer Problem page 13 D.L.Bricker

14 Optimal Solution (Found by solving deterministic equivalent problem directly, without decomposition) Total cost: Stage One Variables: i variable value 1 X[1] 170 Wheat Acres 2 X[2] 80 Corn Acres 3 X[3] 250 Beets Acres 4 slack Second Stage For each scenario, the optimal recourse variables are computed: SLPwR: Farmer Problem page 14 D.L.Bricker

15 Scenario #1 "Good" yield i variable value 1 Y[1] 0 2 Y[2] 0 3 W1 310 Sales of wheat 4 W2 48 Sales of corn 5 W Sales of beets 6 W4 0 7 surplus surplus slack slack SLPwR: Farmer Problem page 15 D.L.Bricker

16 Scenario #2 "Fair" yield i variable value 1 Y[1] 0 2 Y[2] 0 3 W1 225 Sales of wheat 4 W2 0 5 W Sales of beets 6 W4 0 7 surplus surplus slack slack SLPwR: Farmer Problem page 16 D.L.Bricker

17 Scenario #3 "Bad" yield i variable value 1 Y[1] 0 2 Y[2] 48 Purchase of corn 3 W1 140 Sales of wheat 4 W2 0 5 W Sales of beets 6 W4 0 7 surplus surplus slack slack SLPwR: Farmer Problem page 17 D.L.Bricker

18 Assuming "Perfect Information", i.e., assuming that the farmer has advance knowledge of the quality of the yield and can base his decision upon that knowledge Solution for scenario #1 "Good" yield Optimal cost: Stage One Variables: i X[i] Wheat Acres Corn Acres Beet Acres Second-stage: nonzero variables i Y[i] Sales of wheat Sales of Beets SLPwR: Farmer Problem page 18 D.L.Bricker

19 Solution for scenario #2 "Fair" yield Optimal cost: Stage One Variables: i X[i] Wheat Acres Corn Acres Beet Acres Second-stage: nonzero variables i Y[i] Sales of Wheat Sales of Beets SLPwR: Farmer Problem page 19 D.L.Bricker

20 Solution for scenario #3 "Bad" yield Optimal cost: Stage One Variables: i X[i] Wheat Acres Corn Acres Beet Acres Second-stage: nonzero variables i Y[i] Purchase of Corn Sales of Beets SLPwR: Farmer Problem page 20 D.L.Bricker

21 Expected value with perfect information: ( ) ( ) ( ) = What is the Value of Perfect Information (VPI)? (Expected value with perfect information) (Expected value without information) = = 7015 SLPwR: Farmer Problem page 21 D.L.Bricker

SF2812 Applied Linear Optimization. Preparatory questions. Lecture 6: Stochastic programming. Anders Forsgren

SF2812 Applied Linear Optimization. Preparatory questions. Lecture 6: Stochastic programming. Anders Forsgren SF2812 Applied Linear Optimization Lecture 6: Stochastic programming. Anders Forsgren SF2812 Applied Linear Optimization, KTH 1 / 18 Lecture 6, 2016/2017 Preparatory questions 1. Try to solve theory question

More information

Stochastic Programming Models in Design OUTLINE

Stochastic Programming Models in Design OUTLINE Stochastic Programming Models in Design John R. Birge University of Michigan OUTLINE Models General - Farming Structural design Design portfolio General Approximations Solutions Revisions Decision: European

More information

IE 495 Stochastic Programming Problem Set #1 Solutions. 1 Random Linear Programs and the Distribution Problem

IE 495 Stochastic Programming Problem Set #1 Solutions. 1 Random Linear Programs and the Distribution Problem IE 495 Stochastic Programming Problem Set #1 Solutions 1 Random Linear Programs and the Distribution Problem Recall the random linear program that we saw in class: minimize subject to with ω 1 U[1, 4]

More information

Two-Stage Stochastic Linear Programming: The Conditional Scenario Approach

Two-Stage Stochastic Linear Programming: The Conditional Scenario Approach Two-Stage Stochastic Linear Programg: The Conditional Scenario Approach C. Beltran-Royo 19/01/2016 Abstract In this paper we consider the Two-stage Stochastic Linear Programg (TSLP problem with continuous

More information

The Simplex Method. Formulate Constrained Maximization or Minimization Problem. Convert to Standard Form. Convert to Canonical Form

The Simplex Method. Formulate Constrained Maximization or Minimization Problem. Convert to Standard Form. Convert to Canonical Form The Simplex Method 1 The Simplex Method Formulate Constrained Maximization or Minimization Problem Convert to Standard Form Convert to Canonical Form Set Up the Tableau and the Initial Basic Feasible Solution

More information

SELECT TWO PROBLEMS (OF A POSSIBLE FOUR) FROM PART ONE, AND FOUR PROBLEMS (OF A POSSIBLE FIVE) FROM PART TWO. PART ONE: TOTAL GRAND

SELECT TWO PROBLEMS (OF A POSSIBLE FOUR) FROM PART ONE, AND FOUR PROBLEMS (OF A POSSIBLE FIVE) FROM PART TWO. PART ONE: TOTAL GRAND 1 56:270 LINEAR PROGRAMMING FINAL EXAMINATION - MAY 17, 1985 SELECT TWO PROBLEMS (OF A POSSIBLE FOUR) FROM PART ONE, AND FOUR PROBLEMS (OF A POSSIBLE FIVE) FROM PART TWO. PART ONE: 1 2 3 4 TOTAL GRAND

More information

2.3 Homework: The Product and Quotient Rules

2.3 Homework: The Product and Quotient Rules 2.3 Homework: The Product and Quotient Rules 1. Find the derivatives of each of the following functions. Label the derivative you find with its name using proper notation. a) f(x) = (x 2 x)3 x b) h(y)

More information

IE 495 Final Exam. Due Date: May 1, 2003

IE 495 Final Exam. Due Date: May 1, 2003 IE 495 Final Exam Due Date: May 1, 2003 Do the following problems. You must work alone on this exam. The only reference materials you are allowed to use on the exam are the textbook by Birge and Louveaux,

More information

A New Robust Scenario Approach to Supply. Chain Optimization under Bounded Uncertainty

A New Robust Scenario Approach to Supply. Chain Optimization under Bounded Uncertainty A New Robust Scenario Approach to Supply Chain Optimization under Bounded Uncertainty by Niaz Bahar Chowdhury A thesis submitted to the Department of Chemical Engineering in conformity with the requirements

More information

Lecture 6: Sections 2.2 and 2.3 Polynomial Functions, Quadratic Models

Lecture 6: Sections 2.2 and 2.3 Polynomial Functions, Quadratic Models L6-1 Lecture 6: Sections 2.2 and 2.3 Polynomial Functions, Quadratic Models Polynomial Functions Def. A polynomial function of degree n is a function of the form f(x) = a n x n + a n 1 x n 1 +... + a 1

More information

Introduction to Operations Research Prof G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Introduction to Operations Research Prof G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Introduction to Operations Research Prof G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Module 01 Linear Programming Introduction and formulations Lecture - 01 Product

More information

Basic Algebra: Unit 5 Systems of Linear Equations and Inequalities. Solving Systems of linear equations in two unknown variables using algebra

Basic Algebra: Unit 5 Systems of Linear Equations and Inequalities. Solving Systems of linear equations in two unknown variables using algebra Solving Systems of linear equations in two unknown variables using algebra Problems of this type look like: Solve the system of equations 3x + 67y = 12 You will have one of three possibilities when solving

More information

Linear Programming and Marginal Analysis

Linear Programming and Marginal Analysis 337 22 Linear Programming and Marginal Analysis This chapter provides a basic overview of linear programming, and discusses its relationship to the maximization and minimization techniques used for the

More information

continued Lesson 3-2 Solving Systems of Three Equations in Three Variables ACTIVITY 3

continued Lesson 3-2 Solving Systems of Three Equations in Three Variables ACTIVITY 3 ACTIVITY 3 Lesson 3-2 Learning Targets: Solve systems of three linear equations in three variables using substitution and Gaussian elimination. Formulate systems of three linear equations in three variables

More information

AM 121 Introduction to Optimization: Models and Methods Example Questions for Midterm 1

AM 121 Introduction to Optimization: Models and Methods Example Questions for Midterm 1 AM 121 Introduction to Optimization: Models and Methods Example Questions for Midterm 1 Prof. Yiling Chen Fall 2018 Here are some practice questions to help to prepare for the midterm. The midterm will

More information

Stochastic Optimization

Stochastic Optimization Chapter 27 Page 1 Stochastic Optimization Operations research has been particularly successful in two areas of decision analysis: (i) optimization of problems involving many variables when the outcome

More information

RISK-RETURNS OF COTTON AND SOYBEAN ENTERPRISES FOR MISSISSIPPI COUNTY, ARK

RISK-RETURNS OF COTTON AND SOYBEAN ENTERPRISES FOR MISSISSIPPI COUNTY, ARK AAES Research Series 521 RISK-RETURNS OF COTTON AND SOYBEAN ENTERPRISES FOR MISSISSIPPI COUNTY, ARK.: A COMPARISON OF ALTERNATIVE MARKETING STRATEGIES WITHIN A WHOLE FARM FRAMEWORK G. Rodríguez, A. McKenzie,

More information

MATH 445/545 Homework 1: Due February 11th, 2016

MATH 445/545 Homework 1: Due February 11th, 2016 MATH 445/545 Homework 1: Due February 11th, 2016 Answer the following questions Please type your solutions and include the questions and all graphics if needed with the solution 1 A business executive

More information

DEPARTMENT OF MATHEMATICS

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS Ma 162 Final Exam -3 May 06, 2010 DO NOT TURN THIS PAGE UNTIL YOU ARE INSTRUCTED TO DO SO. Instructions: Be sure that your name, section number, and student ID are filled in below.

More information

Theory of Linear Programming

Theory of Linear Programming SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT BF360 Operations Research Unit Two Theory of Linear Programming Moses Mwale e-mail: moses.mwale@ictar.ac.zm BF360 Operations Research Contents Unit 2: Theory

More information

Intro to Composite Functions

Intro to Composite Functions Intro to Composite Functions These notes are intended as a summary of section 4.3 (p. 291 297 in your workbook. You should also read the section for more complete explanations and additional examples.

More information

Gauss-Jordan Elimination for Solving Linear Equations Example: 1. Solve the following equations: (3)

Gauss-Jordan Elimination for Solving Linear Equations Example: 1. Solve the following equations: (3) The Simple Method Gauss-Jordan Elimination for Solving Linear Equations Eample: Gauss-Jordan Elimination Solve the following equations: + + + + = 4 = = () () () - In the first step of the procedure, we

More information

Production planning of fish processed product under uncertainty

Production planning of fish processed product under uncertainty ANZIAM J. 51 (EMAC2009) pp.c784 C802, 2010 C784 Production planning of fish processed product under uncertainty Herman Mawengkang 1 (Received 14 March 2010; revised 17 September 2010) Abstract Marine fisheries

More information

56:171 Operations Research Midterm Exam--15 October 2002

56:171 Operations Research Midterm Exam--15 October 2002 Name 56:171 Operations Research Midterm Exam--15 October 2002 Possible Score 1. True/False 25 _ 2. LP sensitivity analysis 25 _ 3. Transportation problem 15 _ 4. LP tableaux 15 _ Total 80 _ Part I: True(+)

More information

IE 534 Linear Programming Lecture Notes Fall 2011

IE 534 Linear Programming Lecture Notes Fall 2011 IE 534 Linear Programming Lecture Notes Fall 2011 Lizhi Wang Iowa State University 1 Introduction Problem Model Algorithm Solver An example of a linear program: max ζ = 2x 1 + 3x 2 (1) subject to x 1 +

More information

Essential Question How can you use substitution to solve a system of linear equations?

Essential Question How can you use substitution to solve a system of linear equations? 5.2 Solving Systems of Linear Equations by Substitution Essential Question How can you use substitution to solve a system of linear equations? Using Substitution to Solve Systems Work with a partner. Solve

More information

The Big M Method. Modify the LP

The Big M Method. Modify the LP The Big M Method Modify the LP 1. If any functional constraints have negative constants on the right side, multiply both sides by 1 to obtain a constraint with a positive constant. Big M Simplex: 1 The

More information

Sensitivity Analysis and Duality

Sensitivity Analysis and Duality Sensitivity Analysis and Duality Part II Duality Based on Chapter 6 Introduction to Mathematical Programming: Operations Research, Volume 1 4th edition, by Wayne L. Winston and Munirpallam Venkataramanan

More information

10-1: Composite and Inverse Functions

10-1: Composite and Inverse Functions Math 95 10-1: Composite and Inverse Functions Functions are a key component in the applications of algebra. When working with functions, we can perform many useful operations such as addition and multiplication

More information

Stochastic Programming in Enterprise-Wide Optimization

Stochastic Programming in Enterprise-Wide Optimization Stochastic Programming in Enterprise-Wide Optimization Andrew Schaefer University of Pittsburgh Department of Industrial Engineering October 20, 2005 Outline What is stochastic programming? How do I formulate

More information

+ 5x 2. = x x. + x 2. Transform the original system into a system x 2 = x x 1. = x 1

+ 5x 2. = x x. + x 2. Transform the original system into a system x 2 = x x 1. = x 1 University of California, Davis Department of Agricultural and Resource Economics ARE 5 Optimization with Economic Applications Lecture Notes Quirino Paris The Pivot Method for Solving Systems of Equations...................................

More information

Chapter 1: Linear Programming

Chapter 1: Linear Programming Chapter 1: Linear Programming Math 368 c Copyright 2013 R Clark Robinson May 22, 2013 Chapter 1: Linear Programming 1 Max and Min For f : D R n R, f (D) = {f (x) : x D } is set of attainable values of

More information

END3033 Operations Research I Sensitivity Analysis & Duality. to accompany Operations Research: Applications and Algorithms Fatih Cavdur

END3033 Operations Research I Sensitivity Analysis & Duality. to accompany Operations Research: Applications and Algorithms Fatih Cavdur END3033 Operations Research I Sensitivity Analysis & Duality to accompany Operations Research: Applications and Algorithms Fatih Cavdur Introduction Consider the following problem where x 1 and x 2 corresponds

More information

Crop Enterprise Budget Sugar Beets, Thick-Planted, Wheatland Area

Crop Enterprise Budget Sugar Beets, Thick-Planted, Wheatland Area Crop Enterprise Budget Sugar Beets, Thick-Planted, Wheatland Area John P. Hewlett, Farm/Ranch Management Extension Specialist Chris Bastian, Research Associate MP-72.3 University of Wyoming - August, 1994

More information

The Simplex Algorithm and Goal Programming

The Simplex Algorithm and Goal Programming The Simplex Algorithm and Goal Programming In Chapter 3, we saw how to solve two-variable linear programming problems graphically. Unfortunately, most real-life LPs have many variables, so a method is

More information

Delaware County Census Data

Delaware County Census Data Number of s Owners Percent of s Operated by Owner Percent of Tenancy Number of Renters Number of Managers No Return 94 90 96 4 4 0 0 42 35 83 17 6 1 1 62 56 90 10 6 0 4 19 11 58 42 4 4 0 137 114 83 17

More information

Input Costs Trends for Arkansas Field Crops, AG -1291

Input Costs Trends for Arkansas Field Crops, AG -1291 Input Costs Trends for Arkansas Field Crops, 2007-2013 AG -1291 Input Costs Trends for Arkansas Field Crops, 2007-2013 October 2013 AG-1291 Archie Flanders Department of Agricultural Economics and Agribusiness

More information

Chap6 Duality Theory and Sensitivity Analysis

Chap6 Duality Theory and Sensitivity Analysis Chap6 Duality Theory and Sensitivity Analysis The rationale of duality theory Max 4x 1 + x 2 + 5x 3 + 3x 4 S.T. x 1 x 2 x 3 + 3x 4 1 5x 1 + x 2 + 3x 3 + 8x 4 55 x 1 + 2x 2 + 3x 3 5x 4 3 x 1 ~x 4 0 If we

More information

SEN301 OPERATIONS RESEARCH I LECTURE NOTES

SEN301 OPERATIONS RESEARCH I LECTURE NOTES SEN30 OPERATIONS RESEARCH I LECTURE NOTES SECTION II (208-209) Y. İlker Topcu, Ph.D. & Özgür Kabak, Ph.D. Acknowledgements: We would like to acknowledge Prof. W.L. Winston's "Operations Research: Applications

More information

AMS341 HW1. Graphically solving this LP we find the optimal solution to be z = $10,000, W = C = 20 acres.

AMS341 HW1. Graphically solving this LP we find the optimal solution to be z = $10,000, W = C = 20 acres. AMS341 HW1 p.63 #6 Let W = acres of wheat planted and C = acres of corn planted. Then the appropriate LP is max = 200W + 300C st W + C 45 (Land) 3W + 2C 100 (Workers) 2W + 4C 120 (Fertilizer) W, C 0 Graphically

More information

Linear Programming: Model Formulation and Graphical Solution

Linear Programming: Model Formulation and Graphical Solution Linear Programming: Model Formulation and Graphical Solution 1 Chapter Topics Model Formulation A Maximization Model Example Graphical Solutions of Linear Programming Models A Minimization Model Example

More information

Section 1.3: Gauss Elimination Method for Systems of Linear Equations

Section 1.3: Gauss Elimination Method for Systems of Linear Equations Section 1.3: Gauss Elimination Method for Systems of Linear Equations In this section we will consider systems of equations with possibly more than two equations, more than two variables, or both. Below

More information

EXTENDING A PLANT PRODUCTION MODEL WITH A VIEW TO PLANNING MONTHLY CASH-FLOW BALANCE, HIRED MACHINERY AND LABOUR COSTS

EXTENDING A PLANT PRODUCTION MODEL WITH A VIEW TO PLANNING MONTHLY CASH-FLOW BALANCE, HIRED MACHINERY AND LABOUR COSTS EXTENDING A PLANT PRODUCTION MODEL WITH A VIEW TO PLANNING MONTHLY CASH-FLOW BALANCE, HIRED MACHINERY AND LABOUR COSTS P. DRIMBA, I. ERTSEY, M. HERDON Debrecen University Centre for Agricultural Science,

More information

Background and Assumptions

Background and Assumptions 2017 Costs and Returns Estimate Southcentral Idaho: Magic Valley Soft White Spring Wheat Ben Eborn, Steven Hines and Juliet Marshall. Magic Valley Background and Assumptions The University of Idaho s costs

More information

Chapter 2. Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall 2-1

Chapter 2. Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall 2-1 Linear Programming: Model Formulation and Graphical Solution Chapter 2 2-1 Chapter Topics Model Formulation A Maximization Model Example Graphical Solutions of Linear Programming Models A Minimization

More information

Agricultural Economics 622 Midterm Exam on LP Topic Feb, Table 1. Technical Data by Processing Type Hog Processing Type

Agricultural Economics 622 Midterm Exam on LP Topic Feb, Table 1. Technical Data by Processing Type Hog Processing Type Agricultural Economics 622 Midterm Exam on LP Topic Feb, 2003 1. (25 points) Dollar Company is planning its weekly hog cutting operation. Dollar buys hogs and can either skin them or scald them and then

More information

Background and Assumptions

Background and Assumptions 2017 Costs and Returns Estimate Southcentral Idaho: Magic Valley Hard Red Spring Wheat Ben Eborn, Steven Hines and Juliet Marshall. Magic Valley Background and Assumptions The University of Idaho s costs

More information

UNIT-4 Chapter6 Linear Programming

UNIT-4 Chapter6 Linear Programming UNIT-4 Chapter6 Linear Programming Linear Programming 6.1 Introduction Operations Research is a scientific approach to problem solving for executive management. It came into existence in England during

More information

Stochastic Programming: Optimization When Uncertainty Matters

Stochastic Programming: Optimization When Uncertainty Matters INFORMS 2005 c 2005 INFORMS isbn 1-877640-21-2 doi 10.1287/educ.1053.0016 Stochastic Programming: Optimization When Uncertainty Matters Julia L. Higle Department of Systems and Industrial Engineering,

More information

Math Tech IIII, Jan 16

Math Tech IIII, Jan 16 Math Tech IIII, Jan 16 Probability IIII Theoretical and Experimental Probability & Compliments Book Sections: 3.1 Essential Questions: What is the difference between probability theory and reality and

More information

Chapter 4 The Simplex Algorithm Part I

Chapter 4 The Simplex Algorithm Part I Chapter 4 The Simplex Algorithm Part I Based on Introduction to Mathematical Programming: Operations Research, Volume 1 4th edition, by Wayne L. Winston and Munirpallam Venkataramanan Lewis Ntaimo 1 Modeling

More information

Paul Patterson, Steven Hines and Juliet Marshall. Background and Assumptions

Paul Patterson, Steven Hines and Juliet Marshall. Background and Assumptions 2015 Costs and Returns Estimate Southcentral Idaho: Magic Valley Spring Malting Barley Paul Patterson, Steven Hines and Juliet Marshall. Background and Assumptions Magic Valley The University of Idaho

More information

3 Development of the Simplex Method Constructing Basic Solution Optimality Conditions The Simplex Method...

3 Development of the Simplex Method Constructing Basic Solution Optimality Conditions The Simplex Method... Contents Introduction to Linear Programming Problem. 2. General Linear Programming problems.............. 2.2 Formulation of LP problems.................... 8.3 Compact form and Standard form of a general

More information

Take-home Practice Problems

Take-home Practice Problems Take-home Practice Problems 1. You are analyzing the market for shrimp. The demand for shrimp is dependent on the price of shrimp and the prices of crab, lobster, and mussels. The demand function for shrimp

More information

Cold-Read Task. b. The author emphasizes how the drought caused people to be afraid to shake hands.

Cold-Read Task. b. The author emphasizes how the drought caused people to be afraid to shake hands. Cold-Read Task Read Legacy from The Dust Bowl. Then answer the questions. 1. Part A Read paragraph 3 of Legacy. Then the drought began. It would last eight straight years. Dust storms, at first considered

More information

The Simplex Algorithm

The Simplex Algorithm The Simplex Algorithm How to Convert an LP to Standard Form Before the simplex algorithm can be used to solve an LP, the LP must be converted into a problem where all the constraints are equations and

More information

Systems of Linear Equations in Two Variables. Break Even. Example. 240x x This is when total cost equals total revenue.

Systems of Linear Equations in Two Variables. Break Even. Example. 240x x This is when total cost equals total revenue. Systems of Linear Equations in Two Variables 1 Break Even This is when total cost equals total revenue C(x) = R(x) A company breaks even when the profit is zero P(x) = R(x) C(x) = 0 2 R x 565x C x 6000

More information

Linear Programming. Xi Chen. Department of Management Science and Engineering International Business School Beijing Foreign Studies University

Linear Programming. Xi Chen. Department of Management Science and Engineering International Business School Beijing Foreign Studies University Linear Programming Xi Chen Department of Management Science and Engineering International Business School Beijing Foreign Studies University Xi Chen (chenxi0109@bfsu.edu.cn) Linear Programming 1 / 148

More information

April 23rd, By Jack Scoville

April 23rd, By Jack Scoville April 23rd, 2018 By Jack Scoville Wheat: Wheat markets were lower as weather and demand remained the dominant factors in the market. Some rains are in the forecast for western parts of the Great Plains,

More information

Economic Impacts of the Safety Net Provisions in the 2012 Senate and House Farm Bills on AFPC s Representative Crop Farms

Economic Impacts of the Safety Net Provisions in the 2012 Senate and House Farm Bills on AFPC s Representative Crop Farms & RESEARCH Economic Impacts of the Safety Net Provisions in the 2012 Senate and House Farm Bills on AFPC s Representative Crop Farms Working Paper 12-2 July 2012 350 300 250 200 150 100 50 0 2011 2012

More information

Advanced Microeconomics

Advanced Microeconomics Advanced Microeconomics Leonardo Felli EC441: Room D.106, Z.332, D.109 Lecture 8 bis: 24 November 2004 Monopoly Consider now the pricing behavior of a profit maximizing monopolist: a firm that is the only

More information

Background and Assumptions

Background and Assumptions 2017 Costs and Returns Estimate Eastern Idaho: Lower Rainfall Dryland Feed Barley Ben Eborn and Terrell Sorensen Eastern Idaho Background and Assumptions The University of Idaho s costs and returns estimates

More information

Study Unit 3 : Linear algebra

Study Unit 3 : Linear algebra 1 Study Unit 3 : Linear algebra Chapter 3 : Sections 3.1, 3.2.1, 3.2.5, 3.3 Study guide C.2, C.3 and C.4 Chapter 9 : Section 9.1 1. Two equations in two unknowns Algebraically Method 1: Elimination Step

More information

56:171 Operations Research Midterm Exam - October 26, 1989 Instructor: D.L. Bricker

56:171 Operations Research Midterm Exam - October 26, 1989 Instructor: D.L. Bricker 56:171 Operations Research Midterm Exam - October 26, 1989 Instructor: D.L. Bricker Answer all of Part One and two (of the four) problems of Part Two Problem: 1 2 3 4 5 6 7 8 TOTAL Possible: 16 12 20 10

More information

Proline Fungicide on Corn Silage to Reduce Mycotoxins

Proline Fungicide on Corn Silage to Reduce Mycotoxins Proline Fungicide on Corn Silage to Reduce Mycotoxins Purpose: To assess use of a fungicide such as Proline on corn silage to reduce mycotoxins in the stored feed and to access impact on corn silage yield.

More information

Math 354 Summer 2004 Solutions to review problems for Midterm #1

Math 354 Summer 2004 Solutions to review problems for Midterm #1 Solutions to review problems for Midterm #1 First: Midterm #1 covers Chapter 1 and 2. In particular, this means that it does not explicitly cover linear algebra. Also, I promise there will not be any proofs.

More information

Math Models of OR: Sensitivity Analysis

Math Models of OR: Sensitivity Analysis Math Models of OR: Sensitivity Analysis John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 8 USA October 8 Mitchell Sensitivity Analysis / 9 Optimal tableau and pivot matrix Outline Optimal

More information

Stochastic Programming: Basic Theory

Stochastic Programming: Basic Theory Stochastic Programming: Basic Theory John R. Birge John.Birge@ChicagoBooth.edu www.chicagobooth.edu/fac/john.birge JRBirge ICSP, Bergamo, July 2013 1 Goals Provide background on the basics of stochastic

More information

CURRENCY US Dollar RAND GB Pound US Dollar RAND GB Pound. Buy Sell Buy Sell Buy Sell Buy Sell Buy Sell Buy Sell

CURRENCY US Dollar RAND GB Pound US Dollar RAND GB Pound. Buy Sell Buy Sell Buy Sell Buy Sell Buy Sell Buy Sell 14 th March, 2017 Vol.4. No.4 South Africa s maize production is set to reach 13.92 million tonnes against 5.7 million consumption requirents. Malawi maize production forecast at 3 million tons. Light

More information

THE HISTORICAL BASIS RECORD FOR GRAIN AND SOYBEANS IN DELAWARE; MARKETING YEARS 1996/97 to 2000/01. Philip L. Towle Carl L. German U. C.

THE HISTORICAL BASIS RECORD FOR GRAIN AND SOYBEANS IN DELAWARE; MARKETING YEARS 1996/97 to 2000/01. Philip L. Towle Carl L. German U. C. THE HISTORICAL BASIS RECORD FOR GRAIN AND SOYBEANS IN DELAWARE; MARKETING YEARS 1996/97 to 2000/01 Philip L. Towle Carl L. German U. C. Toensmeyer May 31, 2002 University of Delaware College of Agriculture

More information

Integer Programming. Chapter Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall

Integer Programming. Chapter Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall Integer Programming Chapter 5 5-1 Chapter Topics Integer Programming (IP) Models Integer Programming Graphical Solution Computer Solution of Integer Programming Problems With Excel and QM for Windows 0-1

More information

Normal to heavy rain forecast for most of the selected parts of the country. Europe s wheat reserves shrinking to lowest in more than a decade.

Normal to heavy rain forecast for most of the selected parts of the country. Europe s wheat reserves shrinking to lowest in more than a decade. 18 th April, 2017 Vol.4. No.8 Normal to heavy rain forecast for most of the selected parts of the country. Kenyan millers refuse to bring down mealie meal cost despite tax relief. Europe s wheat reserves

More information

Sugar Beet Petiole Tests as a Measure Of Soil Fertility

Sugar Beet Petiole Tests as a Measure Of Soil Fertility Sugar Beet Petiole Tests as a Measure Of Soil Fertility ROBERT J. BROWN 1 The beet grower who owns his farm can maintain the fertility of the soil at a high point with no fear that money spent on surplus

More information

c. Solve the system of two equations to find the speed of the boat in the water (x) and the speed of the current (y). (0.45, 0.05)

c. Solve the system of two equations to find the speed of the boat in the water (x) and the speed of the current (y). (0.45, 0.05) Math Applications The applications that follow are like the ones you will encounter in many workplaces. Use the mathematics you have learned in this chapter to solve the problems. Wherever possible, use

More information

56:171 Operations Research Fall 1998

56:171 Operations Research Fall 1998 56:171 Operations Research Fall 1998 Quiz Solutions D.L.Bricker Dept of Mechanical & Industrial Engineering University of Iowa 56:171 Operations Research Quiz

More information

Inverse Stochastic Linear Programming

Inverse Stochastic Linear Programming Inverse Stochastic Linear Programming Görkem Saka, Andrew J. Schaefer Department of Industrial Engineering University of Pittsburgh Pittsburgh, PA USA 15261 Lewis Ntaimo Department of Industrial and Systems

More information

OR: Exercices Linear Programming

OR: Exercices Linear Programming OR: Exercices Linear Programming N. Brauner Université Grenoble Alpes Exercice 1 : Wine Production (G. Finke) An American distillery produces 3 kinds of genuine German wines: Heidelberg sweet, Heidelberg

More information

MARTINSON AG. Jan. 5, 2018 WHEAT

MARTINSON AG. Jan. 5, 2018 WHEAT MARTINSON AG Jan. 5, 2018 WHEAT Wheat started the short week with strength and closing with solid gains. Early support came from the past weekend s extremely cold temps, as even KS and OK reported temps

More information

The Transform and Conquer Algorithm Design Technique

The Transform and Conquer Algorithm Design Technique The Transform and Conquer Algorithm Design Technique In this part of the course we will look at some simple examples of another general technique for designing algorithms, namely transform and conquer

More information

Optimal Demand Response

Optimal Demand Response Optimal Demand Response Libin Jiang Steven Low Computing + Math Sciences Electrical Engineering Caltech June 2011 Outline o Motivation o Demand response model o Some results Wind power over land (outside

More information

Answer the following questions: Q1: Choose the correct answer ( 20 Points ):

Answer the following questions: Q1: Choose the correct answer ( 20 Points ): Benha University Final Exam. (ختلفات) Class: 2 rd Year Students Subject: Operations Research Faculty of Computers & Informatics Date: - / 5 / 2017 Time: 3 hours Examiner: Dr. El-Sayed Badr Answer the following

More information

MATH150-E01 Test #2 Summer 2016 Show all work. Name 1. Find an equation in slope-intercept form for the line through (4, 2) and (1, 3).

MATH150-E01 Test #2 Summer 2016 Show all work. Name 1. Find an equation in slope-intercept form for the line through (4, 2) and (1, 3). 1. Find an equation in slope-intercept form for the line through (4, 2) and (1, 3). 2. Let the supply and demand functions for sugar be given by p = S(q) = 1.4q 0.6 and p = D(q) = 2q + 3.2 where p is the

More information

Formulating and Solving a Linear Programming Model for Product- Mix Linear Problems with n Products

Formulating and Solving a Linear Programming Model for Product- Mix Linear Problems with n Products Formulating and Solving a Linear Programming Model for Product- Mix Linear Problems with n Products Berhe Zewde Aregawi Head, Quality Assurance of College of Natural and Computational Sciences Department

More information

Math Tech IIII, Jan 21

Math Tech IIII, Jan 21 Math Tech IIII, Jan 21 Probability III The Complement of an Event, Theoretical and Experimental Probability Book Sections: 3.1 Essential Questions: How can I compute the probability of any event? What

More information

February 22, Introduction to the Simplex Algorithm

February 22, Introduction to the Simplex Algorithm 15.53 February 22, 27 Introduction to the Simplex Algorithm 1 Quotes for today Give a man a fish and you feed him for a day. Teach him how to fish and you feed him for a lifetime. -- Lao Tzu Give a man

More information

Eastern Idaho. Paul E. Patterson and Juliet M. Marshall Background and Assumptions

Eastern Idaho. Paul E. Patterson and Juliet M. Marshall Background and Assumptions 2015 Costs and Returns Estimate Eastern Idaho: Soft White Spring Wheat Paul E. Patterson and Juliet M. Marshall Background and Assumptions Eastern Idaho The University of Idaho s costs and returns estimates

More information

56:171 Fall 2002 Operations Research Quizzes with Solutions

56:171 Fall 2002 Operations Research Quizzes with Solutions 56:7 Fall Operations Research Quizzes with Solutions Instructor: D. L. Bricker University of Iowa Dept. of Mechanical & Industrial Engineering Note: In most cases, each quiz is available in several versions!

More information

Answer Key: Problem Set 3

Answer Key: Problem Set 3 Answer Key: Problem Set Econ 409 018 Fall Question 1 a This is a standard monopoly problem; using MR = a 4Q, let MR = MC and solve: Q M = a c 4, P M = a + c, πm = (a c) 8 The Lerner index is then L M P

More information

3. Find the slope of the tangent line to the curve given by 3x y e x+y = 1 + ln x at (1, 1).

3. Find the slope of the tangent line to the curve given by 3x y e x+y = 1 + ln x at (1, 1). 1. Find the derivative of each of the following: (a) f(x) = 3 2x 1 (b) f(x) = log 4 (x 2 x) 2. Find the slope of the tangent line to f(x) = ln 2 ln x at x = e. 3. Find the slope of the tangent line to

More information

56:171 Operations Research Final Exam December 12, 1994

56:171 Operations Research Final Exam December 12, 1994 56:171 Operations Research Final Exam December 12, 1994 Write your name on the first page, and initial the other pages. The response "NOTA " = "None of the above" Answer both parts A & B, and five sections

More information

Background and Assumptions

Background and Assumptions EBB4-SU-17 2017 Costs and Returns Estimate Eastern Idaho: Bingham and Power Counties Sugarbeets Ben Eborn Eastern Idaho Background and Assumptions The University of Idaho s costs and returns estimates

More information

Math Analysis Notes Mrs. Atkinson 1

Math Analysis Notes Mrs. Atkinson 1 Name: Math Analysis Chapter 7 Notes Day 6: Section 7-1 Solving Systems of Equations with Two Variables; Sections 7-1: Solving Systems of Equations with Two Variables Solving Systems of equations with two

More information

MAT 111 Final Exam Fall 2013 Name: If solving graphically, sketch a graph and label the solution.

MAT 111 Final Exam Fall 2013 Name: If solving graphically, sketch a graph and label the solution. MAT 111 Final Exam Fall 2013 Name: Show all work on test to receive credit. Draw a box around your answer. If solving algebraically, show all steps. If solving graphically, sketch a graph and label the

More information

Economic Value of Information: Wheat Protein. Measurement

Economic Value of Information: Wheat Protein. Measurement Economic Value of Information: Wheat Protein Measurement Ruiqing Miao PhD Candidate Department of Economics Iowa State University miaorong@iastate.edu David A. Hennessy Professor Department of Economics

More information

Positive Mathematical Programming with Generalized Risk

Positive Mathematical Programming with Generalized Risk Department of Agricultural and Resource Economics University of California, Davis Positive Mathematical Programming with Generalized Risk by Quirino Paris Working Paper No. 14-004 April 2014 Copyright

More information

Christopher ISU

Christopher ISU Christopher Anderson @ ISU Excessive spring rain will be more frequent (except this year). Will it be more manageable? Christopher J. Anderson, PhD 89th Annual Soil Management and Land Valuation Conference

More information

Analysis of Three Crop Risks: Demand, Yield and Harvest. 1. We must decide how many acres, Q, to plant for a single crop when faced

Analysis of Three Crop Risks: Demand, Yield and Harvest. 1. We must decide how many acres, Q, to plant for a single crop when faced Analysis of Three Crop Riss: emand, ield and Harvest Stuart J. Allen Situation: 1. We must decide how many acres, Q, to plant for a single crop when faced with uncertain demand,, and uncertain yield,..

More information

Linear Programming. Dr. Xiaosong DING

Linear Programming. Dr. Xiaosong DING Linear Programming Dr. Xiaosong DING Department of Management Science and Engineering International Business School Beijing Foreign Studies University Dr. DING (xiaosong.ding@hotmail.com) Linear Programming

More information

56:270 Final Exam - May

56:270  Final Exam - May @ @ 56:270 Linear Programming @ @ Final Exam - May 4, 1989 @ @ @ @ @ @ @ @ @ @ @ @ @ @ Select any 7 of the 9 problems below: (1.) ANALYSIS OF MPSX OUTPUT: Please refer to the attached materials on the

More information

Stochastic Equilibrium Problems arising in the energy industry

Stochastic Equilibrium Problems arising in the energy industry Stochastic Equilibrium Problems arising in the energy industry Claudia Sagastizábal (visiting researcher IMPA) mailto:sagastiz@impa.br http://www.impa.br/~sagastiz ENEC workshop, IPAM, Los Angeles, January

More information