5 December 2016 MAA136 Researcher presentation. Anatoliy Malyarenko. Topics for Bachelor and Master Theses. Anatoliy Malyarenko

Size: px
Start display at page:

Download "5 December 2016 MAA136 Researcher presentation. Anatoliy Malyarenko. Topics for Bachelor and Master Theses. Anatoliy Malyarenko"

Transcription

1 5 December 216 MAA136 Researcher presentation 1

2 schemes The main problem of financial engineering: calculate E [f(x t (x))], where {X t (x): t T } is the solution of the system of X t (x) = x + Ṽ (X s (x))ds + V(X s (x))dw s (1) under the risk-neutral measure P. Here Ṽ : R N R N, V: R N R d, W s is a d-dimensional standard Wiener process, and f : R N R. A discretisation scheme is a set of N-dimensional random vectors {X (n) t (x): t = t i } with = t < t 1 < < t n = T. 2

3 Approximation problems Discuss the difference between strong and weak approximations and explain why weak approximation is more important in financial engineering. 3

4 An idea: apply Itô s formula For simplicity, consider the case of N = d = 1. The Itô formula takes the form ( f(x t (x)) = f(x) + f (X s (x))ṽ (X s (x)) + 1 ) 2 f (X s (x))v 2 (X s (x)) ds + f (X s (x))v(x s (x))dw s. The idea: apply Itô s formula again and again to f (X s (x)) and to f (X s (x)). The result is called the stochastic Taylor expansion and has very complicated form, see Kloden and Platen (1992). 4

5 Simplification: use Stratonovich integral instead For the Stratonovich integral, Itô s formula simplifies: f(x t (x)) = f(x) + + f (X s (x))ṽ (X s (x))ds f (X s (x))v(x s (x)) dw s. 5

6 Itô s formula in Stratonovich form Rewrite the system (1) in the form where W s X t (x) = x + = s and where d i= V i (y) = Ṽ i (y) 1 2 is the Stratonovich correction. Then V i (X s (x)) dw i s, (2) d N V k j=1 k=1 j (y) V j i (y) y k f(x t (x)) = f(x) + d i= (V i f)(x s (x)) dw i s, where (V i f)(y) := N j=1 V j i (y) f y j (y). 6

7 The stochastic Taylor expansion in Stratonovich form Let k be an nonnegative integer, and let α be either the empty set if k = or a multi-index α = (α 1,...,α k ) with α i d. Define the number α as k plus the number of zeros among α i s and call this the degree of α. For k 1, define the multiple Stratonovich integral by I(t, α, dw ) := Then k 2 k 1 dw α k t k dw α k 1 t k 1 dw α 1 t 1. f(x t (x)) = α m I(t, α, dw )(V αk V α1 f)(x) + R X m, (3) where the remainder Rm X contains multiple integrals of degrees greater than m. 7

8 Random paths A random path is a measurable map ω : Ω C,BV ([,1];R d+1 ), where the image is the set of all R d+1 -valued continuous functions of bounded variation in [,1] which start at. Along with the system (2), consider the system X t (x) = x + d i= V i (X s (x))dω i s, that is, the system of random ordinary differential. Let X ω t (x) be its solution. Define the time-scaled path ω s [t]: Ω C,BV ([,t];r d+1 ) by { tω, ωs[t] i if i =, s/t = tω i, otherwise. s/t 8

9 Estimating the approximation error We would like to estimate the approximation error E [f(x t (x))] E [f(x ω[t] t (x))]. For f(x ω[t] t (x)) we have an equation similar to (3): f(x ω[t] t (x)) = I(t, α,dω[t])(v αk V α1 f)(x) + Rm, X α m where I(t, α,dω[t]) := k 2 k 1 dω α k t k dω α k 1 t k 1 dω α 1 t 1. 9

10 An idea of cancelling The approximation error becomes E [I(t, α, dw )](V αk V α1 f)(x) + E [Rm] X α m α m E [I(t, α,dω[t])](v αk V α1 f)(x) E [R X m]. Assume the moment matching formula E [I(1, α, dw )] = E [I(1, α,dω)], α m. It is easy to check that the sums cancel each other and the remaining error E [R X m] E [R X m] is small. 1

11 The best case This is when there are functions g i C,BV ([,1];R d+1 ) and positive weights p i, 1 i L with P{ω = g i } = p i and p p L = 1. Then E [R X m] can be calculated exactly. This case is called the cubature on Wiener space, see Lyons and Victoir (24). Otherwise, they must be simulated. Then, we give examples of cubature in Wiener space and moment matching. 11

12 The idea Consider the case with N = d = 1 and f(x t (x)) = f(x 1 (x)). Müller-Gronbach et al (212) provided a deterministic algorithm to approximate E [f(x 1 (x))]. We will analyse and explain this algorithm, then apply it to the simplest case, the Black Scholes model. 12

13 The model Canhanga (216) considered the following market model under the risk-neutral measure: ds = µs dt + V 1 S dw 1 + V 2 S dw 2, dv 1 = 1 ε (θ 1 V 1 )dt + 1 ε ξ 1 ρ 13 V1 dw ε ξ 1 (1 ρ 2 13 )V 1 dw 3, dv 2 = δ(θ 2 V 2 )dt + δξ 2 ρ 24 V2 dw 2 + δξ 2 (1 ρ 2 24 )V 2 dw 4. Here N = 3, d = 4, ε and δ are two small positive numbers, V 1 (resp. V 2 ) is the fast (resp. slowly) changing stochastic volatility. 13

14 The problem In contrast to Canhanga (216), who investigated this model and found the price of a European call by using the Feynman Kac formula, we will use Monte Carlo methods based on cubature on Wiener space. In contrast to the topic for bachelor thesis, we will explain how to construct cubature formulae using algebraic methods introduced in Lyons and Victoir (24). 14

15 For further reading Canhanga, B. Asymptotic option in a market. Mälardalen University Doctoral Dissertations 219 (216). Kloden, P.E., Platen, E. Numerical solution of stochastic differential. Applications of Mathematics (New York), 23. Springer, Berlin (1992). Lyons, T., Victoir, N. Cubature on Wiener space. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 46 (24), no. 241, Müller-Gronbach, T., Ritter, K., Yaroslavtseva, L. Derandomisation of the Euler scheme for scalar stochastic differential. J. Complexity 28 (212),

School of Education, Culture and Communication Division of Applied Mathematics

School of Education, Culture and Communication Division of Applied Mathematics School of Education, Culture and Communication Division of Applied Mathematics BACHELOR THESIS IN MATHEMATICS / APPLIED MATHEMATICS Explicit cubature method in Heston model by Michaela Törnqvist and Abdukayum

More information

Higher order weak approximations of stochastic differential equations with and without jumps

Higher order weak approximations of stochastic differential equations with and without jumps Higher order weak approximations of stochastic differential equations with and without jumps Hideyuki TANAKA Graduate School of Science and Engineering, Ritsumeikan University Rough Path Analysis and Related

More information

Accurate approximation of stochastic differential equations

Accurate approximation of stochastic differential equations Accurate approximation of stochastic differential equations Simon J.A. Malham and Anke Wiese (Heriot Watt University, Edinburgh) Birmingham: 6th February 29 Stochastic differential equations dy t = V (y

More information

B8.3 Mathematical Models for Financial Derivatives. Hilary Term Solution Sheet 2

B8.3 Mathematical Models for Financial Derivatives. Hilary Term Solution Sheet 2 B8.3 Mathematical Models for Financial Derivatives Hilary Term 18 Solution Sheet In the following W t ) t denotes a standard Brownian motion and t > denotes time. A partition π of the interval, t is a

More information

WEAK VERSIONS OF STOCHASTIC ADAMS-BASHFORTH AND SEMI-IMPLICIT LEAPFROG SCHEMES FOR SDES. 1. Introduction

WEAK VERSIONS OF STOCHASTIC ADAMS-BASHFORTH AND SEMI-IMPLICIT LEAPFROG SCHEMES FOR SDES. 1. Introduction WEAK VERSIONS OF STOCHASTIC ADAMS-BASHFORTH AND SEMI-IMPLICIT LEAPFROG SCHEMES FOR SDES BRIAN D. EWALD 1 Abstract. We consider the weak analogues of certain strong stochastic numerical schemes considered

More information

Numerical Integration of SDEs: A Short Tutorial

Numerical Integration of SDEs: A Short Tutorial Numerical Integration of SDEs: A Short Tutorial Thomas Schaffter January 19, 010 1 Introduction 1.1 Itô and Stratonovich SDEs 1-dimensional stochastic differentiable equation (SDE) is given by [6, 7] dx

More information

Simulation Method for Solving Stochastic Differential Equations with Constant Diffusion Coefficients

Simulation Method for Solving Stochastic Differential Equations with Constant Diffusion Coefficients Journal of mathematics and computer Science 8 (2014) 28-32 Simulation Method for Solving Stochastic Differential Equations with Constant Diffusion Coefficients Behrouz Fathi Vajargah Department of statistics,

More information

High order Cubature on Wiener space applied to derivative pricing and sensitivity estimations

High order Cubature on Wiener space applied to derivative pricing and sensitivity estimations 1/25 High order applied to derivative pricing and sensitivity estimations University of Oxford 28 June 2010 2/25 Outline 1 2 3 4 3/25 Assume that a set of underlying processes satisfies the Stratonovich

More information

MSc Dissertation topics:

MSc Dissertation topics: .... MSc Dissertation topics: Omar Lakkis Mathematics University of Sussex Brighton, England November 6, 2013 Office Location: Pevensey 3 5C2 Office hours: Autumn: Tue & Fri 11:30 12:30; Spring: TBA. O

More information

Discretization of SDEs: Euler Methods and Beyond

Discretization of SDEs: Euler Methods and Beyond Discretization of SDEs: Euler Methods and Beyond 09-26-2006 / PRisMa 2006 Workshop Outline Introduction 1 Introduction Motivation Stochastic Differential Equations 2 The Time Discretization of SDEs Monte-Carlo

More information

Variance Reduction Techniques for Monte Carlo Simulations with Stochastic Volatility Models

Variance Reduction Techniques for Monte Carlo Simulations with Stochastic Volatility Models Variance Reduction Techniques for Monte Carlo Simulations with Stochastic Volatility Models Jean-Pierre Fouque North Carolina State University SAMSI November 3, 5 1 References: Variance Reduction for Monte

More information

c 2002 Society for Industrial and Applied Mathematics

c 2002 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 4 No. pp. 507 5 c 00 Society for Industrial and Applied Mathematics WEAK SECOND ORDER CONDITIONS FOR STOCHASTIC RUNGE KUTTA METHODS A. TOCINO AND J. VIGO-AGUIAR Abstract. A general

More information

Qualitative behaviour of numerical methods for SDEs and application to homogenization

Qualitative behaviour of numerical methods for SDEs and application to homogenization Qualitative behaviour of numerical methods for SDEs and application to homogenization K. C. Zygalakis Oxford Centre For Collaborative Applied Mathematics, University of Oxford. Center for Nonlinear Analysis,

More information

Strong Predictor-Corrector Euler Methods for Stochastic Differential Equations

Strong Predictor-Corrector Euler Methods for Stochastic Differential Equations Strong Predictor-Corrector Euler Methods for Stochastic Differential Equations Nicola Bruti-Liberati 1 and Eckhard Platen July 14, 8 Dedicated to the 7th Birthday of Ludwig Arnold. Abstract. This paper

More information

Controlled Diffusions and Hamilton-Jacobi Bellman Equations

Controlled Diffusions and Hamilton-Jacobi Bellman Equations Controlled Diffusions and Hamilton-Jacobi Bellman Equations Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Winter 2014 Emo Todorov (UW) AMATH/CSE 579, Winter

More information

Stochastic Integration and Stochastic Differential Equations: a gentle introduction

Stochastic Integration and Stochastic Differential Equations: a gentle introduction Stochastic Integration and Stochastic Differential Equations: a gentle introduction Oleg Makhnin New Mexico Tech Dept. of Mathematics October 26, 27 Intro: why Stochastic? Brownian Motion/ Wiener process

More information

Stochastic Volatility and Correction to the Heat Equation

Stochastic Volatility and Correction to the Heat Equation Stochastic Volatility and Correction to the Heat Equation Jean-Pierre Fouque, George Papanicolaou and Ronnie Sircar Abstract. From a probabilist s point of view the Twentieth Century has been a century

More information

ON THE PATHWISE UNIQUENESS OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS

ON THE PATHWISE UNIQUENESS OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS PORTUGALIAE MATHEMATICA Vol. 55 Fasc. 4 1998 ON THE PATHWISE UNIQUENESS OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS C. Sonoc Abstract: A sufficient condition for uniqueness of solutions of ordinary

More information

Performance Evaluation of Generalized Polynomial Chaos

Performance Evaluation of Generalized Polynomial Chaos Performance Evaluation of Generalized Polynomial Chaos Dongbin Xiu, Didier Lucor, C.-H. Su, and George Em Karniadakis 1 Division of Applied Mathematics, Brown University, Providence, RI 02912, USA, gk@dam.brown.edu

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Introduction to Malliavin calculus and its applications Lecture 3: Clark-Ocone formula David Nualart Department of Mathematics Kansas University University of Wyoming Summer School 214 David Nualart

More information

(2m)-TH MEAN BEHAVIOR OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS UNDER PARAMETRIC PERTURBATIONS

(2m)-TH MEAN BEHAVIOR OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS UNDER PARAMETRIC PERTURBATIONS (2m)-TH MEAN BEHAVIOR OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS UNDER PARAMETRIC PERTURBATIONS Svetlana Janković and Miljana Jovanović Faculty of Science, Department of Mathematics, University

More information

Numerical methods for solving stochastic differential equations

Numerical methods for solving stochastic differential equations Mathematical Communications 4(1999), 251-256 251 Numerical methods for solving stochastic differential equations Rózsa Horváth Bokor Abstract. This paper provides an introduction to stochastic calculus

More information

Evaluation of the HJM equation by cubature methods for SPDE

Evaluation of the HJM equation by cubature methods for SPDE Evaluation of the HJM equation by cubature methods for SPDEs TU Wien, Institute for mathematical methods in Economics Kyoto, September 2008 Motivation Arbitrage-free simulation of non-gaussian bond markets

More information

The Wiener Itô Chaos Expansion

The Wiener Itô Chaos Expansion 1 The Wiener Itô Chaos Expansion The celebrated Wiener Itô chaos expansion is fundamental in stochastic analysis. In particular, it plays a crucial role in the Malliavin calculus as it is presented in

More information

Chapter 4: Monte-Carlo Methods

Chapter 4: Monte-Carlo Methods Chapter 4: Monte-Carlo Methods A Monte-Carlo method is a technique for the numerical realization of a stochastic process by means of normally distributed random variables. In financial mathematics, it

More information

Multi-Factor Finite Differences

Multi-Factor Finite Differences February 17, 2017 Aims and outline Finite differences for more than one direction The θ-method, explicit, implicit, Crank-Nicolson Iterative solution of discretised equations Alternating directions implicit

More information

Brownian Motion. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Brownian Motion

Brownian Motion. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Brownian Motion Brownian Motion An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Background We have already seen that the limiting behavior of a discrete random walk yields a derivation of

More information

Mean-square Stability Analysis of an Extended Euler-Maruyama Method for a System of Stochastic Differential Equations

Mean-square Stability Analysis of an Extended Euler-Maruyama Method for a System of Stochastic Differential Equations Mean-square Stability Analysis of an Extended Euler-Maruyama Method for a System of Stochastic Differential Equations Ram Sharan Adhikari Assistant Professor Of Mathematics Rogers State University Mathematical

More information

Random attractors and the preservation of synchronization in the presence of noise

Random attractors and the preservation of synchronization in the presence of noise Random attractors and the preservation of synchronization in the presence of noise Peter Kloeden Institut für Mathematik Johann Wolfgang Goethe Universität Frankfurt am Main Deterministic case Consider

More information

Lecture 1. Finite difference and finite element methods. Partial differential equations (PDEs) Solving the heat equation numerically

Lecture 1. Finite difference and finite element methods. Partial differential equations (PDEs) Solving the heat equation numerically Finite difference and finite element methods Lecture 1 Scope of the course Analysis and implementation of numerical methods for pricing options. Models: Black-Scholes, stochastic volatility, exponential

More information

Stochastic Calculus. Kevin Sinclair. August 2, 2016

Stochastic Calculus. Kevin Sinclair. August 2, 2016 Stochastic Calculus Kevin Sinclair August, 16 1 Background Suppose we have a Brownian motion W. This is a process, and the value of W at a particular time T (which we write W T ) is a normally distributed

More information

Hairer /Gubinelli-Imkeller-Perkowski

Hairer /Gubinelli-Imkeller-Perkowski Hairer /Gubinelli-Imkeller-Perkowski Φ 4 3 I The 3D dynamic Φ 4 -model driven by space-time white noise Let us study the following real-valued stochastic PDE on (0, ) T 3, where ξ is the space-time white

More information

Noncommutative Geometry and Stochastic Calculus: Applications in Mathematical Finance

Noncommutative Geometry and Stochastic Calculus: Applications in Mathematical Finance Noncommutative Geometry and Stochastic Calculus: Applications in Mathematical Finance Eric A. Forgy May 20, 2002 Abstract The present report contains an introduction to some elementary concepts in noncommutative

More information

Stochastic differential equation models in biology Susanne Ditlevsen

Stochastic differential equation models in biology Susanne Ditlevsen Stochastic differential equation models in biology Susanne Ditlevsen Introduction This chapter is concerned with continuous time processes, which are often modeled as a system of ordinary differential

More information

EXISTENCE OF NEUTRAL STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS WITH ABSTRACT VOLTERRA OPERATORS

EXISTENCE OF NEUTRAL STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS WITH ABSTRACT VOLTERRA OPERATORS International Journal of Differential Equations and Applications Volume 7 No. 1 23, 11-17 EXISTENCE OF NEUTRAL STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS WITH ABSTRACT VOLTERRA OPERATORS Zephyrinus C.

More information

Lecture 4: Numerical Solution of SDEs, Itô Taylor Series, Gaussian Process Approximations

Lecture 4: Numerical Solution of SDEs, Itô Taylor Series, Gaussian Process Approximations Lecture 4: Numerical Solution of SDEs, Itô Taylor Series, Gaussian Process Approximations Simo Särkkä Aalto University Tampere University of Technology Lappeenranta University of Technology Finland November

More information

DUBLIN CITY UNIVERSITY

DUBLIN CITY UNIVERSITY DUBLIN CITY UNIVERSITY SAMPLE EXAMINATIONS 2017/2018 MODULE: QUALIFICATIONS: Simulation for Finance MS455 B.Sc. Actuarial Mathematics ACM B.Sc. Financial Mathematics FIM YEAR OF STUDY: 4 EXAMINERS: Mr

More information

CBMS Lecture Series. Recent Advances in. the Numerical Approximation of Stochastic Partial Differential Equations

CBMS Lecture Series. Recent Advances in. the Numerical Approximation of Stochastic Partial Differential Equations CBMS Lecture Series Recent Advances in the Numerical Approximation of Stochastic Partial Differential Equations or more accurately Taylor Approximations of Stochastic Partial Differential Equations A.

More information

ON THE COMPLEXITY OF STOCHASTIC INTEGRATION

ON THE COMPLEXITY OF STOCHASTIC INTEGRATION MATHEMATICS OF COMPUTATION Volume 7, Number 34, Pages 685 698 S 5-5718)114-X Article electronically published on March, ON THE COMPLEXITY OF STOCHASTIC INTEGRATION G. W. WASILKOWSKI AND H. WOŹNIAKOWSKI

More information

Approximation of random dynamical systems with discrete time by stochastic differential equations: I. Theory

Approximation of random dynamical systems with discrete time by stochastic differential equations: I. Theory Random Operators / Stochastic Eqs. 15 7, 5 c de Gruyter 7 DOI 1.1515 / ROSE.7.13 Approximation of random dynamical systems with discrete time by stochastic differential equations: I. Theory Yuri A. Godin

More information

Lecture 1. Stochastic Optimization: Introduction. January 8, 2018

Lecture 1. Stochastic Optimization: Introduction. January 8, 2018 Lecture 1 Stochastic Optimization: Introduction January 8, 2018 Optimization Concerned with mininmization/maximization of mathematical functions Often subject to constraints Euler (1707-1783): Nothing

More information

THE GEOMETRY OF ITERATED STRATONOVICH INTEGRALS

THE GEOMETRY OF ITERATED STRATONOVICH INTEGRALS THE GEOMETRY OF ITERATED STRATONOVICH INTEGRALS CHRISTIAN BAYER Abstract. We give a summary on the geometry of iterated Stratonovich integrals. For this exposition, we always have the connection to stochastic

More information

HJB equations. Seminar in Stochastic Modelling in Economics and Finance January 10, 2011

HJB equations. Seminar in Stochastic Modelling in Economics and Finance January 10, 2011 Department of Probability and Mathematical Statistics Faculty of Mathematics and Physics, Charles University in Prague petrasek@karlin.mff.cuni.cz Seminar in Stochastic Modelling in Economics and Finance

More information

Lecture 4: Introduction to stochastic processes and stochastic calculus

Lecture 4: Introduction to stochastic processes and stochastic calculus Lecture 4: Introduction to stochastic processes and stochastic calculus Cédric Archambeau Centre for Computational Statistics and Machine Learning Department of Computer Science University College London

More information

Nested Uncertain Differential Equations and Its Application to Multi-factor Term Structure Model

Nested Uncertain Differential Equations and Its Application to Multi-factor Term Structure Model Nested Uncertain Differential Equations and Its Application to Multi-factor Term Structure Model Xiaowei Chen International Business School, Nankai University, Tianjin 371, China School of Finance, Nankai

More information

SDE Coefficients. March 4, 2008

SDE Coefficients. March 4, 2008 SDE Coefficients March 4, 2008 The following is a summary of GARD sections 3.3 and 6., mainly as an overview of the two main approaches to creating a SDE model. Stochastic Differential Equations (SDE)

More information

Malliavin Calculus in Finance

Malliavin Calculus in Finance Malliavin Calculus in Finance Peter K. Friz 1 Greeks and the logarithmic derivative trick Model an underlying assent by a Markov process with values in R m with dynamics described by the SDE dx t = b(x

More information

2.20 Fall 2018 Math Review

2.20 Fall 2018 Math Review 2.20 Fall 2018 Math Review September 10, 2018 These notes are to help you through the math used in this class. This is just a refresher, so if you never learned one of these topics you should look more

More information

Asymptotic inference for a nonstationary double ar(1) model

Asymptotic inference for a nonstationary double ar(1) model Asymptotic inference for a nonstationary double ar() model By SHIQING LING and DONG LI Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong maling@ust.hk malidong@ust.hk

More information

Dynamic Risk Measures and Nonlinear Expectations with Markov Chain noise

Dynamic Risk Measures and Nonlinear Expectations with Markov Chain noise Dynamic Risk Measures and Nonlinear Expectations with Markov Chain noise Robert J. Elliott 1 Samuel N. Cohen 2 1 Department of Commerce, University of South Australia 2 Mathematical Insitute, University

More information

UNCERTAINTY FUNCTIONAL DIFFERENTIAL EQUATIONS FOR FINANCE

UNCERTAINTY FUNCTIONAL DIFFERENTIAL EQUATIONS FOR FINANCE Surveys in Mathematics and its Applications ISSN 1842-6298 (electronic), 1843-7265 (print) Volume 5 (2010), 275 284 UNCERTAINTY FUNCTIONAL DIFFERENTIAL EQUATIONS FOR FINANCE Iuliana Carmen Bărbăcioru Abstract.

More information

The Hopf algebraic structure of stochastic expansions and efficient simulation

The Hopf algebraic structure of stochastic expansions and efficient simulation The Hopf algebraic structure of stochastic expansions and efficient simulation Kurusch Ebrahimi Fard, Alexander Lundervold, Simon J.A. Malham, Hans Munthe Kaas and Anke Wiese York: 15th October 2012 KEF,

More information

Lecture 4: Numerical Solution of SDEs, Itô Taylor Series, Gaussian Approximations

Lecture 4: Numerical Solution of SDEs, Itô Taylor Series, Gaussian Approximations Lecture 4: Numerical Solution of SDEs, Itô Taylor Series, Gaussian Approximations Simo Särkkä Aalto University, Finland November 18, 2014 Simo Särkkä (Aalto) Lecture 4: Numerical Solution of SDEs November

More information

arxiv: v1 [math.ap] 10 Apr 2008

arxiv: v1 [math.ap] 10 Apr 2008 Optimal systems of subalgebras and invariant solutions for a nonlinear Black-Scholes equation arxiv:0804.1673v1 [math.ap] 10 Apr 2008 Maxim Bobrov Halmstad University, Box 823, 301 18 Halmstad, Sweden

More information

Introduction to Algorithmic Trading Strategies Lecture 4

Introduction to Algorithmic Trading Strategies Lecture 4 Introduction to Algorithmic Trading Strategies Lecture 4 Optimal Pairs Trading by Stochastic Control Haksun Li haksun.li@numericalmethod.com www.numericalmethod.com Outline Problem formulation Ito s lemma

More information

Sample of Ph.D. Advisory Exam For MathFinance

Sample of Ph.D. Advisory Exam For MathFinance Sample of Ph.D. Advisory Exam For MathFinance Students who wish to enter the Ph.D. program of Mathematics of Finance are required to take the advisory exam. This exam consists of three major parts. The

More information

Takao Akahori. z i In this paper, if f is a homogeneous polynomial, the correspondence between the Kodaira-Spencer class and C[z 1,...

Takao Akahori. z i In this paper, if f is a homogeneous polynomial, the correspondence between the Kodaira-Spencer class and C[z 1,... J. Korean Math. Soc. 40 (2003), No. 4, pp. 667 680 HOMOGENEOUS POLYNOMIAL HYPERSURFACE ISOLATED SINGULARITIES Takao Akahori Abstract. The mirror conjecture means originally the deep relation between complex

More information

A numerical method for solving uncertain differential equations

A numerical method for solving uncertain differential equations Journal of Intelligent & Fuzzy Systems 25 (213 825 832 DOI:1.3233/IFS-12688 IOS Press 825 A numerical method for solving uncertain differential equations Kai Yao a and Xiaowei Chen b, a Department of Mathematical

More information

The method of lines (MOL) for the diffusion equation

The method of lines (MOL) for the diffusion equation Chapter 1 The method of lines (MOL) for the diffusion equation The method of lines refers to an approximation of one or more partial differential equations with ordinary differential equations in just

More information

Sequential Monte Carlo methods for filtering of unobservable components of multidimensional diffusion Markov processes

Sequential Monte Carlo methods for filtering of unobservable components of multidimensional diffusion Markov processes Sequential Monte Carlo methods for filtering of unobservable components of multidimensional diffusion Markov processes Ellida M. Khazen * 13395 Coppermine Rd. Apartment 410 Herndon VA 20171 USA Abstract

More information

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology FE610 Stochastic Calculus for Financial Engineers Lecture 3. Calculaus in Deterministic and Stochastic Environments Steve Yang Stevens Institute of Technology 01/31/2012 Outline 1 Modeling Random Behavior

More information

Learning Objectives for Math 166

Learning Objectives for Math 166 Learning Objectives for Math 166 Chapter 6 Applications of Definite Integrals Section 6.1: Volumes Using Cross-Sections Draw and label both 2-dimensional perspectives and 3-dimensional sketches of the

More information

Generalised Fractional-Black-Scholes Equation: pricing and hedging

Generalised Fractional-Black-Scholes Equation: pricing and hedging Generalised Fractional-Black-Scholes Equation: pricing and hedging Álvaro Cartea Birkbeck College, University of London April 2004 Outline Lévy processes Fractional calculus Fractional-Black-Scholes 1

More information

Finite-time Ruin Probability of Renewal Model with Risky Investment and Subexponential Claims

Finite-time Ruin Probability of Renewal Model with Risky Investment and Subexponential Claims Proceedings of the World Congress on Engineering 29 Vol II WCE 29, July 1-3, 29, London, U.K. Finite-time Ruin Probability of Renewal Model with Risky Investment and Subexponential Claims Tao Jiang Abstract

More information

Peter E. Kloeden Eckhard Platen. Numerical Solution of Stochastic Differential Equations

Peter E. Kloeden Eckhard Platen. Numerical Solution of Stochastic Differential Equations Peter E. Kloeden Eckhard Platen Numerical Solution of Stochastic Differential Equations Peter E. Kloeden School of Computing and Mathematics, Deakin Universit y Geelong 3217, Victoria, Australia Eckhard

More information

Monte Carlo methods for kinetic equations

Monte Carlo methods for kinetic equations Monte Carlo methods for kinetic equations Lecture 2: Monte Carlo simulation methods Lorenzo Pareschi Department of Mathematics & CMCS University of Ferrara Italy http://utenti.unife.it/lorenzo.pareschi/

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Centre for Computational Statistics and Machine Learning University College London c.archambeau@cs.ucl.ac.uk CSML

More information

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 197

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 197 MATH 56A SPRING 8 STOCHASTIC PROCESSES 197 9.3. Itô s formula. First I stated the theorem. Then I did a simple example to make sure we understand what it says. Then I proved it. The key point is Lévy s

More information

APPLICATION OF A STOCHASTIC REPRESENTATION IN NUMERICAL STUDIES OF THE RELAXATION FROM A METASTABLE STATE

APPLICATION OF A STOCHASTIC REPRESENTATION IN NUMERICAL STUDIES OF THE RELAXATION FROM A METASTABLE STATE COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 7 (1), 83-90 (2001) APPLICATION OF A STOCHASTIC REPRESENTATION IN NUMERICAL STUDIES OF THE RELAXATION FROM A METASTABLE STATE FERDINANDO DE PASQUALE 1, ANTONIO

More information

Lie Symmetry of Ito Stochastic Differential Equation Driven by Poisson Process

Lie Symmetry of Ito Stochastic Differential Equation Driven by Poisson Process American Review of Mathematics Statistics June 016, Vol. 4, No. 1, pp. 17-30 ISSN: 374-348 (Print), 374-356 (Online) Copyright The Author(s).All Rights Reserved. Published by American Research Institute

More information

Affine realizations with affine state processes. the HJMM equation

Affine realizations with affine state processes. the HJMM equation for the HJMM equation Stefan Tappe Leibniz Universität Hannover 7th General AMaMeF and Swissquote Conference Session on Interest Rates September 7th, 2015 Introduction Consider a stochastic partial differential

More information

Stochastic Optimization One-stage problem

Stochastic Optimization One-stage problem Stochastic Optimization One-stage problem V. Leclère September 28 2017 September 28 2017 1 / Déroulement du cours 1 Problèmes d optimisation stochastique à une étape 2 Problèmes d optimisation stochastique

More information

Poisson Approximation for Structure Floors

Poisson Approximation for Structure Floors DIPLOMARBEIT Poisson Approximation for Structure Floors Ausgeführt am Institut für Stochastik und Wirtschaftsmathematik der Technischen Universität Wien unter der Anleitung von Privatdoz. Dipl.-Ing. Dr.techn.

More information

White noise generalization of the Clark-Ocone formula under change of measure

White noise generalization of the Clark-Ocone formula under change of measure White noise generalization of the Clark-Ocone formula under change of measure Yeliz Yolcu Okur Supervisor: Prof. Bernt Øksendal Co-Advisor: Ass. Prof. Giulia Di Nunno Centre of Mathematics for Applications

More information

Topology-preserving diffusion equations for divergence-free vector fields

Topology-preserving diffusion equations for divergence-free vector fields Topology-preserving diffusion equations for divergence-free vector fields Yann BRENIER CNRS, CMLS-Ecole Polytechnique, Palaiseau, France Variational models and methods for evolution, Levico Terme 2012

More information

Some Terminology and Concepts that We will Use, But Not Emphasize (Section 6.2)

Some Terminology and Concepts that We will Use, But Not Emphasize (Section 6.2) Some Terminology and Concepts that We will Use, But Not Emphasize (Section 6.2) Statistical analysis is based on probability theory. The fundamental object in probability theory is a probability space,

More information

Riemann Manifold Methods in Bayesian Statistics

Riemann Manifold Methods in Bayesian Statistics Ricardo Ehlers ehlers@icmc.usp.br Applied Maths and Stats University of São Paulo, Brazil Working Group in Statistical Learning University College Dublin September 2015 Bayesian inference is based on Bayes

More information

Introduction to Algorithmic Trading Strategies Lecture 10

Introduction to Algorithmic Trading Strategies Lecture 10 Introduction to Algorithmic Trading Strategies Lecture 10 Risk Management Haksun Li haksun.li@numericalmethod.com www.numericalmethod.com Outline Value at Risk (VaR) Extreme Value Theory (EVT) References

More information

Introduction to numerical simulations for Stochastic ODEs

Introduction to numerical simulations for Stochastic ODEs Introduction to numerical simulations for Stochastic ODEs Xingye Kan Illinois Institute of Technology Department of Applied Mathematics Chicago, IL 60616 August 9, 2010 Outline 1 Preliminaries 2 Numerical

More information

A diamagnetic inequality for semigroup differences

A diamagnetic inequality for semigroup differences A diamagnetic inequality for semigroup differences (Irvine, November 10 11, 2001) Barry Simon and 100DM 1 The integrated density of states (IDS) Schrödinger operator: H := H(V ) := 1 2 + V ω =: H(0, V

More information

Phase Synchronization

Phase Synchronization Phase Synchronization Lecture by: Zhibin Guo Notes by: Xiang Fan May 10, 2016 1 Introduction For any mode or fluctuation, we always have where S(x, t) is phase. If a mode amplitude satisfies ϕ k = ϕ k

More information

Introduction to the Numerical Solution of SDEs Selected topics

Introduction to the Numerical Solution of SDEs Selected topics 0 / 23 Introduction to the Numerical Solution of SDEs Selected topics Andreas Rößler Summer School on Numerical Methods for Stochastic Differential Equations at Vienna University of Technology, Austria

More information

Research Article Least Squares Estimators for Unit Root Processes with Locally Stationary Disturbance

Research Article Least Squares Estimators for Unit Root Processes with Locally Stationary Disturbance Advances in Decision Sciences Volume, Article ID 893497, 6 pages doi:.55//893497 Research Article Least Squares Estimators for Unit Root Processes with Locally Stationary Disturbance Junichi Hirukawa and

More information

CUBATURE ON WIENER SPACE: PATHWISE CONVERGENCE

CUBATURE ON WIENER SPACE: PATHWISE CONVERGENCE CUBATUR ON WINR SPAC: PATHWIS CONVRGNC CHRISTIAN BAYR AND PTR K. FRIZ Abstract. Cubature on Wiener space [Lyons, T.; Victoir, N.; Proc. R. Soc. Lond. A 8 January 2004 vol. 460 no. 2041 169-198] provides

More information

A new approach for investment performance measurement. 3rd WCMF, Santa Barbara November 2009

A new approach for investment performance measurement. 3rd WCMF, Santa Barbara November 2009 A new approach for investment performance measurement 3rd WCMF, Santa Barbara November 2009 Thaleia Zariphopoulou University of Oxford, Oxford-Man Institute and The University of Texas at Austin 1 Performance

More information

Verona Course April Lecture 1. Review of probability

Verona Course April Lecture 1. Review of probability Verona Course April 215. Lecture 1. Review of probability Viorel Barbu Al.I. Cuza University of Iaşi and the Romanian Academy A probability space is a triple (Ω, F, P) where Ω is an abstract set, F is

More information

Probability density function (PDF) methods 1,2 belong to the broader family of statistical approaches

Probability density function (PDF) methods 1,2 belong to the broader family of statistical approaches Joint probability density function modeling of velocity and scalar in turbulence with unstructured grids arxiv:6.59v [physics.flu-dyn] Jun J. Bakosi, P. Franzese and Z. Boybeyi George Mason University,

More information

Optimal simulation schemes for Lévy driven stochastic differential equations

Optimal simulation schemes for Lévy driven stochastic differential equations Optimal simulation schemes for Lévy driven stochastic differential equations Arturo Kohatsu-Higa Salvador Ortiz-Latorre Peter Tankov Abstract We consider a general class of high order weak approximation

More information

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION I. Moment of Inertia: Since a body has a definite size and shape, an applied nonconcurrent force system may cause the body to both translate and rotate.

More information

Numerical Methods with Lévy Processes

Numerical Methods with Lévy Processes Numerical Methods with Lévy Processes 1 Objective: i) Find models of asset returns, etc ii) Get numbers out of them. Why? VaR and risk management Valuing and hedging derivatives Why not? Usual assumption:

More information

On the Strong Approximation of Jump-Diffusion Processes

On the Strong Approximation of Jump-Diffusion Processes QUANTITATIV FINANC RSARCH CNTR QUANTITATIV FINANC RSARCH CNTR Research Paper 157 April 25 On the Strong Approximation of Jump-Diffusion Processes Nicola Bruti-Liberati and ckhard Platen ISSN 1441-81 www.qfrc.uts.edu.au

More information

On an uniqueness theorem for characteristic functions

On an uniqueness theorem for characteristic functions ISSN 392-53 Nonlinear Analysis: Modelling and Control, 207, Vol. 22, No. 3, 42 420 https://doi.org/0.5388/na.207.3.9 On an uniqueness theorem for characteristic functions Saulius Norvidas Institute of

More information

Change detection problems in branching processes

Change detection problems in branching processes Change detection problems in branching processes Outline of Ph.D. thesis by Tamás T. Szabó Thesis advisor: Professor Gyula Pap Doctoral School of Mathematics and Computer Science Bolyai Institute, University

More information

Introduction to Computational Stochastic Differential Equations

Introduction to Computational Stochastic Differential Equations Introduction to Computational Stochastic Differential Equations Gabriel J. Lord Catherine E. Powell Tony Shardlow Preface Techniques for solving many of the differential equations traditionally used by

More information

A Concise Course on Stochastic Partial Differential Equations

A Concise Course on Stochastic Partial Differential Equations A Concise Course on Stochastic Partial Differential Equations Michael Röckner Reference: C. Prevot, M. Röckner: Springer LN in Math. 1905, Berlin (2007) And see the references therein for the original

More information

Institute of Natural Sciences Shanghai Jiao Tong University

Institute of Natural Sciences Shanghai Jiao Tong University Institute of Natural Sciences Shanghai Jiao Tong University two 1 May, 24th - 2013 Joint work with Mathieu Lutz 1 LMBA (UMR 6205), Université de Bretagne-Sud, F-56017, Vannes, France. emmanuel.frenod@univ-ubs.fr

More information

Moment Properties of Distributions Used in Stochastic Financial Models

Moment Properties of Distributions Used in Stochastic Financial Models Moment Properties of Distributions Used in Stochastic Financial Models Jordan Stoyanov Newcastle University (UK) & University of Ljubljana (Slovenia) e-mail: stoyanovj@gmail.com ETH Zürich, Department

More information

Optimal simulation schemes for Lévy driven stochastic differential equations arxiv: v1 [math.pr] 22 Apr 2012

Optimal simulation schemes for Lévy driven stochastic differential equations arxiv: v1 [math.pr] 22 Apr 2012 Optimal simulation schemes for Lévy driven stochastic differential equations arxiv:124.4877v1 [math.p] 22 Apr 212 Arturo Kohatsu-Higa Salvador Ortiz-Latorre Peter Tankov Abstract We consider a general

More information

Quantization of stochastic processes with applications on Euler-Maruyama schemes

Quantization of stochastic processes with applications on Euler-Maruyama schemes UPTEC F15 063 Examensarbete 30 hp Oktober 2015 Quantization of stochastic processes with applications on Euler-Maruyama schemes Viktor Edward Abstract Quantization of stochastic processes with applications

More information

Adaptive timestepping for SDEs with non-globally Lipschitz drift

Adaptive timestepping for SDEs with non-globally Lipschitz drift Adaptive timestepping for SDEs with non-globally Lipschitz drift Mike Giles Wei Fang Mathematical Institute, University of Oxford Workshop on Numerical Schemes for SDEs and SPDEs Université Lille June

More information