arxiv:math/ v1 [math.nt] 6 May 2003

Size: px
Start display at page:

Download "arxiv:math/ v1 [math.nt] 6 May 2003"

Transcription

1 arxiv:math/ v1 [math.nt] 6 May 003 The inverse problem for representation functions of additive bases Melvyn B. Nathanson Department of Mathematics Lehman College (CUNY) Bronx, New York nathansn@alpha.lehman.cuny.edu June 4, 018 Abstract Let A be a set of integers. For every integer n, let r A,(n) denote the number of representations of n in the form n = a 1+a, where a 1,a A a 1 a. The function r A, : Z N 0 { } is the representation function of order for A. The set A is called an asymptotic basis of order if r 1 A, (0) is finite, that is, if every integer with at most a finite number of exceptions can be represented as the sum of two not necessarily distinct elements of A. It is proved that every function is a representation function, that is, if f : Z N 0 { } is any function such that f 1 (0) is finite, then there exists a set A of integers such that f(n) = r A,(n) for all n Z. Moreover, the set A can be constructed so that card{a A : a x} x 1/3. 1 Representation functions Let N, N 0, Z denote the positive integers, nonnegative integers, integers, respectively. Let A B be sets of integers. We define the sumset A+B = {a+b : a A b B},, in particular, A = A+A = {a 1 +a : a 1,a A} A+b = A+{b} = {a+b : a A}. 000 Mathematics Subject Classification: 11B13, 11B34, 11B05. Key words phrases. Additive bases, sumsets, representation functions, density, Erdős-Turán conjecture, Sidon set. This work was supported in part by grants from the NSA Mathematical Sciences Program the PSC-CUNY Research Award Program. 1

2 The restricted sumsets are Aˆ+B = {a+b : a A, b B, a b} A = Aˆ+A = {a 1 +a : a 1,a A a 1 a }. Similarly, we define the difference set We introduce the counting function A B = {a b : a A b B} A = {0} A = { a : a A}. A(y,x) = a A y a x Thus, A( x,x) counts the number of elements a A such that a x. For functions f g, we write f g if there exist numbers c 0 x 0 such that f(x) c 0 g(x) for all x x 0, f g if f(x) c 0 g(x) for all x x 0. In this paper we study representation functions of sets of integers. For any set A Z, the representation function r A, (n) counts the number of ways to write n in the form n = a 1 + a, where a 1,a A a 1 a. The set A is called an asymptotic basis of order if all but finitely many integers can be represented as the sum of two not necessarily distinct elements of A, or, equivalently, if the function satisfies 1. r A, : Z N 0 { } card(r 1 A, (0)) <. Similarly, the restricted representation function ˆr A, (n) counts the number of ways to write n in the form n = a 1 +a, where a 1,a A a 1 < a. The set A is called a restricted asymptotic basis of order if all but finitely many integers can be represented as the sum of two distinct elements of A. Let f : Z N 0 { } (1) be any function such that card(f 1 (0)) <. () The inverse problem for representation functions of order is to find sets Asuch that r A, (n) = f(n) for all n Z. Nathanson [4] proved that every function f satisfying (1) () is the representation function of an asymptotic basis of order, that such bases A can be arbitrarily thin in the sense that the

3 counting functions A( x, x) tend arbitrarily slowly to infinity. It remained an open problem to construct thick asymptotic bases of order for the integers with a prescribed representation function. In the special case of the function f(n) = 1 for all integers n, Nathanson [6] constructed a unique representation basis, that is, a set A of integers with r A, (n) = 1 for all n Z, with the additional property that A( x,x) logx. He posed the problem of constructing a unique representation basis A such that A( x,x) x α for some α > 0. In this paper we prove that for every function f satisfying (1) () there exist uncountably many asymptotic bases A of order such that r A, (n) = f(n) for all n Z, A( x,x) x 1/3. It is not known if there exists a real number δ > 0 such that one can solve the inverse problem for arbitrary functions f satisfying (1) () with A( x,x) x 1/3+δ. The Erdős-Turán conjecture The set A of nonnegative integers is an asymptotic basis of order for N 0 if the sumset A contains all sufficently large integers. If A is a set of nonnegative integers, then 0 r A, (n) < for every n N 0. It is not true, however, that if is a function with f : N 0 N 0 card ( f 1 (0) ) <, then there must exist a set A of nonnegative integers such that r A, (n) = f(n) for all n N 0. For example, Dirac [1] proved that the representation function of an asymptotic basis of order cannot be eventually constant, Erdős Fuchs [3] proved that the mean value n x r A,(n) of an asymptotic basis of order cannot converge too rapidly to cx for any c > 0. A famous conjecture of Erdős Turán [] states that the representation function of an asymptotic basis of order must be unbounded. This problem is only a special case of the general inverse problem for representation functions for bases for the nonnegative integers: Find necessary sufficient conditions for a function f : N 0 N 0 satisfying card ( f 1 (0) ) < to be the representation function of an asymptotic basis of order for N 0. It is a remarkable recent discovery that the inverse problem for representation functions for the integers,, more generally, for arbitrary countably infinite abelian groups countably infinite abelian semigroups with a group component, is significantly easier than the inverse problem for representation functions for the nonnegative integers for other countably infinite abelian semigroups (Nathanson [5]). 3

4 3 Construction of thick bases for the integers Let [x] denote the integer part of the real number x. Lemma 1 Let f : Z N 0 { } be a function such that f 1 (0) is finite. Let denote the cardinality of the set f 1 (0). Then there exists a sequence U = {u k } k=1 of integers such that, for every n Z k N, f(n) = card{k 1 : u k = n} [ ] k + u k. Proof. Every positive integer m can be written uniquely in the form m = s +s+1+r, where s is a nonnegative integer r s. We construct the sequence where V = {0, 1,0,1,, 1,0,1,, 3,, 1,0,1,,3,...} = {v m } m=1, v s +s+1+r = r for r s. For every nonnegative integer k, the first occurrence of k in this sequence is v k +1 = k, the first occurrence of k in this sequence is v (k+1) = k. The sequence U will be the unique subsequence of V constructed as follows. Let n Z. If f(n) =, then U will contain the terms v s +s+1+n for every s n. If f(n) = l <, then U will contain the l terms v s +s+1+n for s = n, n +1,..., n +l 1in the subsequence U, but not the terms v s +s+1+n for s n + l. Let m 1 < m < m 3 < be the strictly increasing sequence of positive integers such that {v mk } k=1 is the resulting subsequence of V. Let U = {u k } k=1, where u k = v mk. Then f(n) = card{k 1 : u k = n}. Let card ( f 1 (0) ) =. The sequence U also has the following property: If u k = n, then for every integer m f 1 (0) with m < n there is a positive integer j < k with u j = m. It follows that {0,1, 1,,,...,n 1, (n 1)}\f 1 (0) {u 1,u,...,u k 1 }, so This implies that k 1 (n 1)+1. u k = n k +. 4

5 Since u k is an integer, we have [ ] k + u k. This completes the proof. Lemma 1 is best possible in the sense that for every nonnegative integer there is a function f : Z N 0 { } with card ( f 1 (0) ) = a sequence U = {u k } k=1 of integers such that [ ] k + u k = for all k 1. (3) For example, if = δ +1 is odd, define the function f by { 0 if n δ f(n) = 1 if n δ +1 the sequence U by u i 1 = δ +i, u i = (δ +i) for all i 1. If = δ is even, define f by { 0 if δ n δ 1 f(n) = 1 if n δ or n δ 1 the sequence U by u 1 = δ u i = δ +i, u i+1 = (δ +i) for all i 1. In both cases the sequence U satisfies (3). Theorem 1 Let f : Z N 0 { } be any function such that Let = card(f 1 (0)) <. [ ] +1 c = 8+. There exist uncountably many sets A of integers such that r A, (n) = f(n) for all n Z ( x A( x,x) c ) 1/3. 5

6 Proof. Let = card(f 1 (0)). By Lemma 1, there exists a sequence U = {u k } k=1 of integers such that f(n) = card({i N : u i = n}) for all integers n (4) u k k + for all k 1. (5) We shall construct a strictly increasing sequence {i k } k=1 of positive integers an increasing sequence {A k } k=1 of finite sets of integers such that, for all positive integers k, (i) A k = k, (ii) There exists a positive number c such that A k [ ck 3,ck 3 ] (iii) r Ak,(n) f(n) for all n Z, (iv) For j = 1,...,k, r Ak,(u j ) card({i i k : u i = u j }). Let {A k } k=1 be a sequence of finite sets satisfying (i) (iv). We form the infinite set A = A k. k=1 Let x 8c, let k be the unique positive integer such that Conditions (i) (ii) imply that Since ck 3 x < c(k +1) 3. ( x ) 1/3 ( x ) 1/3. A( x,x) A k = k > c c conditions (iii) (iv) imply that for all n Z. f(n) = lim k card({i i k : u i = n}), r A, (n) = lim k r A k,(n) = f(n) 6

7 We construct the sequence {A k } k=1 as follows. Let i 1 = 1. The set A 1 will be of the form A 1 = {a 1 + u i1, a 1 }, where the integer a 1 is chosen so that A 1 f 1 (0) = a 1 +u i1 a 1. This is equivalent to requiring that a 1 (f 1 (0) u i1 ) ( f 1 (0)) { u i1 }. (6) This condition excludes at most 1 + integers, so we have at least two choices for the number a 1 such that a a 1 satisfies (6). Since u i1 = u 1 (1+ )/ a 1 +u i1 a 1 + u i1 3(1+ ), it follows that A 1 [ c,c] for any c 3(1 + )/, the set A 1 satisfies conditions (i) (iv). Let k suppose that we have constructed sets A 1,...,A k 1 integers i 1 < < i k 1 that satisfy conditions (i) (iv). Let i k > i k 1 be the least integer such that r Ak 1,(u ik ) < f(u ik ). Since i k 1 n {u 1,u,...,u ik 1} n Zr Ak 1,(n) ( ) k 1 = < k, r Ak 1,(n) it follows that Also, (5) implies that i k k. u ik i k + We want to choose an integer a k such that the set satisfies (i) (iv). We have A k = k if A k = A k 1 {a k +u ik, a k } a k +u ik a k k +. (7) A k 1 {a k +u ik, a k } =, 7

8 or, equivalently, if a k ( A k 1 ) (A k 1 u ik ) { u ik /}. (8) Thus, in order for A k 1 {a k +u ik, a k } to satisfy condition (i), we exclude at most A k 1 +1 = 4k 3 integers as possible choices for a k. The set A k will satisfy conditions (iii) (iv) if A k f 1 (0) = r Ak 1,(n) for all n A k 1 \{u ik } r Ak,(n) = r Ak 1,(n)+1 for n = u ik 1 for all n A k \(A k 1 {u ik }). Since the sumset A k decomposes into A k = (A k 1 {a k +u ik, a k }) it suffices that = A k 1 (A k 1 +{a k +u ik, a k }) {u ik,a k +u ik, a k }, (A k 1 +{a k +u ik, a k }) A k 1 =, (9) (A k 1 +{a k +u ik, a k }) f 1 (0) =, (10) (A k 1 +a k +u ik ) (A k 1 a k ) =, (11) {a k +u ik, a k } A k 1 = (1) {a k +u ik, a k } f 1 (0) = (13) {a k +u ik, a k } (A k 1 +{a k +u ik, a k }) =. (14) Equation (9) implies that the integer a k must be chosen so that it cannot be represented either in the form or a k = x 1 +x x 3 u ik a k = x 1 x x 3, wherex 1,x,x 3 A k 1. Sincecard(A k 1 ) = (k 1),itfollowsthatthenumber of integers that cannot be chosen as the integer a k because of equation (9) is at most ((k 1)) 3 = 16(k 1) 3. Similarly, the numbers of integersexcluded as possible choicesfor a k because ofequations(10), (11), (1),(13), (14)areatmost 4 (k 1),4(k 1),8(k 1),, 8(k 1), respectively, so the number of integers that cannot be chosen as a k is 16(k 1) 3 +1(k 1) +(4 +8)(k 1)+ = 16k 3 36k +(3+4 )k 1 (16+ )k 3 4k 3k(k 1) 1. 8

9 Let The number of integers a with [ ] +1 a ck 3 k = [ ] +1 c = 8+. ( 8+ [ +1 ]) k 3 k [ ] +1 (15) is ( 16+ [ +1 ]) k 3 k [ +1 ] +1 (16+ )k 3 k. If the integer a satisfies (15), then (7) implies that a+u ik a + u ik ck 3. It follows that there are at least two acceptable choices of the integer a k such that the set A k = A k 1 {a k + u ik, a k } satisfies conditions (i) (iv). Since this is true at each step of the induction, there are uncountably many sequences {A k } k=1 that satisfy conditions (i) (iv). This completes the proof. We can modify the proof of Theorem 1 to obtain the analogous result for the restricted representation function ˆr A, (n). Theorem Let f : Z N 0 { } be any function such that card(f 1 (0)) <. Then there exist uncountably many sets A of integers such that ˆr A, (n) = f(n) for all n Z A( x,x) x 1/3. 4 Representation functions for bases of order h We can also prove similar results for the representation functions of asymptotic bases restricted asymptotic bases of order h for all h. For any set A Z, the representation function r A,h (n) counts the number of ways to write n in the form n = a 1 +a + +a h, where a 1,a,...,a h A a 1 a a h. The set A is called an asymptotic basis of order h if all but finitely many integers can be represented as the sum of h not necessarily distinct elements of A, or, equivalently, if the function r A,h : Z N 0 { } 9

10 satisfies card(r 1 A,h (0)) <. Similarly, the restricted representation function ˆr A,h (n) counts the number of ways to write n as a sum of h pairwise distinct elements of A. The set A is called a restricted asymptotic basis of order h if all but finitely many integers can be represented as the sum of h pairwise distinct elements of A. Theorem 3 Let f : Z N 0 { } be any function such that card(f 1 (0)) <. There exist uncountably many sets A of integers such that r A,h (n) = f(n) for all n Z A( x,x) x 1/(h 1), there exist uncountably many sets A of integers such that ˆr A,h (n) = f(n) for all n Z A( x,x) x 1/(h 1). References [1] G. A. Dirac, Note on a problem in additive number theory, J. London Math. Soc. 6 (1951), [] P. Erdős P. Turán, On a problem of Sidon in additive number theory some related questions, J. London Math. Soc. 16 (1941), [3] P. Erdős W. H. J. Fuchs, On a problem of additive number theory, J. London Math. Soc. 31 (1956), [4] M. B. Nathanson, Every function is the representation function of an additive basis for the integers, math.nt/ [5], Representation functions of additive bases for abelian semigroups, Ramanujan J., to appear. [6], Unique representation bases for the integers, Acta Arith., to appear. 10

arxiv:math/ v2 [math.nt] 3 Dec 2003

arxiv:math/ v2 [math.nt] 3 Dec 2003 arxiv:math/0302091v2 [math.nt] 3 Dec 2003 Every function is the representation function of an additive basis for the integers Melvyn B. Nathanson Department of Mathematics Lehman College (CUNY) Bronx,

More information

Unique Difference Bases of Z

Unique Difference Bases of Z 1 3 47 6 3 11 Journal of Integer Sequences, Vol. 14 (011), Article 11.1.8 Unique Difference Bases of Z Chi-Wu Tang, Min Tang, 1 and Lei Wu Department of Mathematics Anhui Normal University Wuhu 41000 P.

More information

arxiv:math/ v3 [math.nt] 16 Sep 2007

arxiv:math/ v3 [math.nt] 16 Sep 2007 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A01 AFFINE INVARIANTS, RELATIVELY PRIME SETS, AND A PHI FUNCTION FOR SUBSETS OF {1,2,,N} arxiv:math/0608150v3 [mathnt] 16 Sep 2007

More information

THE INVERSE PROBLEM FOR REPRESENTATION FUNCTIONS FOR GENERAL LINEAR FORMS

THE INVERSE PROBLEM FOR REPRESENTATION FUNCTIONS FOR GENERAL LINEAR FORMS INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A16 THE INVERSE PROBLEM FOR REPRESENTATION FUNCTIONS FOR GENERAL LINEAR FORMS Peter Hegarty Department of Mathematics, Chalmers University

More information

ON A PARTITION PROBLEM OF CANFIELD AND WILF. Departamento de Matemáticas, Universidad de los Andes, Bogotá, Colombia

ON A PARTITION PROBLEM OF CANFIELD AND WILF. Departamento de Matemáticas, Universidad de los Andes, Bogotá, Colombia #A11 INTEGERS 12A (2012): John Selfridge Memorial Issue ON A PARTITION PROBLEM OF CANFIELD AND WILF Željka Ljujić Departamento de Matemáticas, Universidad de los Andes, Bogotá, Colombia z.ljujic20@uniandes.edu.co

More information

arxiv:math/ v1 [math.gr] 24 Oct 2006

arxiv:math/ v1 [math.gr] 24 Oct 2006 arxiv:math/0610708v1 [math.gr] 24 Oct 2006 FAMILIES OF LINEAR SEMIGROUPS WITH INTERMEDIATE GROWTH MELVYN B. NATHANSON Abstract. Methods from additive number theory are applied to construct families of

More information

SETS WITH MORE SUMS THAN DIFFERENCES. Melvyn B. Nathanson 1 Lehman College (CUNY), Bronx, New York

SETS WITH MORE SUMS THAN DIFFERENCES. Melvyn B. Nathanson 1 Lehman College (CUNY), Bronx, New York INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A05 SETS WITH MORE SUMS THAN DIFFERENCES Melvyn B. Nathanson 1 Lehman College (CUNY), Bronx, New York 10468 melvyn.nathanson@lehman.cuny.edu

More information

A NEW UPPER BOUND FOR FINITE ADDITIVE BASES

A NEW UPPER BOUND FOR FINITE ADDITIVE BASES A NEW UPPER BOUND FOR FINITE ADDITIVE BASES C SİNAN GÜNTÜRK AND MELVYN B NATHANSON Abstract Let n, k denote the largest integer n for which there exists a set A of k nonnegative integers such that the

More information

2 ERDOS AND NATHANSON k > 2. Then there is a partition of the set of positive kth powers In k I n > } = A, u A Z such that Waring's problem holds inde

2 ERDOS AND NATHANSON k > 2. Then there is a partition of the set of positive kth powers In k I n > } = A, u A Z such that Waring's problem holds inde JOURNAL OF NUMBER THEORY 2, - ( 88) Partitions of Bases into Disjoint Unions of Bases* PAUL ERDÓS Mathematical Institute of the Hungarian Academy of Sciences, Budapest, Hungary AND MELVYN B. NATHANSON

More information

ANSWER TO A QUESTION BY BURR AND ERDŐS ON RESTRICTED ADDITION, AND RELATED RESULTS Mathematics Subject Classification: 11B05, 11B13, 11P99

ANSWER TO A QUESTION BY BURR AND ERDŐS ON RESTRICTED ADDITION, AND RELATED RESULTS Mathematics Subject Classification: 11B05, 11B13, 11P99 ANSWER TO A QUESTION BY BURR AND ERDŐS ON RESTRICTED ADDITION, AND RELATED RESULTS N. HEGYVÁRI, F. HENNECART AND A. PLAGNE Abstract. We study the gaps in the sequence of sums of h pairwise distinct elements

More information

Math 4603: Advanced Calculus I, Summer 2016 University of Minnesota Notes on Cardinality of Sets

Math 4603: Advanced Calculus I, Summer 2016 University of Minnesota Notes on Cardinality of Sets Math 4603: Advanced Calculus I, Summer 2016 University of Minnesota Notes on Cardinality of Sets Introduction In this short article, we will describe some basic notions on cardinality of sets. Given two

More information

MELVYN B. NATHANSON. To Ron Graham on his 70th birthday

MELVYN B. NATHANSON. To Ron Graham on his 70th birthday LINEAR QUANTUM ADDITION RULES arxiv:math/0603623v1 [math.nt] 27 Mar 2006 MELVYN B. NATHANSON To Ron Graham on his 70th birthday Abstract. The quantum integer [n] q is the polynomial 1+q+q 2 + +q n 1. Two

More information

Integer Sequences Avoiding Prime Pairwise Sums

Integer Sequences Avoiding Prime Pairwise Sums 1 3 47 6 3 11 Journal of Integer Sequences, Vol. 11 (008), Article 08.5.6 Integer Sequences Avoiding Prime Pairwise Sums Yong-Gao Chen 1 Department of Mathematics Nanjing Normal University Nanjing 10097

More information

LINEAR QUANTUM ADDITION RULES. Melvyn B. Nathanson 1 Department of Mathematics, Lehman College (CUNY), Bronx, New York 10468, USA

LINEAR QUANTUM ADDITION RULES. Melvyn B. Nathanson 1 Department of Mathematics, Lehman College (CUNY), Bronx, New York 10468, USA INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7(2) (2007), #A27 LINEAR QUANTUM ADDITION RULES Melvyn B. Nathanson 1 Department of Mathematics, Lehman College (CUNY), Bronx, New York 10468,

More information

ON THE POSSIBLE QUANTITIES OF FIBONACCI NUMBERS THAT OCCUR IN SOME TYPES OF INTERVALS

ON THE POSSIBLE QUANTITIES OF FIBONACCI NUMBERS THAT OCCUR IN SOME TYPES OF INTERVALS Acta Math. Univ. Comenianae Vol. LXXXVII, 2 (2018), pp. 291 299 291 ON THE POSSIBLE QUANTITIES OF FIBONACCI NUMBERS THAT OCCUR IN SOME TYPES OF INTERVALS B. FARHI Abstract. In this paper, we show that

More information

1 Partitions and Equivalence Relations

1 Partitions and Equivalence Relations Today we re going to talk about partitions of sets, equivalence relations and how they are equivalent. Then we are going to talk about the size of a set and will see our first example of a diagonalisation

More information

Fermat numbers and integers of the form a k + a l + p α

Fermat numbers and integers of the form a k + a l + p α ACTA ARITHMETICA * (200*) Fermat numbers and integers of the form a k + a l + p α by Yong-Gao Chen (Nanjing), Rui Feng (Nanjing) and Nicolas Templier (Montpellier) 1. Introduction. In 1849, A. de Polignac

More information

Problems in additive number theory, V: Affinely inequivalent MSTD sets

Problems in additive number theory, V: Affinely inequivalent MSTD sets W N North-Western European Journal of Mathematics E M J Problems in additive number theory, V: Affinely inequivalent MSTD sets Melvyn B Nathanson 1 Received: November 9, 2016/Accepted: June 26, 2017/Online:

More information

5 Set Operations, Functions, and Counting

5 Set Operations, Functions, and Counting 5 Set Operations, Functions, and Counting Let N denote the positive integers, N 0 := N {0} be the non-negative integers and Z = N 0 ( N) the positive and negative integers including 0, Q the rational numbers,

More information

On reducible and primitive subsets of F p, II

On reducible and primitive subsets of F p, II On reducible and primitive subsets of F p, II by Katalin Gyarmati Eötvös Loránd University Department of Algebra and Number Theory and MTA-ELTE Geometric and Algebraic Combinatorics Research Group H-1117

More information

Quantum integers and cyclotomy

Quantum integers and cyclotomy Journal of Number Theory 109 (2004) 120 135 www.elsevier.com/locate/jnt Quantum integers and cyclotomy Alexander Borisov a, Melvyn B. Nathanson b,, Yang Wang c a Department of Mathematics, Pennsylvania

More information

Some remarks on the Erdős Turán conjecture

Some remarks on the Erdős Turán conjecture ACTA ARITHMETICA LXIII.4 (1993) Some remarks on the Erdős Turán conjecture by Martin Helm (Mainz) Notation. In additive number theory an increasing sequence of natural numbers is called an asymptotic basis

More information

Section 7.5: Cardinality

Section 7.5: Cardinality Section 7: Cardinality In this section, we shall consider extend some of the ideas we have developed to infinite sets One interesting consequence of this discussion is that we shall see there are as many

More information

Isoperimetric Sets of Integers

Isoperimetric Sets of Integers Isoperimetric Sets of Integers Steven J. Miller (Steven.J.Miller@williams.edu) Frank Morgan (Frank.Morgan@williams.edu) Edward Newkirk (Edward.S.Newkirk@williams.edu) Lori Pedersen (lap811@aol.com) Deividas

More information

arxiv:math/ v1 [math.nt] 9 Mar 2005

arxiv:math/ v1 [math.nt] 9 Mar 2005 QUADRATIC ADDITION RULES FOR QUANTUM INTEGERS arxiv:math/0503177v1 [math.nt] 9 Mar 2005 ALEX V. KONTOROVICH AND MELVYN B. NATHANSON Abstract. For every positive integer n, the quantum integer [n] q is

More information

On the possible quantities of Fibonacci numbers that occur in some type of intervals

On the possible quantities of Fibonacci numbers that occur in some type of intervals On the possible quantities of Fibonacci numbers that occur in some type of intervals arxiv:1508.02625v1 [math.nt] 11 Aug 2015 Bakir FARHI Laboratoire de Mathématiques appliquées Faculté des Sciences Exactes

More information

Powers of 2 with five distinct summands

Powers of 2 with five distinct summands ACTA ARITHMETICA * (200*) Powers of 2 with five distinct summands by Vsevolod F. Lev (Haifa) 0. Summary. We show that every sufficiently large, finite set of positive integers of density larger than 1/3

More information

AVOIDING ZERO-SUM SUBSEQUENCES OF PRESCRIBED LENGTH OVER THE INTEGERS

AVOIDING ZERO-SUM SUBSEQUENCES OF PRESCRIBED LENGTH OVER THE INTEGERS AVOIDING ZERO-SUM SUBSEQUENCES OF PRESCRIBED LENGTH OVER THE INTEGERS C. AUGSPURGER, M. MINTER, K. SHOUKRY, P. SISSOKHO, AND K. VOSS MATHEMATICS DEPARTMENT, ILLINOIS STATE UNIVERSITY NORMAL, IL 61790 4520,

More information

Limits at Infinity. Horizontal Asymptotes. Definition (Limits at Infinity) Horizontal Asymptotes

Limits at Infinity. Horizontal Asymptotes. Definition (Limits at Infinity) Horizontal Asymptotes Limits at Infinity If a function f has a domain that is unbounded, that is, one of the endpoints of its domain is ±, we can determine the long term behavior of the function using a it at infinity. Definition

More information

An upper bound for B 2 [g] sets

An upper bound for B 2 [g] sets Journal of Number Theory 1 (007) 11 0 www.elsevier.com/locate/jnt An upper bound for B [g] sets Gang Yu Department of Mathematics, LeConte College, 153 Greene street, University of South Carolina, Columbia,

More information

Another Proof of Nathanson s Theorems

Another Proof of Nathanson s Theorems 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 14 (2011), Article 11.8.4 Another Proof of Nathanson s Theorems Quan-Hui Yang School of Mathematical Sciences Nanjing Normal University Nanjing 210046

More information

Infinite Limits. By Tuesday J. Johnson

Infinite Limits. By Tuesday J. Johnson Infinite Limits By Tuesday J. Johnson Suggested Review Topics Algebra skills reviews suggested: Evaluating functions Graphing functions Working with inequalities Working with absolute values Trigonometric

More information

arxiv:math/ v3 [math.co] 15 Oct 2006

arxiv:math/ v3 [math.co] 15 Oct 2006 arxiv:math/060946v3 [math.co] 15 Oct 006 and SUM-PRODUCT ESTIMATES IN FINITE FIELDS VIA KLOOSTERMAN SUMS DERRICK HART, ALEX IOSEVICH, AND JOZSEF SOLYMOSI Abstract. We establish improved sum-product bounds

More information

A talk given at the University of California at Irvine on Jan. 19, 2006.

A talk given at the University of California at Irvine on Jan. 19, 2006. A talk given at the University of California at Irvine on Jan. 19, 2006. A SURVEY OF ZERO-SUM PROBLEMS ON ABELIAN GROUPS Zhi-Wei Sun Department of Mathematics Nanjing University Nanjing 210093 People s

More information

A Collection of MTA ELTE GAC manuscripts

A Collection of MTA ELTE GAC manuscripts A Collection of MTA ELTE GAC manuscripts Katalin Gyarmati, András Sárközy On reducible and primitive subsets of F p, I 014 MTA ELTE Geometric and Algebraic Combinatorics Research Group Hungarian Academy

More information

Partitions of the set of nonnegative integers with the same representation functions

Partitions of the set of nonnegative integers with the same representation functions Partitions of the set of nonnegative integers with the same representation functions Sándor Z. Kiss, Csaba Sándor arxiv:1606.0699v [math.nt] 10 Aug 016 Abstract For a set of nonnegative integers S let

More information

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers.

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers. MATH 4 Summer 011 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

Three hours THE UNIVERSITY OF MANCHESTER. 24th January

Three hours THE UNIVERSITY OF MANCHESTER. 24th January Three hours MATH41011 THE UNIVERSITY OF MANCHESTER FOURIER ANALYSIS AND LEBESGUE INTEGRATION 24th January 2013 9.45 12.45 Answer ALL SIX questions in Section A (25 marks in total). Answer THREE of the

More information

ON THE SUBGROUPS OF TORSION-FREE GROUPS WHICH ARE SUBRINGS IN EVERY RING

ON THE SUBGROUPS OF TORSION-FREE GROUPS WHICH ARE SUBRINGS IN EVERY RING italian journal of pure and applied mathematics n. 31 2013 (63 76) 63 ON THE SUBGROUPS OF TORSION-FREE GROUPS WHICH ARE SUBRINGS IN EVERY RING A.M. Aghdam Department Of Mathematics University of Tabriz

More information

Some zero-sum constants with weights

Some zero-sum constants with weights Proc. Indian Acad. Sci. (Math. Sci.) Vol. 118, No. 2, May 2008, pp. 183 188. Printed in India Some zero-sum constants with weights S D ADHIKARI 1, R BALASUBRAMANIAN 2, F PAPPALARDI 3 andprath 2 1 Harish-Chandra

More information

Covering Subsets of the Integers and a Result on Digits of Fibonacci Numbers

Covering Subsets of the Integers and a Result on Digits of Fibonacci Numbers University of South Carolina Scholar Commons Theses and Dissertations 2017 Covering Subsets of the Integers and a Result on Digits of Fibonacci Numbers Wilson Andrew Harvey University of South Carolina

More information

LEBESGUE INTEGRATION. Introduction

LEBESGUE INTEGRATION. Introduction LEBESGUE INTEGATION EYE SJAMAA Supplementary notes Math 414, Spring 25 Introduction The following heuristic argument is at the basis of the denition of the Lebesgue integral. This argument will be imprecise,

More information

Similar to sequence, note that a series converges if and only if its tail converges, that is, r 1 r ( 1 < r < 1), ( 1) k k. r k =

Similar to sequence, note that a series converges if and only if its tail converges, that is, r 1 r ( 1 < r < 1), ( 1) k k. r k = Infinite Series We say an infinite series a k converges to s if its sequence of initial sums converges to s, that is, lim( n a k : n N) = s. Similar to sequence, note that a series converges if and only

More information

Jónsson posets and unary Jónsson algebras

Jónsson posets and unary Jónsson algebras Jónsson posets and unary Jónsson algebras Keith A. Kearnes and Greg Oman Abstract. We show that if P is an infinite poset whose proper order ideals have cardinality strictly less than P, and κ is a cardinal

More information

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction Math 4 Summer 01 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

arxiv: v2 [math.nt] 4 Nov 2012

arxiv: v2 [math.nt] 4 Nov 2012 INVERSE ERDŐS-FUCHS THEOREM FOR k-fold SUMSETS arxiv:12093233v2 [mathnt] 4 Nov 2012 LI-XIA DAI AND HAO PAN Abstract We generalize a result of Ruzsa on the inverse Erdős-Fuchs theorem for k-fold sumsets

More information

Behrend s Theorem for Sequences Containing No k-element Arithmetic Progression of a Certain Type

Behrend s Theorem for Sequences Containing No k-element Arithmetic Progression of a Certain Type Behrend s Theorem for Sequences Containing No k-element Arithmetic Progression of a Certain Type T. C. Brown Citation data: T.C. Brown, Behrend s theorem for sequences containing no k-element arithmetic

More information

On Sidon sequences of even orders

On Sidon sequences of even orders ACTA ARITHMETICA LXIV.4 (1993 On Sidon sequences of even orders by Sheng Chen (San Marcos, TX Let h 2 be an integer. A set A of positive integers is called a B h - sequence if all sums a 1 +... + a h,

More information

arxiv: v2 [math.nt] 2 Aug 2017

arxiv: v2 [math.nt] 2 Aug 2017 TRAPEZOIDAL NUMBERS, DIVISOR FUNCTIONS, AND A PARTITION THEOREM OF SYLVESTER arxiv:1601.07058v [math.nt] Aug 017 MELVYN B. NATHANSON To Krishnaswami Alladi on his 60th birthday Abstract. A partition of

More information

On some inequalities between prime numbers

On some inequalities between prime numbers On some inequalities between prime numbers Martin Maulhardt July 204 ABSTRACT. In 948 Erdős and Turán proved that in the set of prime numbers the inequality p n+2 p n+ < p n+ p n is satisfied infinitely

More information

Existence and uniqueness: Picard s theorem

Existence and uniqueness: Picard s theorem Existence and uniqueness: Picard s theorem First-order equations Consider the equation y = f(x, y) (not necessarily linear). The equation dictates a value of y at each point (x, y), so one would expect

More information

Optimal primitive sets with restricted primes

Optimal primitive sets with restricted primes Optimal primitive sets with restricted primes arxiv:30.0948v [math.nt] 5 Jan 203 William D. Banks Department of Mathematics University of Missouri Columbia, MO 652 USA bankswd@missouri.edu Greg Martin

More information

SUBSPACE LATTICES OF FINITE VECTOR SPACES ARE 5-GENERATED

SUBSPACE LATTICES OF FINITE VECTOR SPACES ARE 5-GENERATED SUBSPACE LATTICES OF FINITE VECTOR SPACES ARE 5-GENERATED LÁSZLÓ ZÁDORI To the memory of András Huhn Abstract. Let n 3. From the description of subdirectly irreducible complemented Arguesian lattices with

More information

Acta Mathematica et Informatica Universitatis Ostraviensis

Acta Mathematica et Informatica Universitatis Ostraviensis Acta Mathematica et Informatica Universitatis Ostraviensis Ladislav Mišík Big set of measure zero Acta Mathematica et Informatica Universitatis Ostraviensis, Vol. 9 (2001), No. 1, 53--57 Persistent URL:

More information

Upper Bounds for Partitions into k-th Powers Elementary Methods

Upper Bounds for Partitions into k-th Powers Elementary Methods Int. J. Contemp. Math. Sciences, Vol. 4, 2009, no. 9, 433-438 Upper Bounds for Partitions into -th Powers Elementary Methods Rafael Jaimczu División Matemática, Universidad Nacional de Luján Buenos Aires,

More information

C.7. Numerical series. Pag. 147 Proof of the converging criteria for series. Theorem 5.29 (Comparison test) Let a k and b k be positive-term series

C.7. Numerical series. Pag. 147 Proof of the converging criteria for series. Theorem 5.29 (Comparison test) Let a k and b k be positive-term series C.7 Numerical series Pag. 147 Proof of the converging criteria for series Theorem 5.29 (Comparison test) Let and be positive-term series such that 0, for any k 0. i) If the series converges, then also

More information

An Erdős-Stone Type Conjecture for Graphic Sequences

An Erdős-Stone Type Conjecture for Graphic Sequences An Erdős-Stone Type Conjecture for Graphic Sequences John R. Schmitt 1,2 Department of Mathematics Middlebury College Middlebury, VT 05753, USA Michael Ferrara 3 Department of Mathematical Sciences University

More information

Functions and cardinality (solutions) sections A and F TA: Clive Newstead 6 th May 2014

Functions and cardinality (solutions) sections A and F TA: Clive Newstead 6 th May 2014 Functions and cardinality (solutions) 21-127 sections A and F TA: Clive Newstead 6 th May 2014 What follows is a somewhat hastily written collection of solutions for my review sheet. I have omitted some

More information

Nonnegative k-sums, fractional covers, and probability of small deviations

Nonnegative k-sums, fractional covers, and probability of small deviations Nonnegative k-sums, fractional covers, and probability of small deviations Noga Alon Hao Huang Benny Sudakov Abstract More than twenty years ago, Manickam, Miklós, and Singhi conjectured that for any integers

More information

Mathematical Structures Combinations and Permutations

Mathematical Structures Combinations and Permutations Definitions: Suppose S is a (finite) set and n, k 0 are integers The set C(S, k) of k - combinations consists of all subsets of S that have exactly k elements The set P (S, k) of k - permutations consists

More information

Stat 451: Solutions to Assignment #1

Stat 451: Solutions to Assignment #1 Stat 451: Solutions to Assignment #1 2.1) By definition, 2 Ω is the set of all subsets of Ω. Therefore, to show that 2 Ω is a σ-algebra we must show that the conditions of the definition σ-algebra are

More information

Additive Latin Transversals

Additive Latin Transversals Additive Latin Transversals Noga Alon Abstract We prove that for every odd prime p, every k p and every two subsets A = {a 1,..., a k } and B = {b 1,..., b k } of cardinality k each of Z p, there is a

More information

EXPLICIT CONSTRUCTIONS OF LARGE FAMILIES OF GENERALIZED MORE SUMS THAN DIFFERENCES SETS

EXPLICIT CONSTRUCTIONS OF LARGE FAMILIES OF GENERALIZED MORE SUMS THAN DIFFERENCES SETS EXPLICIT CONSTRUCTIONS OF LARGE FAMILIES OF GENERALIZED MORE SUMS THAN DIFFERENCES SETS STEVEN J. MILLER, LUC ROBINSON AND SEAN PEGADO ABSTRACT. A More Sums Than Differences (MSTD) set is a set of integers

More information

Bounded Infinite Sequences/Functions : Orders of Infinity

Bounded Infinite Sequences/Functions : Orders of Infinity Bounded Infinite Sequences/Functions : Orders of Infinity by Garimella Ramamurthy Report No: IIIT/TR/2009/247 Centre for Security, Theory and Algorithms International Institute of Information Technology

More information

Chapter 1. Sets and Mappings

Chapter 1. Sets and Mappings Chapter 1. Sets and Mappings 1. Sets A set is considered to be a collection of objects (elements). If A is a set and x is an element of the set A, we say x is a member of A or x belongs to A, and we write

More information

Universal convex coverings

Universal convex coverings Bull. London Math. Soc. 41 (2009) 987 992 C 2009 London Mathematical Society doi:10.1112/blms/bdp076 Universal convex coverings Roland Bacher Abstract In every dimension d 1, we establish the existence

More information

The Determination of 2-color Zero-sum Generalized Schur Numbers

The Determination of 2-color Zero-sum Generalized Schur Numbers The Determination of 2-color Zero-sum Generalized Schur Numbers Aaron Robertson a, Bidisha Roy b, Subha Sarkar b a Department of Mathematics, Colgate University, Hamilton, New York b Harish-Chandra Research

More information

S15 MA 274: Exam 3 Study Questions

S15 MA 274: Exam 3 Study Questions S15 MA 274: Exam 3 Study Questions You can find solutions to some of these problems on the next page. These questions only pertain to material covered since Exam 2. The final exam is cumulative, so you

More information

J. Combin. Theory Ser. A 116(2009), no. 8, A NEW EXTENSION OF THE ERDŐS-HEILBRONN CONJECTURE

J. Combin. Theory Ser. A 116(2009), no. 8, A NEW EXTENSION OF THE ERDŐS-HEILBRONN CONJECTURE J. Combin. Theory Ser. A 116(2009), no. 8, 1374 1381. A NEW EXTENSION OF THE ERDŐS-HEILBRONN CONJECTURE Hao Pan and Zhi-Wei Sun Department of Mathematics, Naning University Naning 210093, People s Republic

More information

COMPLETELY INVARIANT JULIA SETS OF POLYNOMIAL SEMIGROUPS

COMPLETELY INVARIANT JULIA SETS OF POLYNOMIAL SEMIGROUPS Series Logo Volume 00, Number 00, Xxxx 19xx COMPLETELY INVARIANT JULIA SETS OF POLYNOMIAL SEMIGROUPS RICH STANKEWITZ Abstract. Let G be a semigroup of rational functions of degree at least two, under composition

More information

Subset sums modulo a prime

Subset sums modulo a prime ACTA ARITHMETICA 131.4 (2008) Subset sums modulo a prime by Hoi H. Nguyen, Endre Szemerédi and Van H. Vu (Piscataway, NJ) 1. Introduction. Let G be an additive group and A be a subset of G. We denote by

More information

Section 11.1 Sequences

Section 11.1 Sequences Math 152 c Lynch 1 of 8 Section 11.1 Sequences A sequence is a list of numbers written in a definite order: a 1, a 2, a 3,..., a n,... Notation. The sequence {a 1, a 2, a 3,...} can also be written {a

More information

ON THE NUMBER OF SUBSEQUENCES WITH GIVEN SUM OF SEQUENCES IN FINITE ABELIAN p-groups

ON THE NUMBER OF SUBSEQUENCES WITH GIVEN SUM OF SEQUENCES IN FINITE ABELIAN p-groups ON THE NUMBER OF SUBSEQUENCES WITH GIVEN SUM OF SEQUENCES IN FINITE ABELIAN p-groups WEIDONG GAO AND ALFRED GEROLDINGER Abstract. Let G be an additive finite abelian p-group. For a given (long) sequence

More information

How many units can a commutative ring have?

How many units can a commutative ring have? How many units can a commutative ring have? Sunil K. Chebolu and Keir Locridge Abstract. László Fuchs posed the following problem in 960, which remains open: classify the abelian groups occurring as the

More information

METRIC HEIGHTS ON AN ABELIAN GROUP

METRIC HEIGHTS ON AN ABELIAN GROUP ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 44, Number 6, 2014 METRIC HEIGHTS ON AN ABELIAN GROUP CHARLES L. SAMUELS ABSTRACT. Suppose mα) denotes the Mahler measure of the non-zero algebraic number α.

More information

Discrete dynamics on the real line

Discrete dynamics on the real line Chapter 2 Discrete dynamics on the real line We consider the discrete time dynamical system x n+1 = f(x n ) for a continuous map f : R R. Definitions The forward orbit of x 0 is: O + (x 0 ) = {x 0, f(x

More information

The Degree of the Splitting Field of a Random Polynomial over a Finite Field

The Degree of the Splitting Field of a Random Polynomial over a Finite Field The Degree of the Splitting Field of a Random Polynomial over a Finite Field John D. Dixon and Daniel Panario School of Mathematics and Statistics Carleton University, Ottawa, Canada {jdixon,daniel}@math.carleton.ca

More information

Date: October 24, 2008, Friday Time: 10:40-12:30. Math 123 Abstract Mathematics I Midterm Exam I Solutions TOTAL

Date: October 24, 2008, Friday Time: 10:40-12:30. Math 123 Abstract Mathematics I Midterm Exam I Solutions TOTAL Date: October 24, 2008, Friday Time: 10:40-12:30 Ali Sinan Sertöz Math 123 Abstract Mathematics I Midterm Exam I Solutions 1 2 3 4 5 TOTAL 20 20 20 20 20 100 Please do not write anything inside the above

More information

#A69 INTEGERS 13 (2013) OPTIMAL PRIMITIVE SETS WITH RESTRICTED PRIMES

#A69 INTEGERS 13 (2013) OPTIMAL PRIMITIVE SETS WITH RESTRICTED PRIMES #A69 INTEGERS 3 (203) OPTIMAL PRIMITIVE SETS WITH RESTRICTED PRIMES William D. Banks Department of Mathematics, University of Missouri, Columbia, Missouri bankswd@missouri.edu Greg Martin Department of

More information

A proof of strong Goldbach conjecture and twin prime conjecture

A proof of strong Goldbach conjecture and twin prime conjecture A proof of strong Goldbach conjecture and twin prime conjecture Pingyuan Zhou E-mail:zhoupingyuan49@hotmail.com Abstract In this paper we give a proof of the strong Goldbach conjecture by studying limit

More information

Catalan numbers and power laws in cellular automaton rule 14

Catalan numbers and power laws in cellular automaton rule 14 November 7, 2007 arxiv:0711.1338v1 [nlin.cg] 8 Nov 2007 Catalan numbers and power laws in cellular automaton rule 14 Henryk Fukś and Jeff Haroutunian Department of Mathematics Brock University St. Catharines,

More information

arxiv: v1 [math.nt] 8 Jan 2014

arxiv: v1 [math.nt] 8 Jan 2014 A NOTE ON p-adic VALUATIONS OF THE SCHENKER SUMS PIOTR MISKA arxiv:1401.1717v1 [math.nt] 8 Jan 2014 Abstract. A prime number p is called a Schenker prime if there exists such n N + that p nandp a n, wherea

More information

Math 105A HW 1 Solutions

Math 105A HW 1 Solutions Sect. 1.1.3: # 2, 3 (Page 7-8 Math 105A HW 1 Solutions 2(a ( Statement: Each positive integers has a unique prime factorization. n N: n = 1 or ( R N, p 1,..., p R P such that n = p 1 p R and ( n, R, S

More information

A proof of a partition conjecture of Bateman and Erdős

A proof of a partition conjecture of Bateman and Erdős proof of a partition conjecture of Bateman and Erdős Jason P. Bell Department of Mathematics University of California, San Diego La Jolla C, 92093-0112. US jbell@math.ucsd.edu 1 Proposed Running Head:

More information

Problems and Results in Additive Combinatorics

Problems and Results in Additive Combinatorics Problems and Results in Additive Combinatorics Zhi-Wei Sun Nanjing University Nanjing 210093, P. R. China zwsun@nju.edu.cn http://math.nju.edu.cn/ zwsun August 2, 2010 While in the past many of the basic

More information

103 Some problems and results in elementary number theory. By P. ERDÖS in Aberdeen (Scotland). Throughout this paper c, c,... denote absolute constant

103 Some problems and results in elementary number theory. By P. ERDÖS in Aberdeen (Scotland). Throughout this paper c, c,... denote absolute constant 103 Some problems and results in elementary number theory. By P. ERDÖS in Aberdeen (Scotland). Throughout this paper c, c,... denote absolute constants, p p,,... are primes, P, P,,... is the sequence of

More information

Axioms for Set Theory

Axioms for Set Theory Axioms for Set Theory The following is a subset of the Zermelo-Fraenkel axioms for set theory. In this setting, all objects are sets which are denoted by letters, e.g. x, y, X, Y. Equality is logical identity:

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter 1 The Real Numbers 1.1. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {1, 2, 3, }. In N we can do addition, but in order to do subtraction we need

More information

Combinatorial Number Theory in China

Combinatorial Number Theory in China Combinatorial Number Theory in China Zhi-Wei Sun Nanjing University Nanjing 210093, P. R. China zwsun@nju.edu.cn http://math.nju.edu.cn/ zwsun Nov. 6, 2009 While in the past many of the basic combinatorial

More information

Spring 2014 Advanced Probability Overview. Lecture Notes Set 1: Course Overview, σ-fields, and Measures

Spring 2014 Advanced Probability Overview. Lecture Notes Set 1: Course Overview, σ-fields, and Measures 36-752 Spring 2014 Advanced Probability Overview Lecture Notes Set 1: Course Overview, σ-fields, and Measures Instructor: Jing Lei Associated reading: Sec 1.1-1.4 of Ash and Doléans-Dade; Sec 1.1 and A.1

More information

Asymptotics for minimal overlapping patterns for generalized Euler permutations, standard tableaux of rectangular shapes, and column strict arrays

Asymptotics for minimal overlapping patterns for generalized Euler permutations, standard tableaux of rectangular shapes, and column strict arrays Discrete Mathematics and Theoretical Computer Science DMTCS vol. 8:, 06, #6 arxiv:50.0890v4 [math.co] 6 May 06 Asymptotics for minimal overlapping patterns for generalized Euler permutations, standard

More information

Two generator 4-Engel groups

Two generator 4-Engel groups Two generator 4-Engel groups Gunnar Traustason Centre for Mathematical Sciences Lund University Box 118, SE-221 00 Lund Sweden email: gt@maths.lth.se Using known results on 4-Engel groups one can see that

More information

Let us first solve the midterm problem 4 before we bring up the related issues.

Let us first solve the midterm problem 4 before we bring up the related issues. Math 310 Class Notes 6: Countability Let us first solve the midterm problem 4 before we bring up the related issues. Theorem 1. Let I n := {k N : k n}. Let f : I n N be a one-toone function and let Im(f)

More information

On Systems of Diagonal Forms II

On Systems of Diagonal Forms II On Systems of Diagonal Forms II Michael P Knapp 1 Introduction In a recent paper [8], we considered the system F of homogeneous additive forms F 1 (x) = a 11 x k 1 1 + + a 1s x k 1 s F R (x) = a R1 x k

More information

MATH 3300 Test 1. Name: Student Id:

MATH 3300 Test 1. Name: Student Id: Name: Student Id: There are nine problems (check that you have 9 pages). Solutions are expected to be short. In the case of proofs, one or two short paragraphs should be the average length. Write your

More information

PRACTICE PROBLEMS: SET 1

PRACTICE PROBLEMS: SET 1 PRACTICE PROBLEMS: SET MATH 437/537: PROF. DRAGOS GHIOCA. Problems Problem. Let a, b N. Show that if gcd(a, b) = lcm[a, b], then a = b. Problem. Let n, k N with n. Prove that (n ) (n k ) if and only if

More information

arxiv: v3 [math.co] 23 Jun 2008

arxiv: v3 [math.co] 23 Jun 2008 BOUNDING MULTIPLICATIVE ENERGY BY THE SUMSET arxiv:0806.1040v3 [math.co] 23 Jun 2008 Abstract. We prove that the sumset or the productset of any finite set of real numbers, A, is at least A 4/3 ε, improving

More information

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS 1. Cardinal number of a set The cardinal number (or simply cardinal) of a set is a generalization of the concept of the number of elements

More information

MULTIPLE HARMONIC SUMS AND MULTIPLE HARMONIC STAR SUMS ARE (NEARLY) NEVER INTEGERS

MULTIPLE HARMONIC SUMS AND MULTIPLE HARMONIC STAR SUMS ARE (NEARLY) NEVER INTEGERS #A0 INTEGERS 7 (207) MULTIPLE HARMONIC SUMS AND MULTIPLE HARMONIC STAR SUMS ARE (NEARLY) NEVER INTEGERS Khodabakhsh Hessami Pilehrood The Fields Institute for Research in Mathematical Sciences, Toronto,

More information

SUM-PRODUCT ESTIMATES IN FINITE FIELDS VIA KLOOSTERMAN SUMS

SUM-PRODUCT ESTIMATES IN FINITE FIELDS VIA KLOOSTERMAN SUMS SUM-PRODUCT ESTIMATES IN FINITE FIELDS VIA KLOOSTERMAN SUMS DERRICK HART, ALEX IOSEVICH, AND JOZSEF SOLYMOSI Abstract. We establish improved sum-product bounds in finite fields using incidence theorems

More information