Name: Mathematics 1C03

Size: px
Start display at page:

Download "Name: Mathematics 1C03"

Transcription

1 Name: Student ID Number: Mathematics 1C03 Day Class Instructor: M. Harada Duration: 2.5 hours April 2018 McMaster University PRACTICE Final Examination This is a PRACTICE final exam. The actual final exam will look almost exactly like this one. In particular, the number of problems on this practice exam is the same as what will be on the real exam. THIS EXAM IS PRINTED DOUBLE-SIDED AND INCLUDES 20 PAGES AND 12 QUESTIONS. YOU ARE RESPONSIBLE FOR ENSURING THAT YOUR COPY OF THE PAPER IS COMPLETE. BRING ANY DISCREPANCIES TO THE ATTENTION OF THE INVIGILATOR. Instructions: You are not permitted to use books, notes, or other course aids, including calculators. The test contains 12 questions. YOU ARE TO CHOOSE 10 OUT OF THE 12 QUESTIONS. The exam is out of 100 marks total. Pages 15 to 18 are blank for additional rough work. For full credit you must show all your work and justify your statements. You are to select 10 out of 12 of the problems. You MUST CROSS OUT, with a clear X, the boxes for the questions which you do NOT wish to have marked, in the chart below. Problem Marks Problem Marks TOTAL Page 1 of 18 continued...

2 Page 2 of 18 continued... Problem 1. [10 marks total] True or False. Decide whether the statement is True or False and give a one-sentence justification of your answer. There is some space for scratch work, but write your answer in the space provided. a. (2 marks) For integers a and b, if 2 a and 2 b, then 4 ab. (Circle one) True False Justification: b. (2 marks) For an equivalence relation R on a set S, if two equivalence classes [a] and [b] satisfy [a] [b], then [a] = [b]. (Circle one) True False Justification: c. (2 marks) The statement P Q is logically equivalent to (P = Q) AND NOT Q. (Circle one) True False Justification: d. (2 marks) If S is the set {1, 2, 3}, then {2, 3} S. (Circle one) True False Justification: e. (2 marks) If S is the set {1, 2, 3}, then {1} S. (Circle one) True False Justification: Page 2 of 18 continued...

3 Page 3 of 18 continued... Problem 2. [10 marks total] a. (1 mark) Fill in the blank. A Diophantine equation ax + by = c has a solution iff c. b. (1 mark) Fill in the blank. An integer x is invertible modulo m iff x and m are. c. (1 mark) Fill in the blank. The of P = Q is Q = P. d. (1 mark) Fill in the blank. A function f : X Y is if distinct elements x 1 and x 2 of X must be mapped to distinct elements f(x 1 ) and f(x 2 ) of Y. e. (2 marks) Let Z 5 be the set of integers modulo 5. Using mathematical notation, give a precise description of the congruence class of 3 in Z 5 as a subset of Z. f. (2 marks) Let m > 0 be a positive integer and a, x, y be integers. Under what circumstances does ax ay modulo m imply that x y modulo m? g. (2 marks) What is the difference between the principle of mathematical induction (POMI) and the principle of strong induction (POSI)? (You do not have to give the full statment of POMI and POSI. Just say what the difference is.) Page 3 of 18 continued...

4 Page 4 of 18 continued... Problem 3. [10 marks total] a. (5 marks) Use the Euclidean algorithm to find gcd (43, 17). Show your work. Page 4 of 18 continued...

5 Page 5 of 18 continued... Problem 3, cont d. b. (5 marks) Find all solutions to the Diophantine equation: 43x+17y = gcd(43, 17). Show your work and justify your answer. Page 5 of 18 continued...

6 Page 6 of 18 continued... Problem 4. [10 marks total] a. (5 marks) Find all solutions to the simultaneous linear congruences: x 6 mod 7 and x 9 mod 12. Show your work. b. (5 marks) Give an example of a relation on the set X = {1, 2, 3} which is reflexive and transitive, but not symmetric. Justify your answer. Page 6 of 18 continued...

7 Page 7 of 18 continued... Problem 5. [10 marks total] a. (5 marks) Write the contrapositive and the negation of the following statement: If x Z such that x 2 = y then y is a positive integer. b. (5 marks) Give an example of two infinite sets X and Y of the same cardinality and a function f : X Y which is not a bijection. Page 7 of 18 continued...

8 Page 8 of 18 continued... Problem 6. [10 marks] Let a, b, c 1, c 2 Z. Suppose that the Diophantine equations ax + by = c 1 and ax + by = c 2 have integer solutions (x 1, y 1 ) and (x 2, y 2 ) respectively. Prove that ax + by = kc 1 + lc 2 also has an integer solution (x, y) for all k, l Z. Page 8 of 18 continued...

9 Page 9 of 18 continued... Problem 7. [10 marks] Does x 3 a modulo p always have a solution for every value of a and any prime p? Fully justify your answer. Page 9 of 18 continued...

10 Page 10 of 18 continued... Problem 8. [10 marks] Let f 1, f 2, f 3,..., be the Fibonacci sequence, which is the sequence of integers defined (inductively!) by: f 1 = 1, f 2 = 1, and for integers n with n 3, we define f n = f n 1 + f n 2. Prove, by using the principle of mathematical induction, that gcd(f n, f n 1 ) = 1, n Z, n 2. Page 10 of 18 continued...

11 Page 11 of 18 continued... Problem 9. [10 marks] Suppose that X and Y are sets and f : X Y is injective. Prove: for any set T and any functions g : T X and h : T X, f g = f h implies that g = h. Page 11 of 18 continued...

12 Page 12 of 18 continued... Problem 10. [10 marks] For any set X, let P(X) denote the set of all subsets (including and X) of the set X. If # X = n, a finite number, find a formula for # P(X). Prove your answer. (Hint: try some examples with sets of small size in order to make an educated guess for what the formula should be. Then see if you can prove your guess.) Page 12 of 18 continued...

13 Page 13 of 18 continued... Problem 11. [10 marks] If φ(m) is the Euler φ-function, prove that φ(m) = φ(2m) if and only if m is odd. Page 13 of 18 continued...

14 Page 14 of 18 continued... Problem 12. [10 marks] Let p and q be distinct odd primes and let n = pq. Let r be the least common multiple of p 1 and q 1, i.e., the smallest positive integer which is a multiple of both p 1 and q 1. Let e be an encryption exponent for the RSA cryptosystem based on n. This means that encryption is given by m m e mod n. Show that any d with de 1 mod r can be used as a decryption exponent. (Hint 1: use the Chinese Remainder Theorem. Hint 2: this problem is harder than the others. Generous partial marks will be awarded, so even if you do not have a complete solution, you should write down your thoughts.) END OF PRACTICE EXAM QUESTIONS Page 14 of 18 continued...

15 Extra page for rough work. Page 15 of 18 continued... DO NOT DETACH! Page 15 of 18 continued...

16 Extra page for rough work. Page 16 of 18 continued... DO NOT DETACH! Page 16 of 18 continued...

17 Extra page for rough work. Page 17 of 18 continued... DO NOT DETACH! Page 17 of 18 continued...

18 Page 18 of 18 Extra page for rough work. DO NOT DETACH! THE END Page 18 of 18

8. Given a rational number r, prove that there exist coprime integers p and q, with q 0, so that r = p q. . For all n N, f n = an b n 2

8. Given a rational number r, prove that there exist coprime integers p and q, with q 0, so that r = p q. . For all n N, f n = an b n 2 MATH 135: Randomized Exam Practice Problems These are the warm-up exercises and recommended problems taken from all the extra practice sets presented in random order. The challenge problems have not been

More information

Solutions to Practice Final 3

Solutions to Practice Final 3 s to Practice Final 1. The Fibonacci sequence is the sequence of numbers F (1), F (2),... defined by the following recurrence relations: F (1) = 1, F (2) = 1, F (n) = F (n 1) + F (n 2) for all n > 2. For

More information

CS 514, Mathematics for Computer Science Mid-semester Exam, Autumn 2017 Department of Computer Science and Engineering IIT Guwahati

CS 514, Mathematics for Computer Science Mid-semester Exam, Autumn 2017 Department of Computer Science and Engineering IIT Guwahati CS 514, Mathematics for Computer Science Mid-semester Exam, Autumn 2017 Department of Computer Science and Engineering IIT Guwahati Important 1. No questions about the paper will be entertained during

More information

CHAPTER 3. Congruences. Congruence: definitions and properties

CHAPTER 3. Congruences. Congruence: definitions and properties CHAPTER 3 Congruences Part V of PJE Congruence: definitions and properties Definition. (PJE definition 19.1.1) Let m > 0 be an integer. Integers a and b are congruent modulo m if m divides a b. We write

More information

Discrete Mathematics and Probability Theory Summer 2014 James Cook Midterm 1

Discrete Mathematics and Probability Theory Summer 2014 James Cook Midterm 1 CS 70 Discrete Mathematics and Probability Theory Summer 2014 James Cook Midterm 1 Thursday July 17, 2014, 12:40pm-2:00pm. Instructions: Do not turn over this page until the proctor tells you to. Don t

More information

University of Regina Department of Mathematics & Statistics Final Examination (April 21, 2009)

University of Regina Department of Mathematics & Statistics Final Examination (April 21, 2009) Make sure that this examination has 10 numbered pages University of Regina Department of Mathematics & Statistics Final Examination 200910 (April 21, 2009) Mathematics 124 The Art and Science of Secret

More information

Number Theory Math 420 Silverman Exam #1 February 27, 2018

Number Theory Math 420 Silverman Exam #1 February 27, 2018 Name: Number Theory Math 420 Silverman Exam #1 February 27, 2018 INSTRUCTIONS Read Carefully Time: 50 minutes There are 5 problems. Write your name neatly at the top of this page. Write your final answer

More information

Math 109 September 1, 2016

Math 109 September 1, 2016 Math 109 September 1, 2016 Question 1 Given that the proposition P Q is true. Which of the following must also be true? A. (not P ) or Q. B. (not Q) implies (not P ). C. Q implies P. D. A and B E. A, B,

More information

Fall 2014 CMSC250/250H Midterm II

Fall 2014 CMSC250/250H Midterm II Fall 2014 CMSC250/250H Midterm II Circle Your Section! 0101 (10am: 3120, Ladan) 0102 (11am: 3120, Ladan) 0103 (Noon: 3120, Peter) 0201 (2pm: 3120, Yi) 0202 (10am: 1121, Vikas) 0203 (11am: 1121, Vikas)

More information

1. Given the public RSA encryption key (e, n) = (5, 35), find the corresponding decryption key (d, n).

1. Given the public RSA encryption key (e, n) = (5, 35), find the corresponding decryption key (d, n). MATH 135: Randomized Exam Practice Problems These are the warm-up exercises and recommended problems taken from all the extra practice sets presented in random order. The challenge problems have not been

More information

University of Toronto Faculty of Arts and Science Solutions to Final Examination, April 2017 MAT246H1S - Concepts in Abstract Mathematics

University of Toronto Faculty of Arts and Science Solutions to Final Examination, April 2017 MAT246H1S - Concepts in Abstract Mathematics University of Toronto Faculty of Arts and Science Solutions to Final Examination, April 2017 MAT246H1S - Concepts in Abstract Mathematics Examiners: D. Burbulla, P. Glynn-Adey, S. Homayouni Time: 7-10

More information

Math 109 HW 9 Solutions

Math 109 HW 9 Solutions Math 109 HW 9 Solutions Problems IV 18. Solve the linear diophantine equation 6m + 10n + 15p = 1 Solution: Let y = 10n + 15p. Since (10, 15) is 5, we must have that y = 5x for some integer x, and (as we

More information

UNIVERSITY OF VICTORIA DECEMBER EXAMINATIONS MATH 122: Logic and Foundations

UNIVERSITY OF VICTORIA DECEMBER EXAMINATIONS MATH 122: Logic and Foundations UNIVERSITY OF VICTORIA DECEMBER EXAMINATIONS 2013 MATH 122: Logic and Foundations Instructor and section (check one): K. Mynhardt [A01] CRN 12132 G. MacGillivray [A02] CRN 12133 NAME: V00#: Duration: 3

More information

Candidates must show on each answer book the type of calculator used. Only calculators permitted under UEA Regulations may be used.

Candidates must show on each answer book the type of calculator used. Only calculators permitted under UEA Regulations may be used. UNIVERSITY OF EAST ANGLIA School of Mathematics May/June UG Examination 2010 2011 CRYPTOGRAPHY Time allowed: 2 hours Attempt THREE questions. Candidates must show on each answer book the type of calculator

More information

Math.3336: Discrete Mathematics. Mathematical Induction

Math.3336: Discrete Mathematics. Mathematical Induction Math.3336: Discrete Mathematics Mathematical Induction Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu Fall 2018

More information

Chapter 1 : The language of mathematics.

Chapter 1 : The language of mathematics. MAT 200, Logic, Language and Proof, Fall 2015 Summary Chapter 1 : The language of mathematics. Definition. A proposition is a sentence which is either true or false. Truth table for the connective or :

More information

Math 430 Exam 2, Fall 2008

Math 430 Exam 2, Fall 2008 Do not distribute. IIT Dept. Applied Mathematics, February 16, 2009 1 PRINT Last name: Signature: First name: Student ID: Math 430 Exam 2, Fall 2008 These theorems may be cited at any time during the test

More information

MATH 2200 Final Review

MATH 2200 Final Review MATH 00 Final Review Thomas Goller December 7, 01 1 Exam Format The final exam will consist of 8-10 proofs It will take place on Tuesday, December 11, from 10:30 AM - 1:30 PM, in the usual room Topics

More information

Discrete Mathematics and Probability Theory Summer 2015 Chung-Wei Lin Midterm 1

Discrete Mathematics and Probability Theory Summer 2015 Chung-Wei Lin Midterm 1 CS 70 Discrete Mathematics and Probability Theory Summer 2015 Chung-Wei Lin Midterm 1 PRINT Your Name:, last) first) SIGN Your Name: PRINT Your Student ID: CIRCLE your exam room: 2050 VLSB 10 EVANS OTHER

More information

Math 430 Exam 1, Fall 2006

Math 430 Exam 1, Fall 2006 c IIT Dept. Applied Mathematics, October 21, 2008 1 PRINT Last name: Signature: First name: Student ID: Math 430 Exam 1, Fall 2006 These theorems may be cited at any time during the test by stating By

More information

MATH 13 SAMPLE FINAL EXAM SOLUTIONS

MATH 13 SAMPLE FINAL EXAM SOLUTIONS MATH 13 SAMPLE FINAL EXAM SOLUTIONS WINTER 2014 Problem 1 (15 points). For each statement below, circle T or F according to whether the statement is true or false. You do NOT need to justify your answers.

More information

Discrete Mathematics for CS Fall 2003 Wagner MT2 Soln

Discrete Mathematics for CS Fall 2003 Wagner MT2 Soln CS 70 Discrete Mathematics for CS Fall 2003 Wagner MT2 Soln PRINT your name:, (last) SIGN your name: (first) PRINT your username on cory.eecs: WRITE your section number (101 or 102): This exam is open-book,

More information

Know the Well-ordering principle: Any set of positive integers which has at least one element contains a smallest element.

Know the Well-ordering principle: Any set of positive integers which has at least one element contains a smallest element. The first exam will be on Monday, June 8, 202. The syllabus will be sections. and.2 in Lax, and the number theory handout found on the class web site, plus the handout on the method of successive squaring

More information

Prob. 1 Prob. 2 Prob. 3 Total

Prob. 1 Prob. 2 Prob. 3 Total EECS 70 Discrete Mathematics and Probability Theory Spring 2013 Anant Sahai MT 1 Solution PRINT your student ID: PRINT AND SIGN your name:, (last) (first) (signature) PRINT your Unix account login: cs70-

More information

Course MA2C02, Hilary Term 2013 Section 9: Introduction to Number Theory and Cryptography

Course MA2C02, Hilary Term 2013 Section 9: Introduction to Number Theory and Cryptography Course MA2C02, Hilary Term 2013 Section 9: Introduction to Number Theory and Cryptography David R. Wilkins Copyright c David R. Wilkins 2000 2013 Contents 9 Introduction to Number Theory 63 9.1 Subgroups

More information

Homework #2 solutions Due: June 15, 2012

Homework #2 solutions Due: June 15, 2012 All of the following exercises are based on the material in the handout on integers found on the class website. 1. Find d = gcd(475, 385) and express it as a linear combination of 475 and 385. That is

More information

MATH 2200 Final LC Review

MATH 2200 Final LC Review MATH 2200 Final LC Review Thomas Goller April 25, 2013 1 Final LC Format The final learning celebration will consist of 12-15 claims to be proven or disproven. It will take place on Wednesday, May 1, from

More information

A Readable Introduction to Real Mathematics

A Readable Introduction to Real Mathematics Solutions to selected problems in the book A Readable Introduction to Real Mathematics D. Rosenthal, D. Rosenthal, P. Rosenthal Chapter 7: The Euclidean Algorithm and Applications 1. Find the greatest

More information

The security of RSA (part 1) The security of RSA (part 1)

The security of RSA (part 1) The security of RSA (part 1) The modulus n and its totient value φ(n) are known φ(n) = p q (p + q) + 1 = n (p + q) + 1 The modulus n and its totient value φ(n) are known φ(n) = p q (p + q) + 1 = n (p + q) + 1 i.e. q = (n φ(n) + 1)

More information

Lecture Notes on DISCRETE MATHEMATICS. Eusebius Doedel

Lecture Notes on DISCRETE MATHEMATICS. Eusebius Doedel Lecture Notes on DISCRETE MATHEMATICS Eusebius Doedel c Eusebius J. Doedel, 009 Contents Logic. Introduction............................................................................... Basic logical

More information

2k n. k=0. 3x 2 7 (mod 11) 5 4x 1 (mod 9) 2 r r +1 = r (2 r )

2k n. k=0. 3x 2 7 (mod 11) 5 4x 1 (mod 9) 2 r r +1 = r (2 r ) MATH 135: Randomized Exam Practice Problems These are the warm-up exercises and recommended problems take from the extra practice sets presented in random order. The challenge problems have not been included.

More information

Practice Midterm Exam Solutions

Practice Midterm Exam Solutions CSE 311: Foundations of Computing I Practice Midterm Exam Solutions Name: Sample Solutions ID: TA: Section: INSTRUCTIONS: You have 50 minutes to complete the exam. The exam is closed book. You may not

More information

MATH 145 Algebra, Solutions to Assignment 4

MATH 145 Algebra, Solutions to Assignment 4 MATH 145 Algebra, Solutions to Assignment 4 1: a) Find the inverse of 178 in Z 365. Solution: We find s and t so that 178s + 365t = 1, and then 178 1 = s. The Euclidean Algorithm gives 365 = 178 + 9 178

More information

Discrete Mathematics and Probability Theory Summer 2014 James Cook Midterm 1 (Version B)

Discrete Mathematics and Probability Theory Summer 2014 James Cook Midterm 1 (Version B) CS 70 Discrete Mathematics and Probability Theory Summer 2014 James Cook Midterm 1 (Version B) Instructions: Do not turn over this page until the proctor tells you to. Don t write any answers on the backs

More information

Name (print): Question 4. exercise 1.24 (compute the union, then the intersection of two sets)

Name (print): Question 4. exercise 1.24 (compute the union, then the intersection of two sets) MTH299 - Homework 1 Question 1. exercise 1.10 (compute the cardinality of a handful of finite sets) Solution. Write your answer here. Question 2. exercise 1.20 (compute the union of two sets) Question

More information

1 Take-home exam and final exam study guide

1 Take-home exam and final exam study guide Math 215 - Introduction to Advanced Mathematics Fall 2013 1 Take-home exam and final exam study guide 1.1 Problems The following are some problems, some of which will appear on the final exam. 1.1.1 Number

More information

Math 223, Spring 2009 Final Exam Solutions

Math 223, Spring 2009 Final Exam Solutions Math 223, Spring 2009 Final Exam Solutions Name: Student ID: Directions: Check that your test has 16 pages, including this one and the blank one on the bottom (which you can use as scratch paper or to

More information

Writing Assignment 2 Student Sample Questions

Writing Assignment 2 Student Sample Questions Writing Assignment 2 Student Sample Questions 1. Let P and Q be statements. Then the statement (P = Q) ( P Q) is a tautology. 2. The statement If the sun rises from the west, then I ll get out of the bed.

More information

MATH 215 Sets (S) Definition 1 A set is a collection of objects. The objects in a set X are called elements of X.

MATH 215 Sets (S) Definition 1 A set is a collection of objects. The objects in a set X are called elements of X. MATH 215 Sets (S) Definition 1 A set is a collection of objects. The objects in a set X are called elements of X. Notation 2 A set can be described using set-builder notation. That is, a set can be described

More information

Final Exam Review. 2. Let A = {, { }}. What is the cardinality of A? Is

Final Exam Review. 2. Let A = {, { }}. What is the cardinality of A? Is 1. Describe the elements of the set (Z Q) R N. Is this set countable or uncountable? Solution: The set is equal to {(x, y) x Z, y N} = Z N. Since the Cartesian product of two denumerable sets is denumerable,

More information

MTH 299 In Class and Recitation Problems SUMMER 2016

MTH 299 In Class and Recitation Problems SUMMER 2016 MTH 299 In Class and Recitation Problems SUMMER 2016 Last updated on: May 13, 2016 MTH299 - Examples CONTENTS Contents 1 Week 1 3 1.1 In Class Problems.......................................... 3 1.2 Recitation

More information

Number Theory Homework.

Number Theory Homework. Number Theory Homewor. 1. The Theorems of Fermat, Euler, and Wilson. 1.1. Fermat s Theorem. The following is a special case of a result we have seen earlier, but as it will come up several times in this

More information

Course 2BA1: Trinity 2006 Section 9: Introduction to Number Theory and Cryptography

Course 2BA1: Trinity 2006 Section 9: Introduction to Number Theory and Cryptography Course 2BA1: Trinity 2006 Section 9: Introduction to Number Theory and Cryptography David R. Wilkins Copyright c David R. Wilkins 2006 Contents 9 Introduction to Number Theory and Cryptography 1 9.1 Subgroups

More information

Sets. We discuss an informal (naive) set theory as needed in Computer Science. It was introduced by G. Cantor in the second half of the nineteenth

Sets. We discuss an informal (naive) set theory as needed in Computer Science. It was introduced by G. Cantor in the second half of the nineteenth Sets We discuss an informal (naive) set theory as needed in Computer Science. It was introduced by G. Cantor in the second half of the nineteenth century. Most students have seen sets before. This is intended

More information

Number Theory. Modular Arithmetic

Number Theory. Modular Arithmetic Number Theory The branch of mathematics that is important in IT security especially in cryptography. Deals only in integer numbers and the process can be done in a very fast manner. Modular Arithmetic

More information

Section 0. Sets and Relations

Section 0. Sets and Relations 0. Sets and Relations 1 Section 0. Sets and Relations NOTE. Mathematics is the study of ideas, not of numbers!!! The idea from modern algebra which is the focus of most of this class is that of a group

More information

University of Ottawa CSI 2101 Midterm Test Instructor: Lucia Moura. March 1, :00 pm Duration: 1:15 hs

University of Ottawa CSI 2101 Midterm Test Instructor: Lucia Moura. March 1, :00 pm Duration: 1:15 hs University of Ottawa CSI 2101 Midterm Test Instructor: Lucia Moura March 1, 2012 1:00 pm Duration: 1:15 hs Closed book, no calculators THIS MIDTERM AND ITS SOLUTION IS SUBJECT TO COPYRIGHT; NO PARTS OF

More information

Name: Student ID: Instructions:

Name: Student ID: Instructions: Instructions: Name: CSE 322 Autumn 2001: Midterm Exam (closed book, closed notes except for 1-page summary) Total: 100 points, 5 questions, 20 points each. Time: 50 minutes 1. Write your name and student

More information

RED. Name: Instructor: Pace Nielsen Math 290 Section 1: Winter 2014 Final Exam

RED. Name: Instructor: Pace Nielsen Math 290 Section 1: Winter 2014 Final Exam RED Name: Instructor: Pace Nielsen Math 290 Section 1: Winter 2014 Final Exam Note that the first 10 questions are true-false. Mark A for true, B for false. Questions 11 through 20 are multiple choice

More information

Number Theory and Group Theoryfor Public-Key Cryptography

Number Theory and Group Theoryfor Public-Key Cryptography Number Theory and Group Theory for Public-Key Cryptography TDA352, DIT250 Wissam Aoudi Chalmers University of Technology November 21, 2017 Wissam Aoudi Number Theory and Group Theoryfor Public-Key Cryptography

More information

MATH 158 FINAL EXAM 20 DECEMBER 2016

MATH 158 FINAL EXAM 20 DECEMBER 2016 MATH 158 FINAL EXAM 20 DECEMBER 2016 Name : The exam is double-sided. Make sure to read both sides of each page. The time limit is three hours. No calculators are permitted. You are permitted one page

More information

Math 19 Practice Exam 2B, Winter 2011

Math 19 Practice Exam 2B, Winter 2011 Math 19 Practice Exam 2B, Winter 2011 Name: SUID#: Complete the following problems. In order to receive full credit, please show all of your work and justify your answers. You do not need to simplify your

More information

AN ALGEBRAIC PROOF OF RSA ENCRYPTION AND DECRYPTION

AN ALGEBRAIC PROOF OF RSA ENCRYPTION AND DECRYPTION AN ALGEBRAIC PROOF OF RSA ENCRYPTION AND DECRYPTION Recall that RSA works as follows. A wants B to communicate with A, but without E understanding the transmitted message. To do so: A broadcasts RSA method,

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Michael J. Fischer Lecture 8 February 1, 2012 CPSC 467b, Lecture 8 1/42 Number Theory Needed for RSA Z n : The integers mod n Modular arithmetic GCD Relatively

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Michael J. Fischer Lecture 9 February 14, 2013 CPSC 467b, Lecture 9 1/42 Integer Division (cont.) Relatively prime numbers, Z n, and φ(n) Computing in Z n

More information

Practice Midterm 1 UCLA: Math 61, Winter 2018

Practice Midterm 1 UCLA: Math 61, Winter 2018 Practice Midterm 1 UCLA: Math 61, Winter 018 Instructor: Jens Eberhardt Date: 0 February 017 This exam has 4 questions, for a total of 34 points. Please print your working and answers neatly. Write your

More information

Mathematical Foundations of Public-Key Cryptography

Mathematical Foundations of Public-Key Cryptography Mathematical Foundations of Public-Key Cryptography Adam C. Champion and Dong Xuan CSE 4471: Information Security Material based on (Stallings, 2006) and (Paar and Pelzl, 2010) Outline Review: Basic Mathematical

More information

Basic elements of number theory

Basic elements of number theory Cryptography Basic elements of number theory Marius Zimand 1 Divisibility, prime numbers By default all the variables, such as a, b, k, etc., denote integer numbers. Divisibility a 0 divides b if b = a

More information

Discrete Mathematics and Probability Theory Spring 2015 Vazirani Midterm #2 Solution

Discrete Mathematics and Probability Theory Spring 2015 Vazirani Midterm #2 Solution CS 70 Discrete Mathematics and Probability Theory Spring 015 Vazirani Midterm # Solution PRINT your name:, (last) SIGN your name: (first) PRINT your student ID: CIRCLE your exam room: 3106 Etcheverry 3108

More information

Signature: (In Ink) UNIVERSITY OF MANITOBA TEST 1 SOLUTIONS COURSE: MATH 2170 DATE & TIME: February 11, 2019, 16:30 17:15

Signature: (In Ink) UNIVERSITY OF MANITOBA TEST 1 SOLUTIONS COURSE: MATH 2170 DATE & TIME: February 11, 2019, 16:30 17:15 PAGE: 1 of 7 I understand that cheating is a serious offence: Signature: (In Ink) PAGE: 2 of 7 1. Let a, b, m, be integers, m > 1. [1] (a) Define a b. Solution: a b iff for some d, ad = b. [1] (b) Define

More information

Basic elements of number theory

Basic elements of number theory Cryptography Basic elements of number theory Marius Zimand By default all the variables, such as a, b, k, etc., denote integer numbers. Divisibility a 0 divides b if b = a k for some integer k. Notation

More information

MAS114: Exercises. October 26, 2018

MAS114: Exercises. October 26, 2018 MAS114: Exercises October 26, 2018 Note that the challenge problems are intended to be difficult! Doing any of them is an achievement. Please hand them in on a separate piece of paper if you attempt them.

More information

HOMEWORK 8 SOLUTIONS MATH 4753

HOMEWORK 8 SOLUTIONS MATH 4753 HOMEWORK 8 SOLUTIONS MATH 4753 In this homework we will practice taking square roots of elements in F p in F p 2, and study the encoding scheme suggested by Koblitz for use in elliptic curve cryptosystems.

More information

Math 430 Final Exam, Fall 2008

Math 430 Final Exam, Fall 2008 IIT Dept. Applied Mathematics, December 9, 2008 1 PRINT Last name: Signature: First name: Student ID: Math 430 Final Exam, Fall 2008 Grades should be posted Friday 12/12. Have a good break, and don t forget

More information

MATH FINAL EXAM REVIEW HINTS

MATH FINAL EXAM REVIEW HINTS MATH 109 - FINAL EXAM REVIEW HINTS Answer: Answer: 1. Cardinality (1) Let a < b be two real numbers and define f : (0, 1) (a, b) by f(t) = (1 t)a + tb. (a) Prove that f is a bijection. (b) Prove that any

More information

Lecture Notes 1 Basic Concepts of Mathematics MATH 352

Lecture Notes 1 Basic Concepts of Mathematics MATH 352 Lecture Notes 1 Basic Concepts of Mathematics MATH 352 Ivan Avramidi New Mexico Institute of Mining and Technology Socorro, NM 87801 June 3, 2004 Author: Ivan Avramidi; File: absmath.tex; Date: June 11,

More information

Mathematics 222a Quiz 2 CODE 111 November 21, 2002

Mathematics 222a Quiz 2 CODE 111 November 21, 2002 Student s Name [print] Student Number Mathematics 222a Instructions: Print your name and student number at the top of this question sheet. Print your name and your instructor s name on the answer sheet.

More information

This exam contains 5 pages (including this cover page) and 4 questions. The total number of points is 100. Grade Table

This exam contains 5 pages (including this cover page) and 4 questions. The total number of points is 100. Grade Table MAT115A-21 Summer Session 2 2018 Practice Final Solutions Name: Time Limit: 1 Hour 40 Minutes Instructor: Nathaniel Gallup This exam contains 5 pages (including this cover page) and 4 questions. The total

More information

Solutions to Practice Final

Solutions to Practice Final s to Practice Final 1. (a) What is φ(0 100 ) where φ is Euler s φ-function? (b) Find an integer x such that 140x 1 (mod 01). Hint: gcd(140, 01) = 7. (a) φ(0 100 ) = φ(4 100 5 100 ) = φ( 00 5 100 ) = (

More information

Math 261 Spring 2014 Final Exam May 5, 2014

Math 261 Spring 2014 Final Exam May 5, 2014 Math 261 Spring 2014 Final Exam May 5, 2014 1. Give a statement or the definition for ONE of the following in each category. Circle the letter next to the one you want graded. For an extra good final impression,

More information

Midterm 2. Your Exam Room: Name of Person Sitting on Your Left: Name of Person Sitting on Your Right: Name of Person Sitting in Front of You:

Midterm 2. Your Exam Room: Name of Person Sitting on Your Left: Name of Person Sitting on Your Right: Name of Person Sitting in Front of You: CS70 Discrete Mathematics and Probability Theory, Fall 2018 Midterm 2 8:00-10:00pm, 31 October Your First Name: SIGN Your Name: Your Last Name: Your SID Number: Your Exam Room: Name of Person Sitting on

More information

Math 51 Midterm 1 July 6, 2016

Math 51 Midterm 1 July 6, 2016 Math 51 Midterm 1 July 6, 2016 Name: SUID#: Circle your section: Section 01 Section 02 (1:30-2:50PM) (3:00-4:20PM) Complete the following problems. In order to receive full credit, please show all of your

More information

Congruence Classes. Number Theory Essentials. Modular Arithmetic Systems

Congruence Classes. Number Theory Essentials. Modular Arithmetic Systems Cryptography Introduction to Number Theory 1 Preview Integers Prime Numbers Modular Arithmetic Totient Function Euler's Theorem Fermat's Little Theorem Euclid's Algorithm 2 Introduction to Number Theory

More information

About This Document. MTH299 - Examples Weeks 1-6; updated on January 5, 2018

About This Document. MTH299 - Examples Weeks 1-6; updated on January 5, 2018 About This Document This is the examples document for MTH 299. Basically it is a loosely organized universe of questions (examples) that we think are interesting, helpful, useful for practice, and serve

More information

12x + 18y = 50. 2x + v = 12. (x, v) = (6 + k, 2k), k Z.

12x + 18y = 50. 2x + v = 12. (x, v) = (6 + k, 2k), k Z. Math 3, Fall 010 Assignment 3 Solutions Exercise 1. Find all the integral solutions of the following linear diophantine equations. Be sure to justify your answers. (i) 3x + y = 7. (ii) 1x + 18y = 50. (iii)

More information

University of New Mexico Department of Computer Science. Midterm Examination. CS 261 Mathematical Foundations of Computer Science Spring, 2010

University of New Mexico Department of Computer Science. Midterm Examination. CS 261 Mathematical Foundations of Computer Science Spring, 2010 University of New Mexico Department of Computer Science Midterm Examination CS 261 Mathematical Foundations of Computer Science Spring, 2010 Name: Email: Nothing is true. All is permitted - Friedrich Nietzsche.

More information

Senior Math Circles Cryptography and Number Theory Week 2

Senior Math Circles Cryptography and Number Theory Week 2 Senior Math Circles Cryptography and Number Theory Week 2 Dale Brydon Feb. 9, 2014 1 Divisibility and Inverses At the end of last time, we saw that not all numbers have inverses mod n, but some do. We

More information

MATH 13 FINAL EXAM SOLUTIONS

MATH 13 FINAL EXAM SOLUTIONS MATH 13 FINAL EXAM SOLUTIONS WINTER 2014 Problem 1 (15 points). For each statement below, circle T or F according to whether the statement is true or false. You do NOT need to justify your answers. T F

More information

MATH 1B03 Day Class Final Exam Bradd Hart, Dec. 13, 2013

MATH 1B03 Day Class Final Exam Bradd Hart, Dec. 13, 2013 MATH B03 Day Class Final Exam Bradd Hart, Dec. 3, 03 Name: ID #: The exam is 3 hours long. The exam has questions on page through ; there are 40 multiple-choice questions printed on BOTH sides of the paper.

More information

MATH 3330 ABSTRACT ALGEBRA SPRING Definition. A statement is a declarative sentence that is either true or false.

MATH 3330 ABSTRACT ALGEBRA SPRING Definition. A statement is a declarative sentence that is either true or false. MATH 3330 ABSTRACT ALGEBRA SPRING 2014 TANYA CHEN Dr. Gordon Heier Tuesday January 14, 2014 The Basics of Logic (Appendix) Definition. A statement is a declarative sentence that is either true or false.

More information

ECE596C: Handout #11

ECE596C: Handout #11 ECE596C: Handout #11 Public Key Cryptosystems Electrical and Computer Engineering, University of Arizona, Loukas Lazos Abstract In this lecture we introduce necessary mathematical background for studying

More information

Linear Congruences. The equation ax = b for a, b R is uniquely solvable if a 0: x = b/a. Want to extend to the linear congruence:

Linear Congruences. The equation ax = b for a, b R is uniquely solvable if a 0: x = b/a. Want to extend to the linear congruence: Linear Congruences The equation ax = b for a, b R is uniquely solvable if a 0: x = b/a. Want to extend to the linear congruence: ax b (mod m), a, b Z, m N +. (1) If x 0 is a solution then so is x k :=

More information

Review Sheet for the Final Exam of MATH Fall 2009

Review Sheet for the Final Exam of MATH Fall 2009 Review Sheet for the Final Exam of MATH 1600 - Fall 2009 All of Chapter 1. 1. Sets and Proofs Elements and subsets of a set. The notion of implication and the way you can use it to build a proof. Logical

More information

Part IA. Numbers and Sets. Year

Part IA. Numbers and Sets. Year Part IA Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2017 19 Paper 4, Section I 1D (a) Show that for all positive integers z and n, either z 2n 0 (mod 3) or

More information

Proofs. Chapter 2 P P Q Q

Proofs. Chapter 2 P P Q Q Chapter Proofs In this chapter we develop three methods for proving a statement. To start let s suppose the statement is of the form P Q or if P, then Q. Direct: This method typically starts with P. Then,

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 14 October 23, 2017 CPSC 467, Lecture 14 1/42 Computing in Z n Modular multiplication Modular inverses Extended Euclidean algorithm

More information

Math 230 Final Exam, Spring 2009

Math 230 Final Exam, Spring 2009 IIT Dept. Applied Mathematics, May 13, 2009 1 PRINT Last name: Signature: First name: Student ID: Math 230 Final Exam, Spring 2009 Conditions. 2 hours. No book, notes, calculator, cell phones, etc. Part

More information

Theory of RSA. Hiroshi Toyoizumi 1. December 8,

Theory of RSA. Hiroshi Toyoizumi 1. December 8, Theory of RSA Hiroshi Toyoizumi 1 December 8, 2005 1 E-mail: toyoizumi@waseda.jp 2 Introduction This is brief introduction of number theory related to the so-called RSA cryptography. This handout is based

More information

ASSIGNMENT Use mathematical induction to show that the sum of the cubes of three consecutive non-negative integers is divisible by 9.

ASSIGNMENT Use mathematical induction to show that the sum of the cubes of three consecutive non-negative integers is divisible by 9. ASSIGNMENT 1 1. Use mathematical induction to show that the sum of the cubes of three consecutive non-negative integers is divisible by 9. 2. (i) If d a and d b, prove that d (a + b). (ii) More generally,

More information

MATH 363: Discrete Mathematics

MATH 363: Discrete Mathematics MATH 363: Discrete Mathematics Learning Objectives by topic The levels of learning for this class are classified as follows. 1. Basic Knowledge: To recall and memorize - Assess by direct questions. The

More information

1 Recommended Reading 1. 2 Public Key/Private Key Cryptography Overview RSA Algorithm... 2

1 Recommended Reading 1. 2 Public Key/Private Key Cryptography Overview RSA Algorithm... 2 Contents 1 Recommended Reading 1 2 Public Key/Private Key Cryptography 1 2.1 Overview............................................. 1 2.2 RSA Algorithm.......................................... 2 3 A Number

More information

EECS 70 Discrete Mathematics and Probability Theory Fall 2015 Walrand/Rao Final

EECS 70 Discrete Mathematics and Probability Theory Fall 2015 Walrand/Rao Final EECS 70 Discrete Mathematics and Probability Theory Fall 2015 Walrand/Rao Final PRINT Your Name:, (last) SIGN Your Name: (first) PRINT Your Student ID: CIRCLE your exam room: 220 Hearst 230 Hearst 237

More information

Contribution of Problems

Contribution of Problems Exam topics 1. Basic structures: sets, lists, functions (a) Sets { }: write all elements, or define by condition (b) Set operations: A B, A B, A\B, A c (c) Lists ( ): Cartesian product A B (d) Functions

More information

Part IA Numbers and Sets

Part IA Numbers and Sets Part IA Numbers and Sets Definitions Based on lectures by A. G. Thomason Notes taken by Dexter Chua Michaelmas 2014 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

NOTE: You have 2 hours, please plan your time. Problems are not ordered by difficulty.

NOTE: You have 2 hours, please plan your time. Problems are not ordered by difficulty. EXAM 2 solutions (COT3100, Sitharam, Spring 2017) NAME:last first: UF-ID Section NOTE: You have 2 hours, please plan your time. Problems are not ordered by difficulty. (1) Are the following functions one-to-one

More information

Elementary Properties of the Integers

Elementary Properties of the Integers Elementary Properties of the Integers 1 1. Basis Representation Theorem (Thm 1-3) 2. Euclid s Division Lemma (Thm 2-1) 3. Greatest Common Divisor 4. Properties of Prime Numbers 5. Fundamental Theorem of

More information

Name: There are 8 questions on 13 pages, including this cover.

Name: There are 8 questions on 13 pages, including this cover. Name: There are 8 questions on 13 pages, including this cover. There are several blank pages at the end of your exam which you may as scrap paper or as additional space to continue an answer, if needed.

More information

Discrete Math I Exam II (2/9/12) Page 1

Discrete Math I Exam II (2/9/12) Page 1 Discrete Math I Exam II (/9/1) Page 1 Name: Instructions: Provide all steps necessary to solve the problem. Simplify your answer as much as possible. Additionally, clearly indicate the value or expression

More information

10 Problem 1. The following assertions may be true or false, depending on the choice of the integers a, b 0. a "

10 Problem 1. The following assertions may be true or false, depending on the choice of the integers a, b 0. a Math 4161 Dr. Franz Rothe December 9, 2013 13FALL\4161_fall13f.tex Name: Use the back pages for extra space Final 70 70 Problem 1. The following assertions may be true or false, depending on the choice

More information

CS2800 Questions selected for fall 2017

CS2800 Questions selected for fall 2017 Discrete Structures Final exam sample questions Solutions CS2800 Questions selected for fall 2017 1. Determine the prime factorizations, greatest common divisor, and least common multiple of the following

More information