Math 455 Some notes on Cardinality and Transfinite Induction

Size: px
Start display at page:

Download "Math 455 Some notes on Cardinality and Transfinite Induction"

Transcription

1 Math 455 Some notes on Cardinality and Transfinite Induction (David Ross, UH-Manoa Dept. of Mathematics) 1 Cardinality Recall the following notions: function, relation, one-to-one, onto, on-to-one correspondence, injection, surjection, bijection, equivalence relation, A n, A B =the set of all functions from A into B Identify a natural number with the set of its predecessors, n = {0, 1,..., n 1}. Today: 0 = {} N Definition 1.1 A is equinumerous with B provided there is a bijection from A onto B. Other, equivalent notation/terminology for A is equinumerous with B : a. A and B have the same cardinality b. A B c. card(a) = card(b) We seem to be referring to a concept called cardinality without really defining it; this is especially true for (c), where the notation looks like we are setting two functions equal to one another. Examples: N Z N 2 Q >0 Q R P(N) R 2 {f : R R : f is continuous} 1

2 The following easy theorem proves that is like an equivalence relation. Theorem 1.1 For any sets A, B, and C: 1. A A 2. A B = B A 3. A B &B C = A C It will be convenient to have a slightly more general notation: Definition 1.2 A has no greater cardinality than B (or card(a) card(b)) provided there is an injection from A into B. Theorem 1.2 For any nonempty sets A and B the following are equivalent: 1. card(a) card(b) 2. For some C B, card(a) = card(c) 3. There is a function g from B onto A. Remark: What if A =? Theorem 1.3 (Cantor-Schroder-Bernstein) If card(a) card(b) and card(b) card(a) then card(a) = card(b) Theorem 1.4 (Cantor) For any set A, card(a) card(p (A)) (in fact, card(a) < card(p (A)) Proof: Let g be any 1 1 function from A into P (A). Put B = {x A : x / g(x)} Claim: B / range(g). To see this, let x 0 A, and consider 2 cases: (i) x 0 g(x 0 ); then x 0 / B, so B g(x 0 ). (ii) x 0 / g(x 0 ); then x 0 B, so B g(x 0 ). Either way, B g(x 0 ). Since x 0 was arbitrary in A, B / range(g). Since g was arbitrary, A P (A). (Note that a {a} is an injection from A into P (A), so card(a) card(p (A)).) Theorem 1.5 (AC) Any sets A and B are comparable; that is, card(a) < card(b), card(a) = card(b), or card(a) > card(b) This is sometimes used to define the Axiom of Choice (AC). Proposition 1.1 For every set A, P (A) A 2 = the set of functions from A into {0, 1} Proof: Identify every subset of A with its characteristic function. Cor 1.1 N R 2

3 1.1 Finite sets Definition 1.3 A is finite if m N A m, A is not finite otherwise A is infinite if card(n) card(a), A is not infinite otherwise A is Dedekind-infinite if B A A B, Dedekind-finite otherwise Theorem 1.6 Suppose A. The following are equivalent: 1. A is finite 2. A is not infinite 3. A is Dedekind-finite 4. There exists an injection f : A m for some m N 5. There exists a surjection g : m A for some m N Cor 1.2 If A is finite then there is a unique m N with A m (The proof of Finite Dedekind Finite is surprisingly hard!) Remark: For A finite we can now define card(a) to be the unique natural number m such that A m. 1.2 Countability Definition 1.4 A is countable (or enumerable) if either A is finite or A N. If A is any countable and infinite set then we write card(a) = ℵ 0, and we write card(a) ℵ 0 to mean that card(a) card(n). Remark: We will call a set A countably infinite if it is countable and infinite. This is of course, just another way of saying that A N. Theorem 1.7 Suppose A. The following are equivalent: 1. A is countable 2. card(a) ℵ 0 3. There is a surjection f from N onto A Theorem 1.8 If A and B are countable then (1) A B and (2) A B are countable Cor 1.3 If A 1,...,A n are countable then A 1 A 2 A n and A 0 A n are countable Theorem 1.9 A countable union of countable sets is countable. 3

4 How do we prove properties like these? Start with: An alternate approach to countability: Definition 1.5 If Σ is any set (which we think of as a set of letters, let Σ be the set of finite words on Σ; formally, Σ := n Σ Theorem 1.10 If Σ is countable then so is Σ Proof: Without loss of generality Σ ω {0}. Define φ : Σ ω by φ(τ) = p τ(0) 0 p τ(1) 1 p τ(n 1) n 1, where n = domain(τ) and p 0, p 1,... enumerates the prime numbers. It is easy to see that φ is one-to-one, and that suffices. Cor 1.4 Q is countable Proof: Every rational can be written as a word on the finite alphabet {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, /, }; eg, 37 4 is the 5 character word -37/4. n N Cor 1.5 if A and B are countable then A B is countable Proof: Every pair in A B can be writen as a word on the alphabet A B {(, ),, } (note the comma in the last set). 2 Well-orderings and Transfinite Induction Recall that a set X with a binary relation is a (strict) linear order provided (X, ) satisfies: Transitivity For all x, y, z X, if x y and y z then x z Trichotomy For eny x, y X exactly one of the following hold: Examples: 1. N, Z, Q, R under the usual ordering x y, x = y, y x 2. R 2 (or C) is not linearly ordered under the ordering (x, y) < (r, s) provided x < r and y < s 3. R 2 (or C) is linearly ordered under the ordering (x, y) < (r, s) provided x < r or (x = r and y < s) 4. N 2 under this same order 5. a b is not a linear ordering on N + Definition 2.1 A linearly ordered set (X, ) is well-ordered provided every nonempty subset of X has a least element. Which of the sets above is well-ordered? Theorem 2.1 (AC) Every set can be well-ordered 4

5 Well-ordered sets have some fantastic properties: 1. Every WO set (X, ) has a least element. 2. In fact, an infinite WO set starts with a copy of N. 3. If x is not the largest element of X then x has an immediate successor. 4. A WO set cannot be embedded onto a proper initial segment of itself. Definition 2.2 If (X, ) is a WO set write x 0 =least element of X. If x, y X then (x, y) = {z X : x z y} Similar definitions for [x, y), [x, y], etc. An initial segment of (X, ) is an interval of the form [x 0, x) or [x 0, x]. An embedding is a 1-1 order-preserving function. More nice properties: 1. If (X, ) and (Y, ) are WO sets, then either X embeds onto an initial segment of Y or vice-versa. (So any two WO sets are comparable.) 2. If we identify any two WO sets that can be put into an order-preserving 1-1 correspondence ( order type ), then the collection of all WO sets can be ordered by X < Y if X embeds onto a proper initial segment of Y, and the class of all such WO sets is itself linearly ordered, in fact well-ordered! 2.1 Transfinite Induction Theorem 2.2 Let (X, ) be a WO set with least element x Suppose S X satisfies two properties: (a) x 0 S; (b) For any x X, if [x 0, x) S then x S. Then S = X 2. Suppose P (x) is a property of elements of X and P satisfies two properties: (a) P (x 0 ); (b) For any x X, if ( y x)p (y) then P (x). Then ( x X)P (x) Example: A WO set (X, ) can be order-embedded into R (with the usual ordering) if and only if X is countable. 5

6 2.2 Transfinite Recursion We can also define objects like functions using a transfinite form of recursion. Recall how we can define sequences (functions on N) by recursion: Fib. numbers: a 0 = 1; a 1 = 1; a n = a n 1 + a n 2 for n > 1 Sum of squares a 0 = 0; a n = a n 1 + n 2 In both these cases we have some starting value(s), and then a procedure for defining f(n) from the previous values f(0), f(1),, f(n 1) together with n. For transfinite recursion we begin with a WO set (X, ), and a procedure for defining f(x) from f [x0,x) together with x, and this gives a function defined on X. Examples: Ordinals: Given (X, ) define E(x) = {E(y) : y < x} for x X. (Note that this implicitly defines E(x 0 ) as well.) The range of E is called an ordinal number. Vector spaces: Let V be a vector space (an abstract one, not just R n ). Recall that a basis for V is a set B V such that B is a linearly independent (LI) set (no nontrivial linear combination of finitely many elements of B is the zero element 0) whose linear span is all of V, V = span(b) =the set of finite linear combinations of elements of B. The every vector space has a basis. Proof by TF recursion: 6

7 3 Some Equivalents of the Axiom of Choice 1. If A is a set of disjoint nonempty sets then there is a set B such that for every a A B a is a singleton. 2. If R is a relation then there is a function F R with dom(r) = dom(f ) 3. If {A i } i I is an indexed collection of nonempty sets, then there exists a function φ with domain I such that φ(i) A i for all i. 4. If {A i } i I is an indexed collection of nonempty sets, then Π i A i is nonempty. 5. (Cardinal Comparability) For every C, D there is either an injection from C into D or an injection from D into C. (In other words, either card(c) card(d) or card(d) card(c).) 6. (Zorn s Lemma) Let A be a set of sets, suppose A is closed under unions of chains. Then A contains a maximal element. 7. Every set can be well-ordered. 7

8 4 Exercises: 1. Prove that the set of polynomials in x with rational coefficients is countable. 2. Prove that the set of all matrices with rational entries is countable. 3. A real number is computable if there exists a computer program that will list its digits. (That is, you run the program, it starts to print out something like , and if you never stop the program the final number is said to be computable.) Show that the set of all computable real numbers is countable. 4. Let A be a collection of disks in the plane, no two of which intersect. Show that A is countable. (A disk is a circle together with its interior. What if A consists of circles, not disks?) 5. Show that any well-ordered subset of R is countable. 6. (Research problem.) Look up Hamel basis, and see how it is used to construct an example of a function on R satisfying ( x, y R) f(x + y) = f(x) + f(y) but which is not continuous anywhere. 7. (Research problem.) Take any result from a 400-level Algebra or Topology course usually proved using Zorn s Lemma or the Hausdorff Maximality Property, and prove it instead using transfinite induction. 8

Exercises for Unit VI (Infinite constructions in set theory)

Exercises for Unit VI (Infinite constructions in set theory) Exercises for Unit VI (Infinite constructions in set theory) VI.1 : Indexed families and set theoretic operations (Halmos, 4, 8 9; Lipschutz, 5.3 5.4) Lipschutz : 5.3 5.6, 5.29 5.32, 9.14 1. Generalize

More information

Math 4603: Advanced Calculus I, Summer 2016 University of Minnesota Notes on Cardinality of Sets

Math 4603: Advanced Calculus I, Summer 2016 University of Minnesota Notes on Cardinality of Sets Math 4603: Advanced Calculus I, Summer 2016 University of Minnesota Notes on Cardinality of Sets Introduction In this short article, we will describe some basic notions on cardinality of sets. Given two

More information

MATH 3300 Test 1. Name: Student Id:

MATH 3300 Test 1. Name: Student Id: Name: Student Id: There are nine problems (check that you have 9 pages). Solutions are expected to be short. In the case of proofs, one or two short paragraphs should be the average length. Write your

More information

Initial Ordinals. Proposition 57 For every ordinal α there is an initial ordinal κ such that κ α and α κ.

Initial Ordinals. Proposition 57 For every ordinal α there is an initial ordinal κ such that κ α and α κ. Initial Ordinals We now return to ordinals in general and use them to give a more precise meaning to the notion of a cardinal. First we make some observations. Note that if there is an ordinal with a certain

More information

Notes on ordinals and cardinals

Notes on ordinals and cardinals Notes on ordinals and cardinals Reed Solomon 1 Background Terminology We will use the following notation for the common number systems: N = {0, 1, 2,...} = the natural numbers Z = {..., 2, 1, 0, 1, 2,...}

More information

Sets, Models and Proofs. I. Moerdijk and J. van Oosten Department of Mathematics Utrecht University

Sets, Models and Proofs. I. Moerdijk and J. van Oosten Department of Mathematics Utrecht University Sets, Models and Proofs I. Moerdijk and J. van Oosten Department of Mathematics Utrecht University 2000; revised, 2006 Contents 1 Sets 1 1.1 Cardinal Numbers........................ 2 1.1.1 The Continuum

More information

ON THE RELATIONSHIP BETWEEN SETS AND GROUPS

ON THE RELATIONSHIP BETWEEN SETS AND GROUPS ON THE RELATIONSHIP BETWEEN SETS AND GROUPS ROSE DONG Abstract. This paper is an introduction to basic properties of sets and groups. After introducing the notion of cardinal arithmetic, it proves the

More information

Chapter 6 Cardinal Numbers and Cardinal Arithmetic

Chapter 6 Cardinal Numbers and Cardinal Arithmetic Principles of Mathematics (Math 2450) A Ë@ Õæ Aë áöß @. X. @ 2014-2015 Èð B@ É Ë@ Chapter 6 Cardinal Numbers and Cardinal Arithmetic In this chapter we introduce the concept of cardinal numbers. The properties

More information

Cardinality and ordinal numbers

Cardinality and ordinal numbers Cardinality and ordinal numbers The cardinality A of a finite set A is simply the number of elements in it. When it comes to infinite sets, we no longer can speak of the number of elements in such a set.

More information

1.4 Cardinality. Tom Lewis. Fall Term Tom Lewis () 1.4 Cardinality Fall Term / 9

1.4 Cardinality. Tom Lewis. Fall Term Tom Lewis () 1.4 Cardinality Fall Term / 9 1.4 Cardinality Tom Lewis Fall Term 2006 Tom Lewis () 1.4 Cardinality Fall Term 2006 1 / 9 Outline 1 Functions 2 Cardinality 3 Cantor s theorem Tom Lewis () 1.4 Cardinality Fall Term 2006 2 / 9 Functions

More information

DO FIVE OUT OF SIX ON EACH SET PROBLEM SET

DO FIVE OUT OF SIX ON EACH SET PROBLEM SET DO FIVE OUT OF SIX ON EACH SET PROBLEM SET 1. THE AXIOM OF FOUNDATION Early on in the book (page 6) it is indicated that throughout the formal development set is going to mean pure set, or set whose elements,

More information

5 Set Operations, Functions, and Counting

5 Set Operations, Functions, and Counting 5 Set Operations, Functions, and Counting Let N denote the positive integers, N 0 := N {0} be the non-negative integers and Z = N 0 ( N) the positive and negative integers including 0, Q the rational numbers,

More information

Axioms for Set Theory

Axioms for Set Theory Axioms for Set Theory The following is a subset of the Zermelo-Fraenkel axioms for set theory. In this setting, all objects are sets which are denoted by letters, e.g. x, y, X, Y. Equality is logical identity:

More information

Chapter 1 : The language of mathematics.

Chapter 1 : The language of mathematics. MAT 200, Logic, Language and Proof, Fall 2015 Summary Chapter 1 : The language of mathematics. Definition. A proposition is a sentence which is either true or false. Truth table for the connective or :

More information

Well Ordered Sets (continued)

Well Ordered Sets (continued) Well Ordered Sets (continued) Theorem 8 Given any two well-ordered sets, either they are isomorphic, or one is isomorphic to an initial segment of the other. Proof Let a,< and b, be well-ordered sets.

More information

Mathematics 220 Workshop Cardinality. Some harder problems on cardinality.

Mathematics 220 Workshop Cardinality. Some harder problems on cardinality. Some harder problems on cardinality. These are two series of problems with specific goals: the first goal is to prove that the cardinality of the set of irrational numbers is continuum, and the second

More information

20 Ordinals. Definition A set α is an ordinal iff: (i) α is transitive; and. (ii) α is linearly ordered by. Example 20.2.

20 Ordinals. Definition A set α is an ordinal iff: (i) α is transitive; and. (ii) α is linearly ordered by. Example 20.2. 20 Definition 20.1. A set α is an ordinal iff: (i) α is transitive; and (ii) α is linearly ordered by. Example 20.2. (a) Each natural number n is an ordinal. (b) ω is an ordinal. (a) ω {ω} is an ordinal.

More information

S15 MA 274: Exam 3 Study Questions

S15 MA 274: Exam 3 Study Questions S15 MA 274: Exam 3 Study Questions You can find solutions to some of these problems on the next page. These questions only pertain to material covered since Exam 2. The final exam is cumulative, so you

More information

A Readable Introduction to Real Mathematics

A Readable Introduction to Real Mathematics Solutions to selected problems in the book A Readable Introduction to Real Mathematics D. Rosenthal, D. Rosenthal, P. Rosenthal Chapter 10: Sizes of Infinite Sets 1. Show that the set of all polynomials

More information

The cardinal comparison of sets

The cardinal comparison of sets (B) The cardinal comparison of sets I think we can agree that there is some kind of fundamental difference between finite sets and infinite sets. For a finite set we can count its members and so give it

More information

Finite and Infinite Sets

Finite and Infinite Sets Chapter 9 Finite and Infinite Sets 9. Finite Sets Preview Activity (Equivalent Sets, Part ). Let A and B be sets and let f be a function from A to B..f W A! B/. Carefully complete each of the following

More information

Short notes on Axioms of set theory, Well orderings and Ordinal Numbers

Short notes on Axioms of set theory, Well orderings and Ordinal Numbers Short notes on Axioms of set theory, Well orderings and Ordinal Numbers August 29, 2013 1 Logic and Notation Any formula in Mathematics can be stated using the symbols and the variables,,,, =, (, ) v j

More information

Axioms of separation

Axioms of separation Axioms of separation These notes discuss the same topic as Sections 31, 32, 33, 34, 35, and also 7, 10 of Munkres book. Some notions (hereditarily normal, perfectly normal, collectionwise normal, monotonically

More information

NOTES ON WELL ORDERING AND ORDINAL NUMBERS. 1. Logic and Notation Any formula in Mathematics can be stated using the symbols

NOTES ON WELL ORDERING AND ORDINAL NUMBERS. 1. Logic and Notation Any formula in Mathematics can be stated using the symbols NOTES ON WELL ORDERING AND ORDINAL NUMBERS TH. SCHLUMPRECHT 1. Logic and Notation Any formula in Mathematics can be stated using the symbols,,,, =, (, ) and the variables v j : where j is a natural number.

More information

Part II. Logic and Set Theory. Year

Part II. Logic and Set Theory. Year Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 60 Paper 4, Section II 16G State and prove the ǫ-recursion Theorem. [You may assume the Principle of ǫ- Induction.]

More information

Let us first solve the midterm problem 4 before we bring up the related issues.

Let us first solve the midterm problem 4 before we bring up the related issues. Math 310 Class Notes 6: Countability Let us first solve the midterm problem 4 before we bring up the related issues. Theorem 1. Let I n := {k N : k n}. Let f : I n N be a one-toone function and let Im(f)

More information

INFINITY: CARDINAL NUMBERS

INFINITY: CARDINAL NUMBERS INFINITY: CARDINAL NUMBERS BJORN POONEN 1 Some terminology of set theory N := {0, 1, 2, 3, } Z := {, 2, 1, 0, 1, 2, } Q := the set of rational numbers R := the set of real numbers C := the set of complex

More information

Real Analysis. Jesse Peterson

Real Analysis. Jesse Peterson Real Analysis Jesse Peterson February 1, 2017 2 Contents 1 Preliminaries 7 1.1 Sets.................................. 7 1.1.1 Countability......................... 8 1.1.2 Transfinite induction.....................

More information

Generalized Pigeonhole Properties of Graphs and Oriented Graphs

Generalized Pigeonhole Properties of Graphs and Oriented Graphs Europ. J. Combinatorics (2002) 23, 257 274 doi:10.1006/eujc.2002.0574 Available online at http://www.idealibrary.com on Generalized Pigeonhole Properties of Graphs and Oriented Graphs ANTHONY BONATO, PETER

More information

Infinite constructions in set theory

Infinite constructions in set theory VI : Infinite constructions in set theory In elementary accounts of set theory, examples of finite collections of objects receive a great deal of attention for several reasons. For example, they provide

More information

Lattices, closure operators, and Galois connections.

Lattices, closure operators, and Galois connections. 125 Chapter 5. Lattices, closure operators, and Galois connections. 5.1. Semilattices and lattices. Many of the partially ordered sets P we have seen have a further valuable property: that for any two

More information

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS 1. Cardinal number of a set The cardinal number (or simply cardinal) of a set is a generalization of the concept of the number of elements

More information

Math 3T03 - Topology

Math 3T03 - Topology Math 3T03 - Topology Sang Woo Park April 5, 2018 Contents 1 Introduction to topology 2 1.1 What is topology?.......................... 2 1.2 Set theory............................... 3 2 Functions 4 3

More information

2. Prime and Maximal Ideals

2. Prime and Maximal Ideals 18 Andreas Gathmann 2. Prime and Maximal Ideals There are two special kinds of ideals that are of particular importance, both algebraically and geometrically: the so-called prime and maximal ideals. Let

More information

Outside ZF - Set Cardinality, the Axiom of Choice, and the Continuum Hypothesis

Outside ZF - Set Cardinality, the Axiom of Choice, and the Continuum Hypothesis Outside ZF - Set Cardinality, the Axiom of Choice, and the Continuum Hypothesis Tali Magidson June 6, 2017 Synopsis In June 2002, "Two Classical Surprises Concerning the Axiom of Choice and the Continuum

More information

Infinite-Dimensional Triangularization

Infinite-Dimensional Triangularization Infinite-Dimensional Triangularization Zachary Mesyan March 11, 2018 Abstract The goal of this paper is to generalize the theory of triangularizing matrices to linear transformations of an arbitrary vector

More information

A BRIEF INTRODUCTION TO ZFC. Contents. 1. Motivation and Russel s Paradox

A BRIEF INTRODUCTION TO ZFC. Contents. 1. Motivation and Russel s Paradox A BRIEF INTRODUCTION TO ZFC CHRISTOPHER WILSON Abstract. We present a basic axiomatic development of Zermelo-Fraenkel and Choice set theory, commonly abbreviated ZFC. This paper is aimed in particular

More information

Topology. Xiaolong Han. Department of Mathematics, California State University, Northridge, CA 91330, USA address:

Topology. Xiaolong Han. Department of Mathematics, California State University, Northridge, CA 91330, USA  address: Topology Xiaolong Han Department of Mathematics, California State University, Northridge, CA 91330, USA E-mail address: Xiaolong.Han@csun.edu Remark. You are entitled to a reward of 1 point toward a homework

More information

4 Countability axioms

4 Countability axioms 4 COUNTABILITY AXIOMS 4 Countability axioms Definition 4.1. Let X be a topological space X is said to be first countable if for any x X, there is a countable basis for the neighborhoods of x. X is said

More information

Short Introduction to Admissible Recursion Theory

Short Introduction to Admissible Recursion Theory Short Introduction to Admissible Recursion Theory Rachael Alvir November 2016 1 Axioms of KP and Admissible Sets An admissible set is a transitive set A satisfying the axioms of Kripke-Platek Set Theory

More information

Math 105A HW 1 Solutions

Math 105A HW 1 Solutions Sect. 1.1.3: # 2, 3 (Page 7-8 Math 105A HW 1 Solutions 2(a ( Statement: Each positive integers has a unique prime factorization. n N: n = 1 or ( R N, p 1,..., p R P such that n = p 1 p R and ( n, R, S

More information

Some Basic Notations Of Set Theory

Some Basic Notations Of Set Theory Some Basic Notations Of Set Theory References There are some good books about set theory; we write them down. We wish the reader can get more. 1. Set Theory and Related Topics by Seymour Lipschutz. 2.

More information

Introduction to Proofs

Introduction to Proofs Introduction to Proofs Notes by Dr. Lynne H. Walling and Dr. Steffi Zegowitz September 018 The Introduction to Proofs course is organised into the following nine sections. 1. Introduction: sets and functions

More information

Basic set-theoretic techniques in logic Part III, Transfinite recursion and induction

Basic set-theoretic techniques in logic Part III, Transfinite recursion and induction Basic set-theoretic techniques in logic Part III, Transfinite recursion and induction Benedikt Löwe Universiteit van Amsterdam Grzegorz Plebanek Uniwersytet Wroc lawski ESSLLI 2011, Ljubljana, Slovenia

More information

Universal Totally Ordered Sets

Universal Totally Ordered Sets Universal Totally Ordered Sets Luke Adams May 11, 2018 Abstract In 1874, Georg Cantor published an article in which he proved that the set of algebraic numbers are countable, and the set of real numbers

More information

Sets and Functions. MATH 464/506, Real Analysis. J. Robert Buchanan. Summer Department of Mathematics. J. Robert Buchanan Sets and Functions

Sets and Functions. MATH 464/506, Real Analysis. J. Robert Buchanan. Summer Department of Mathematics. J. Robert Buchanan Sets and Functions Sets and Functions MATH 464/506, Real Analysis J. Robert Buchanan Department of Mathematics Summer 2007 Notation x A means that element x is a member of set A. x / A means that x is not a member of A.

More information

Weak Choice Principles and Forcing Axioms

Weak Choice Principles and Forcing Axioms Weak Choice Principles and Forcing Axioms Elizabeth Lauri 1 Introduction Faculty Mentor: David Fernandez Breton Forcing is a technique that was discovered by Cohen in the mid 20th century, and it is particularly

More information

Foundations of Mathematics

Foundations of Mathematics Foundations of Mathematics L. Pedro Poitevin 1. Preliminaries 1.1. Sets We will naively think of a set as a collection of mathematical objects, called its elements or members. To indicate that an object

More information

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X.

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X. Math 6342/7350: Topology and Geometry Sample Preliminary Exam Questions 1. For each of the following topological spaces X i, determine whether X i and X i X i are homeomorphic. (a) X 1 = [0, 1] (b) X 2

More information

Countability. 1 Motivation. 2 Counting

Countability. 1 Motivation. 2 Counting Countability 1 Motivation In topology as well as other areas of mathematics, we deal with a lot of infinite sets. However, as we will gradually discover, some infinite sets are bigger than others. Countably

More information

SOME TRANSFINITE INDUCTION DEDUCTIONS

SOME TRANSFINITE INDUCTION DEDUCTIONS SOME TRANSFINITE INDUCTION DEDUCTIONS SYLVIA DURIAN Abstract. This paper develops the ordinal numbers and transfinite induction, then demonstrates some interesting applications of transfinite induction.

More information

Chapter 1. Sets and Mappings

Chapter 1. Sets and Mappings Chapter 1. Sets and Mappings 1. Sets A set is considered to be a collection of objects (elements). If A is a set and x is an element of the set A, we say x is a member of A or x belongs to A, and we write

More information

SETS AND FUNCTIONS JOSHUA BALLEW

SETS AND FUNCTIONS JOSHUA BALLEW SETS AND FUNCTIONS JOSHUA BALLEW 1. Sets As a review, we begin by considering a naive look at set theory. For our purposes, we define a set as a collection of objects. Except for certain sets like N, Z,

More information

Discrete Mathematics: Lectures 6 and 7 Sets, Relations, Functions and Counting Instructor: Arijit Bishnu Date: August 4 and 6, 2009

Discrete Mathematics: Lectures 6 and 7 Sets, Relations, Functions and Counting Instructor: Arijit Bishnu Date: August 4 and 6, 2009 Discrete Mathematics: Lectures 6 and 7 Sets, Relations, Functions and Counting Instructor: Arijit Bishnu Date: August 4 and 6, 2009 Our main goal is here is to do counting using functions. For that, we

More information

Theory of Computation

Theory of Computation Thomas Zeugmann Hokkaido University Laboratory for Algorithmics http://www-alg.ist.hokudai.ac.jp/ thomas/toc/ Lecture 1: Introducing Formal Languages Motivation I This course is about the study of a fascinating

More information

1 of 8 7/15/2009 3:43 PM Virtual Laboratories > 1. Foundations > 1 2 3 4 5 6 7 8 9 6. Cardinality Definitions and Preliminary Examples Suppose that S is a non-empty collection of sets. We define a relation

More information

A Do It Yourself Guide to Linear Algebra

A Do It Yourself Guide to Linear Algebra A Do It Yourself Guide to Linear Algebra Lecture Notes based on REUs, 2001-2010 Instructor: László Babai Notes compiled by Howard Liu 6-30-2010 1 Vector Spaces 1.1 Basics Definition 1.1.1. A vector space

More information

Stat 451: Solutions to Assignment #1

Stat 451: Solutions to Assignment #1 Stat 451: Solutions to Assignment #1 2.1) By definition, 2 Ω is the set of all subsets of Ω. Therefore, to show that 2 Ω is a σ-algebra we must show that the conditions of the definition σ-algebra are

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 27

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 27 CS 70 Discrete Mathematics for CS Spring 007 Luca Trevisan Lecture 7 Infinity and Countability Consider a function f that maps elements of a set A (called the domain of f ) to elements of set B (called

More information

Connectedness. Proposition 2.2. The following are equivalent for a topological space (X, T ).

Connectedness. Proposition 2.2. The following are equivalent for a topological space (X, T ). Connectedness 1 Motivation Connectedness is the sort of topological property that students love. Its definition is intuitive and easy to understand, and it is a powerful tool in proofs of well-known results.

More information

1 Partitions and Equivalence Relations

1 Partitions and Equivalence Relations Today we re going to talk about partitions of sets, equivalence relations and how they are equivalent. Then we are going to talk about the size of a set and will see our first example of a diagonalisation

More information

A topological set theory implied by ZF and GPK +

A topological set theory implied by ZF and GPK + 1 42 ISSN 1759-9008 1 A topological set theory implied by ZF and GPK + ANDREAS FACKLER Abstract: We present a system of axioms motivated by a topological intuition: The set of subsets of any set is a topology

More information

2.2 Lowenheim-Skolem-Tarski theorems

2.2 Lowenheim-Skolem-Tarski theorems Logic SEP: Day 1 July 15, 2013 1 Some references Syllabus: http://www.math.wisc.edu/graduate/guide-qe Previous years qualifying exams: http://www.math.wisc.edu/ miller/old/qual/index.html Miller s Moore

More information

Extended Essay - Mathematics

Extended Essay - Mathematics Extended Essay - Mathematics Creating a Model to Separate or Group Number Sets by their Cardinalities Pope John Paul II C.S.S. September 2009 Candidate Number: 001363-012 The conquest of the actual infinite

More information

Linear Algebra. Paul Yiu. Department of Mathematics Florida Atlantic University. Fall 2011

Linear Algebra. Paul Yiu. Department of Mathematics Florida Atlantic University. Fall 2011 Linear Algebra Paul Yiu Department of Mathematics Florida Atlantic University Fall 2011 Linear Algebra Paul Yiu Department of Mathematics Florida Atlantic University Fall 2011 1A: Vector spaces Fields

More information

Principles of Real Analysis I Fall I. The Real Number System

Principles of Real Analysis I Fall I. The Real Number System 21-355 Principles of Real Analysis I Fall 2004 I. The Real Number System The main goal of this course is to develop the theory of real-valued functions of one real variable in a systematic and rigorous

More information

2.23 Theorem. Let A and B be sets in a metric space. If A B, then L(A) L(B).

2.23 Theorem. Let A and B be sets in a metric space. If A B, then L(A) L(B). 2.23 Theorem. Let A and B be sets in a metric space. If A B, then L(A) L(B). 2.24 Theorem. Let A and B be sets in a metric space. Then L(A B) = L(A) L(B). It is worth noting that you can t replace union

More information

Meta-logic derivation rules

Meta-logic derivation rules Meta-logic derivation rules Hans Halvorson February 19, 2013 Recall that the goal of this course is to learn how to prove things about (as opposed to by means of ) classical first-order logic. So, we will

More information

This paper is also taken by Combined Studies Students. Optional Subject (i): Set Theory and Further Logic

This paper is also taken by Combined Studies Students. Optional Subject (i): Set Theory and Further Logic UNIVERSITY OF LONDON BA EXAMINATION for Internal Students This paper is also taken by Combined Studies Students PHILOSOPHY Optional Subject (i): Set Theory and Further Logic Answer THREE questions, at

More information

The Banach-Tarski paradox

The Banach-Tarski paradox The Banach-Tarski paradox 1 Non-measurable sets In these notes I want to present a proof of the Banach-Tarski paradox, a consequence of the axiom of choice that shows us that a naive understanding of the

More information

After taking the square and expanding, we get x + y 2 = (x + y) (x + y) = x 2 + 2x y + y 2, inequality in analysis, we obtain.

After taking the square and expanding, we get x + y 2 = (x + y) (x + y) = x 2 + 2x y + y 2, inequality in analysis, we obtain. Lecture 1: August 25 Introduction. Topology grew out of certain questions in geometry and analysis about 100 years ago. As Wikipedia puts it, the motivating insight behind topology is that some geometric

More information

Functions and cardinality (solutions) sections A and F TA: Clive Newstead 6 th May 2014

Functions and cardinality (solutions) sections A and F TA: Clive Newstead 6 th May 2014 Functions and cardinality (solutions) 21-127 sections A and F TA: Clive Newstead 6 th May 2014 What follows is a somewhat hastily written collection of solutions for my review sheet. I have omitted some

More information

Economics 204 Fall 2011 Problem Set 1 Suggested Solutions

Economics 204 Fall 2011 Problem Set 1 Suggested Solutions Economics 204 Fall 2011 Problem Set 1 Suggested Solutions 1. Suppose k is a positive integer. Use induction to prove the following two statements. (a) For all n N 0, the inequality (k 2 + n)! k 2n holds.

More information

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3 Index Page 1 Topology 2 1.1 Definition of a topology 2 1.2 Basis (Base) of a topology 2 1.3 The subspace topology & the product topology on X Y 3 1.4 Basic topology concepts: limit points, closed sets,

More information

ECS 120 Lesson 18 Decidable Problems, the Halting Problem

ECS 120 Lesson 18 Decidable Problems, the Halting Problem ECS 120 Lesson 18 Decidable Problems, the Halting Problem Oliver Kreylos Friday, May 11th, 2001 In the last lecture, we had a look at a problem that we claimed was not solvable by an algorithm the problem

More information

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra D. R. Wilkins Contents 3 Topics in Commutative Algebra 2 3.1 Rings and Fields......................... 2 3.2 Ideals...............................

More information

Jónsson posets and unary Jónsson algebras

Jónsson posets and unary Jónsson algebras Jónsson posets and unary Jónsson algebras Keith A. Kearnes and Greg Oman Abstract. We show that if P is an infinite poset whose proper order ideals have cardinality strictly less than P, and κ is a cardinal

More information

INTRODUCTION TO CARDINAL NUMBERS

INTRODUCTION TO CARDINAL NUMBERS INTRODUCTION TO CARDINAL NUMBERS TOM CUCHTA 1. Introduction This paper was written as a final project for the 2013 Summer Session of Mathematical Logic 1 at Missouri S&T. We intend to present a short discussion

More information

NOTES FOR 197, SPRING 2018

NOTES FOR 197, SPRING 2018 NOTES FOR 197, SPRING 2018 We work in ZFDC, Zermelo-Frankel Theory with Dependent Choices, whose axioms are Zermelo s I - VII, the Replacement Axiom VIII and the axiom DC of dependent choices; when we

More information

Lecture Notes 1 Basic Concepts of Mathematics MATH 352

Lecture Notes 1 Basic Concepts of Mathematics MATH 352 Lecture Notes 1 Basic Concepts of Mathematics MATH 352 Ivan Avramidi New Mexico Institute of Mining and Technology Socorro, NM 87801 June 3, 2004 Author: Ivan Avramidi; File: absmath.tex; Date: June 11,

More information

Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes

Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes These notes form a brief summary of what has been covered during the lectures. All the definitions must be memorized and understood. Statements

More information

MH 7500 THEOREMS. (iii) A = A; (iv) A B = A B. Theorem 5. If {A α : α Λ} is any collection of subsets of a space X, then

MH 7500 THEOREMS. (iii) A = A; (iv) A B = A B. Theorem 5. If {A α : α Λ} is any collection of subsets of a space X, then MH 7500 THEOREMS Definition. A topological space is an ordered pair (X, T ), where X is a set and T is a collection of subsets of X such that (i) T and X T ; (ii) U V T whenever U, V T ; (iii) U T whenever

More information

Sets, Structures, Numbers

Sets, Structures, Numbers Chapter 1 Sets, Structures, Numbers Abstract In this chapter we shall introduce most of the background needed to develop the foundations of mathematical analysis. We start with sets and algebraic structures.

More information

Part II Logic and Set Theory

Part II Logic and Set Theory Part II Logic and Set Theory Theorems Based on lectures by I. B. Leader Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

Measures and Measure Spaces

Measures and Measure Spaces Chapter 2 Measures and Measure Spaces In summarizing the flaws of the Riemann integral we can focus on two main points: 1) Many nice functions are not Riemann integrable. 2) The Riemann integral does not

More information

Solutions to Tutorial 8 (Week 9)

Solutions to Tutorial 8 (Week 9) The University of Sydney School of Mathematics and Statistics Solutions to Tutorial 8 (Week 9) MATH3961: Metric Spaces (Advanced) Semester 1, 2018 Web Page: http://www.maths.usyd.edu.au/u/ug/sm/math3961/

More information

Diagonalize This. Iian Smythe. Department of Mathematics Cornell University. Olivetti Club November 26, 2013

Diagonalize This. Iian Smythe. Department of Mathematics Cornell University. Olivetti Club November 26, 2013 Diagonalize This Iian Smythe Department of Mathematics Cornell University Olivetti Club November 26, 2013 Iian Smythe (Cornell) Diagonalize This Nov 26, 2013 1 / 26 "Surprised Again on the Diagonal", Lun-Yi

More information

The Axiom of Choice and Zorn s Lemma

The Axiom of Choice and Zorn s Lemma The Axiom of Choice and Zorn s Lemma Any indexed family of sets A ={Ai: i I} may be conceived as a variable set, to wit, as a set varying over the index set I. Each Ai is then the value of the variable

More information

A Short Review of Cardinality

A Short Review of Cardinality Christopher Heil A Short Review of Cardinality November 14, 2017 c 2017 Christopher Heil Chapter 1 Cardinality We will give a short review of the definition of cardinality and prove some facts about the

More information

REVIEW OF ESSENTIAL MATH 346 TOPICS

REVIEW OF ESSENTIAL MATH 346 TOPICS REVIEW OF ESSENTIAL MATH 346 TOPICS 1. AXIOMATIC STRUCTURE OF R Doğan Çömez The real number system is a complete ordered field, i.e., it is a set R which is endowed with addition and multiplication operations

More information

Notes for Math 290 using Introduction to Mathematical Proofs by Charles E. Roberts, Jr.

Notes for Math 290 using Introduction to Mathematical Proofs by Charles E. Roberts, Jr. Notes for Math 290 using Introduction to Mathematical Proofs by Charles E. Roberts, Jr. Chapter : Logic Topics:. Statements, Negation, and Compound Statements.2 Truth Tables and Logical Equivalences.3

More information

MAT327 Big List. Ivan Khatchatourian Department of Mathematics University of Toronto. August 20, 2018

MAT327 Big List. Ivan Khatchatourian Department of Mathematics University of Toronto. August 20, 2018 MAT327 Big List Ivan Khatchatourian Department of Mathematics University of Toronto August 20, 2018 This is a large, constantly growing list of problems in basic point set topology. This list will include

More information

Well-Ordered Sets, Ordinals and Cardinals Ali Nesin 1 July 2001

Well-Ordered Sets, Ordinals and Cardinals Ali Nesin 1 July 2001 Well-Ordered Sets, Ordinals and Cardinals Ali Nesin 1 July 2001 Definitions. A set together with a binary relation < is called a partially ordered set (poset in short) if x (x < x) x y z ((x < y y < z)

More information

Chapter 2 Metric Spaces

Chapter 2 Metric Spaces Chapter 2 Metric Spaces The purpose of this chapter is to present a summary of some basic properties of metric and topological spaces that play an important role in the main body of the book. 2.1 Metrics

More information

Abstract Measure Theory

Abstract Measure Theory 2 Abstract Measure Theory Lebesgue measure is one of the premier examples of a measure on R d, but it is not the only measure and certainly not the only important measure on R d. Further, R d is not the

More information

Handout 2 (Correction of Handout 1 plus continued discussion/hw) Comments and Homework in Chapter 1

Handout 2 (Correction of Handout 1 plus continued discussion/hw) Comments and Homework in Chapter 1 22M:132 Fall 07 J. Simon Handout 2 (Correction of Handout 1 plus continued discussion/hw) Comments and Homework in Chapter 1 Chapter 1 contains material on sets, functions, relations, and cardinality that

More information

ON VAN DOUWEN SPACES AND RETRACTS OF βn

ON VAN DOUWEN SPACES AND RETRACTS OF βn ON VAN DOUWEN SPACES AND RETRACTS OF N ALAN DOW Abstract. Eric van Douwen [vd93] produced a maximal crowded extremally disconnected regular space and showed that its Stone-Čech compactification is an at

More information

AN EXPLORATION OF THE METRIZABILITY OF TOPOLOGICAL SPACES

AN EXPLORATION OF THE METRIZABILITY OF TOPOLOGICAL SPACES AN EXPLORATION OF THE METRIZABILITY OF TOPOLOGICAL SPACES DUSTIN HEDMARK Abstract. A study of the conditions under which a topological space is metrizable, concluding with a proof of the Nagata Smirnov

More information

On Transfinite Cardinal Numbers

On Transfinite Cardinal Numbers IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 14, Issue 4 Ver. IV (Jul - Aug 2018), PP 17-21 www.iosrjournals.org On Transfinite Cardinal Numbers J N Salunke* and B

More information

S. Mrówka introduced a topological space ψ whose underlying set is the. natural numbers together with an infinite maximal almost disjoint family(madf)

S. Mrówka introduced a topological space ψ whose underlying set is the. natural numbers together with an infinite maximal almost disjoint family(madf) PAYNE, CATHERINE ANN, M.A. On ψ (κ, M) spaces with κ = ω 1. (2010) Directed by Dr. Jerry Vaughan. 30pp. S. Mrówka introduced a topological space ψ whose underlying set is the natural numbers together with

More information