On Bias, Variance, 0/1-Loss, and the Curse-of-Dimensionality. Weiqiang Dong

Size: px
Start display at page:

Download "On Bias, Variance, 0/1-Loss, and the Curse-of-Dimensionality. Weiqiang Dong"

Transcription

1 On Bias, Variance, 0/1-Loss, and the Curse-of-Dimensionality Weiqiang Dong 1

2 The goal of the work presented here is to illustrate that classification error responds to error in the target probability estimates in a much different (and perhaps less intuitive) way than squared estimation error. 2

3 Overview Function Estimation and Estimation Error Classification and Classification Error Discussion 3

4 Function Estimate Input: x Output: y = f x + ε where f (x) ( target function ) is a single valued deterministic function of x and ε is a random variable, E(ε x) = 0. The goal is to obtain an estimate using a training data set T 4

5 Estimation Error The goal is to obtain an estimate using a training data set T Mean Square Error: E T [y f x T)] 2 = [f(x) E T f(x T)] 2 +E T [ f(x T) E T f(x T)] 2 + E ε [ε x] 2 1. Square of bias 2. Variance 3. Irreducible prediction error 5

6 E T [y f x T)]2 = [f(x) E T f(x T)]2 + E T [ f(x T) E T f(x T)]2 + E ε [ε x] 2 1. Square of bias 2. Variance 3. Irreducible prediction error 1. Square of bias: The extent to which the average prediction over all data sets differs from the desired regression function. 2. Variance: The extent to which the solutions for individual data sets vary around their average (sensitivity to the particular choice of data set). 6

7 Bias-Variance Trade-off y = f x + ε f x = sin(2πx) x is uniform distributed. The target data set T was obtained by first computing the corresponding values of the function sin(2πx) and then adding a small level of random noise. Christopher Bishop, Pattern Recognition and Machine Learning,

8 Bias-Variance Trade-off y = f x + ε f x = sin(2πx) We generate 25 data sets from f(x), each contain 25 data points. For each data set we fit the data using a polynomial function. Christopher Bishop, Pattern Recognition and Machine Learning,

9 The left column shows the result of fitting the model to the 25 data sets The right column shows the corresponding average of the 25 fits Christopher Bishop, Pattern Recognition and Machine Learning,

10 Bias-Variance Trade-off E T [y f x T)]2 = [f(x) E T f(x T)]2 + E T [ f(x T) E T f(x T)]2 + E ε [ε x] 2 1. Square of bias 2. Variance 3. Irreducible prediction error It is desirable to have both low biassquared and low variance since both contribute to the squared estimation error in equal measure. However, there is a natural bias-variance trade-off associated with function approximation. 10

11 Classification Input: x = {x 1,, x n } Output: y {0, 1} Prediction y {0, 1} The goal is to choose y x to minimize inaccuracy as characterized by the misclassification risk 11

12 The goal is to choose y x to minimize inaccuracy as characterized by the misclassification risk Here l 0 and l 1 are the losses incurred for the respective misclassifications, 1 is an indicator function, f (x) is given by 12

13 The goal is to choose y x to minimize inaccuracy as characterized by the misclassification risk The misclassification risk (2.2) is minimized by the ( Bayes ) rule which achieves the lowest possible risk 13

14 The goal is to choose y x to minimize inaccuracy as characterized by the misclassification risk The training data set T is used to learn a classification rule y(x T ) for (future) prediction. The usual paradigm for accomplishing this is to use the training data T to form an approximation (estimate) f(x T ) to f (x) Regular function estimation technology can be applied to obtain the estimate f(x T ), which is plugged into (2.6) to form a classification rule, i.e., neural networks, decision tree induction methods, and nearest neighbor methods. 14

15 Classification Error Let l 0 = l 1 = 1, the misclassification risk is minimized by the ( Bayes ) rule which achieves the lowest possible risk y B x = 1 f(x) 1 2 Prediction: y x T = 1 f x T 1 2 If the prediction agrees with that of the Bayes rule: If not: Pr( y(x T ) y) = Pr(y B (x) y) = min[ f(x), 1 f(x)] Pr( y(x T) y) = max[ f(x), 1 f(x)] = 2f(x) 1 + Pr(y B (x) y) 15

16 Classification Error Therefore one has Averaging over all training samples T, under the assumption that they are drawn independently of future data to be predicted, one has 16

17 Classification Error y B x = 1 f(x) 1 2 y(x) = 1 f(x) 1 2 Pr( y y B ) is the only quantity that involves the probability estimate f 17

18 Classification Error P Y = 1 = 0.9, P Y = 0 = 0.1 if0 x 0.5 P Y = 1 = 0.1, P Y = 0 = 0.9 if 0.5 x 1 Sample 100 observations from each class, fit a linear reg model and evaluate the estimate at x = 0.48 y(x) = 1 f(x) 1 2 Pr y y B = 0.1, f = Pr y = 1 x = 0.48 =

19 19

20 Classification Error P Y = 1 = 0.9, P Y = 0 = 0.1 if0 x 0.5 P Y = 1 = 0.1, P Y = 0 = 0.9 if 0.5 x 1 Sample 100 observations from each class, fit a linear reg model and evaluate the estimate at x = 0.48 Pr y y B = 0.1, f = Pr y = 1 x = 0.48 = 0.9 Mean f = mean f < 0.5 = Pr y y = 2f Pr y y B = 2(0.9) =

21 Classification Error In order to gain some intuition we approximate p( f ) by a normal distribution 21

22 Classification Error y(x) = 1 f(x) 1 2 Boundary bias: No E f f expression Pr y y B = Φ b(f, E f) var f 22

23 Classification Error Pr y y B = Φ b(f, E f) var f No E f f expression For a given var f, so long as the boundary bias remains negative, the classification error decreases with increasing E f 1/2 irrespective of the estimation bias (E f f). For positive boundary bias, the classification error increases with the distance of E f from 1/2 For a given E f, so long as the boundary bias remains negative, the classification error decreases with decrease in variance. For a positive boundary bias, the error increases with decrease in variance. 1 negative boundary bias 2 small enough variance 23

24 Classification Error Pr y y B = Φ b(f, E f) var f No E f f expression The key thing to note is that our estimate E f may be off from f by a huge margin. It does not matter as long as we take care of the fact that we lie on the appropriate side of 1/2 and cut down our variance(negative b). 24

25 25

26 Estimation Error E T [y f x T)]2 = [f(x) E T f(x T)]2 + E T [ f(x T) E T f(x T)]2 + E ε [ε x] 2 Classification Error 1. Square of bias 2. Variance 3. Irreducible prediction error The bias variance trade off is clearly very different for classification error than estimation error on the probability function f itself. The dependency of squared estimation error on E f and var f is additive whereas for classification error, there is a strong multiplicative interaction effect. Certain methods that are inappropriate for function estimation because of their very high bias may perform well for classification when their estimates are used in the context of a classification rule. rule. All that is required is a negative boundary bias and small enough variance. The procedures where the bias is caused by over smoothing have negative boundary bias, i.e., Naïve Bayes method, KNN. 26

27 Table 1 shows the values of average squared estimation error (Column 2) and classification error (Column 4) as a function of training sample size N (first column) along with the corresponding optimal values (Ke and Kc, respectively) of the number of nearest neighbors (third and fifth columns) at n = 20 dimensions. One sees that classification error is decreasing at a much faster rate than squared estimation error as N increases. The optimal value of K for squared estimation error (third column) is seen to be very slowly increasing with N. 27

28 One sees that classification error is not completely immune to the tendency of K- nearest neighbor methods to degrade as irrelevant inputs are included. But whereas the squared estimation error degrades by over a factor of 35 as the number of irrelevant inputs is increased by a factor of 20, the corresponding increase in classification error is less than a factor of six. One sees that squared estimation error is increasing at a much faster rate than classification error as n increases. 28

29 Squared estimation error (upper) and classification error (lower) as a function of number of nearest neighbors K, for n = 20 dimensions and training sample size N = One sees that choice of number of nearest neighbors is less critical for classification error so long as K is neither too small nor too large (here 500 K 2000). Quite often when K-nearest neighbors are compared to other classification methods a small value is used. The simple example examined here suggests that, at least in some situations, this may underestimate the performance achievable with the K-nearest neighbor approach. 29

30 Much research in classification has been devoted to achieving higher accuracy probability estimates under the presumption that this will generally lead to more accurate predictions. This need not always be the case. 30

Variance Reduction and Ensemble Methods

Variance Reduction and Ensemble Methods Variance Reduction and Ensemble Methods Nicholas Ruozzi University of Texas at Dallas Based on the slides of Vibhav Gogate and David Sontag Last Time PAC learning Bias/variance tradeoff small hypothesis

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Chapter 1. Introduction Shuai Huang April 21, 2014 Outline 1 What is Machine Learning? 2 Curve Fitting 3 Probability Theory 4 Model Selection 5 The curse of dimensionality

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University October 11, 2012 Today: Computational Learning Theory Probably Approximately Coorrect (PAC) learning theorem

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University October 11, 2012 Today: Computational Learning Theory Probably Approximately Coorrect (PAC) learning theorem

More information

Day 5: Generative models, structured classification

Day 5: Generative models, structured classification Day 5: Generative models, structured classification Introduction to Machine Learning Summer School June 18, 2018 - June 29, 2018, Chicago Instructor: Suriya Gunasekar, TTI Chicago 22 June 2018 Linear regression

More information

Understanding Generalization Error: Bounds and Decompositions

Understanding Generalization Error: Bounds and Decompositions CIS 520: Machine Learning Spring 2018: Lecture 11 Understanding Generalization Error: Bounds and Decompositions Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the

More information

Machine Learning. Lecture 9: Learning Theory. Feng Li.

Machine Learning. Lecture 9: Learning Theory. Feng Li. Machine Learning Lecture 9: Learning Theory Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 2018 Why Learning Theory How can we tell

More information

Opening Theme: Flexibility vs. Stability

Opening Theme: Flexibility vs. Stability Opening Theme: Flexibility vs. Stability Patrick Breheny August 25 Patrick Breheny BST 764: Applied Statistical Modeling 1/20 Introduction We begin this course with a contrast of two simple, but very different,

More information

Instance-based Learning CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016

Instance-based Learning CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016 Instance-based Learning CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2016 Outline Non-parametric approach Unsupervised: Non-parametric density estimation Parzen Windows Kn-Nearest

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 89 Part II

More information

BAYESIAN DECISION THEORY

BAYESIAN DECISION THEORY Last updated: September 17, 2012 BAYESIAN DECISION THEORY Problems 2 The following problems from the textbook are relevant: 2.1 2.9, 2.11, 2.17 For this week, please at least solve Problem 2.3. We will

More information

Support Vector Machines. CAP 5610: Machine Learning Instructor: Guo-Jun QI

Support Vector Machines. CAP 5610: Machine Learning Instructor: Guo-Jun QI Support Vector Machines CAP 5610: Machine Learning Instructor: Guo-Jun QI 1 Linear Classifier Naive Bayes Assume each attribute is drawn from Gaussian distribution with the same variance Generative model:

More information

PAC-learning, VC Dimension and Margin-based Bounds

PAC-learning, VC Dimension and Margin-based Bounds More details: General: http://www.learning-with-kernels.org/ Example of more complex bounds: http://www.research.ibm.com/people/t/tzhang/papers/jmlr02_cover.ps.gz PAC-learning, VC Dimension and Margin-based

More information

CLUe Training An Introduction to Machine Learning in R with an example from handwritten digit recognition

CLUe Training An Introduction to Machine Learning in R with an example from handwritten digit recognition CLUe Training An Introduction to Machine Learning in R with an example from handwritten digit recognition Ad Feelders Universiteit Utrecht Department of Information and Computing Sciences Algorithmic Data

More information

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION 1 Outline Basic terminology Features Training and validation Model selection Error and loss measures Statistical comparison Evaluation measures 2 Terminology

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

Intro. ANN & Fuzzy Systems. Lecture 15. Pattern Classification (I): Statistical Formulation

Intro. ANN & Fuzzy Systems. Lecture 15. Pattern Classification (I): Statistical Formulation Lecture 15. Pattern Classification (I): Statistical Formulation Outline Statistical Pattern Recognition Maximum Posterior Probability (MAP) Classifier Maximum Likelihood (ML) Classifier K-Nearest Neighbor

More information

Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones

Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones http://www.mpia.de/homes/calj/mlpr_mpia2008.html 1 1 Last week... supervised and unsupervised methods need adaptive

More information

Machine Learning

Machine Learning Machine Learning 10-701 Tom M. Mitchell Machine Learning Department Carnegie Mellon University February 1, 2011 Today: Generative discriminative classifiers Linear regression Decomposition of error into

More information

COS 424: Interacting with Data. Lecturer: Rob Schapire Lecture #15 Scribe: Haipeng Zheng April 5, 2007

COS 424: Interacting with Data. Lecturer: Rob Schapire Lecture #15 Scribe: Haipeng Zheng April 5, 2007 COS 424: Interacting ith Data Lecturer: Rob Schapire Lecture #15 Scribe: Haipeng Zheng April 5, 2007 Recapitulation of Last Lecture In linear regression, e need to avoid adding too much richness to the

More information

PAC-learning, VC Dimension and Margin-based Bounds

PAC-learning, VC Dimension and Margin-based Bounds More details: General: http://www.learning-with-kernels.org/ Example of more complex bounds: http://www.research.ibm.com/people/t/tzhang/papers/jmlr02_cover.ps.gz PAC-learning, VC Dimension and Margin-based

More information

Lecture : Probabilistic Machine Learning

Lecture : Probabilistic Machine Learning Lecture : Probabilistic Machine Learning Riashat Islam Reasoning and Learning Lab McGill University September 11, 2018 ML : Many Methods with Many Links Modelling Views of Machine Learning Machine Learning

More information

Fast learning rates for plug-in classifiers under the margin condition

Fast learning rates for plug-in classifiers under the margin condition Fast learning rates for plug-in classifiers under the margin condition Jean-Yves Audibert 1 Alexandre B. Tsybakov 2 1 Certis ParisTech - Ecole des Ponts, France 2 LPMA Université Pierre et Marie Curie,

More information

MODULE -4 BAYEIAN LEARNING

MODULE -4 BAYEIAN LEARNING MODULE -4 BAYEIAN LEARNING CONTENT Introduction Bayes theorem Bayes theorem and concept learning Maximum likelihood and Least Squared Error Hypothesis Maximum likelihood Hypotheses for predicting probabilities

More information

Machine Learning Practice Page 2 of 2 10/28/13

Machine Learning Practice Page 2 of 2 10/28/13 Machine Learning 10-701 Practice Page 2 of 2 10/28/13 1. True or False Please give an explanation for your answer, this is worth 1 pt/question. (a) (2 points) No classifier can do better than a naive Bayes

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University February 4, 2015 Today: Generative discriminative classifiers Linear regression Decomposition of error into

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Lecture 3. Linear Regression II Bastian Leibe RWTH Aachen

Lecture 3. Linear Regression II Bastian Leibe RWTH Aachen Advanced Machine Learning Lecture 3 Linear Regression II 02.11.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/ leibe@vision.rwth-aachen.de This Lecture: Advanced Machine Learning Regression

More information

L11: Pattern recognition principles

L11: Pattern recognition principles L11: Pattern recognition principles Bayesian decision theory Statistical classifiers Dimensionality reduction Clustering This lecture is partly based on [Huang, Acero and Hon, 2001, ch. 4] Introduction

More information

Hierarchical models for the rainfall forecast DATA MINING APPROACH

Hierarchical models for the rainfall forecast DATA MINING APPROACH Hierarchical models for the rainfall forecast DATA MINING APPROACH Thanh-Nghi Do dtnghi@cit.ctu.edu.vn June - 2014 Introduction Problem large scale GCM small scale models Aim Statistical downscaling local

More information

MIDTERM SOLUTIONS: FALL 2012 CS 6375 INSTRUCTOR: VIBHAV GOGATE

MIDTERM SOLUTIONS: FALL 2012 CS 6375 INSTRUCTOR: VIBHAV GOGATE MIDTERM SOLUTIONS: FALL 2012 CS 6375 INSTRUCTOR: VIBHAV GOGATE March 28, 2012 The exam is closed book. You are allowed a double sided one page cheat sheet. Answer the questions in the spaces provided on

More information

MIRA, SVM, k-nn. Lirong Xia

MIRA, SVM, k-nn. Lirong Xia MIRA, SVM, k-nn Lirong Xia Linear Classifiers (perceptrons) Inputs are feature values Each feature has a weight Sum is the activation activation w If the activation is: Positive: output +1 Negative, output

More information

Chap 1. Overview of Statistical Learning (HTF, , 2.9) Yongdai Kim Seoul National University

Chap 1. Overview of Statistical Learning (HTF, , 2.9) Yongdai Kim Seoul National University Chap 1. Overview of Statistical Learning (HTF, 2.1-2.6, 2.9) Yongdai Kim Seoul National University 0. Learning vs Statistical learning Learning procedure Construct a claim by observing data or using logics

More information

Machine Learning. Nonparametric Methods. Space of ML Problems. Todo. Histograms. Instance-Based Learning (aka non-parametric methods)

Machine Learning. Nonparametric Methods. Space of ML Problems. Todo. Histograms. Instance-Based Learning (aka non-parametric methods) Machine Learning InstanceBased Learning (aka nonparametric methods) Supervised Learning Unsupervised Learning Reinforcement Learning Parametric Non parametric CSE 446 Machine Learning Daniel Weld March

More information

Lecture 3: Statistical Decision Theory (Part II)

Lecture 3: Statistical Decision Theory (Part II) Lecture 3: Statistical Decision Theory (Part II) Hao Helen Zhang Hao Helen Zhang Lecture 3: Statistical Decision Theory (Part II) 1 / 27 Outline of This Note Part I: Statistics Decision Theory (Classical

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 4 Occam s Razor, Model Construction, and Directed Graphical Models https://people.orie.cornell.edu/andrew/orie6741 Cornell University September

More information

The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet.

The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet. CS 189 Spring 013 Introduction to Machine Learning Final You have 3 hours for the exam. The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet. Please

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.)

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.) Prof. Daniel Cremers 2. Regression (cont.) Regression with MLE (Rep.) Assume that y is affected by Gaussian noise : t = f(x, w)+ where Thus, we have p(t x, w, )=N (t; f(x, w), 2 ) 2 Maximum A-Posteriori

More information

Ensemble Methods. Charles Sutton Data Mining and Exploration Spring Friday, 27 January 12

Ensemble Methods. Charles Sutton Data Mining and Exploration Spring Friday, 27 January 12 Ensemble Methods Charles Sutton Data Mining and Exploration Spring 2012 Bias and Variance Consider a regression problem Y = f(x)+ N(0, 2 ) With an estimate regression function ˆf, e.g., ˆf(x) =w > x Suppose

More information

Nearest neighbor classification in metric spaces: universal consistency and rates of convergence

Nearest neighbor classification in metric spaces: universal consistency and rates of convergence Nearest neighbor classification in metric spaces: universal consistency and rates of convergence Sanjoy Dasgupta University of California, San Diego Nearest neighbor The primeval approach to classification.

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 2 In our

More information

Learning Linear Detectors

Learning Linear Detectors Learning Linear Detectors Instructor - Simon Lucey 16-423 - Designing Computer Vision Apps Today Detection versus Classification Bayes Classifiers Linear Classifiers Examples of Detection 3 Learning: Detection

More information

Multivariate statistical methods and data mining in particle physics

Multivariate statistical methods and data mining in particle physics Multivariate statistical methods and data mining in particle physics RHUL Physics www.pp.rhul.ac.uk/~cowan Academic Training Lectures CERN 16 19 June, 2008 1 Outline Statement of the problem Some general

More information

Course in Data Science

Course in Data Science Course in Data Science About the Course: In this course you will get an introduction to the main tools and ideas which are required for Data Scientist/Business Analyst/Data Analyst. The course gives an

More information

Recap from previous lecture

Recap from previous lecture Recap from previous lecture Learning is using past experience to improve future performance. Different types of learning: supervised unsupervised reinforcement active online... For a machine, experience

More information

Lecture 24: Other (Non-linear) Classifiers: Decision Tree Learning, Boosting, and Support Vector Classification Instructor: Prof. Ganesh Ramakrishnan

Lecture 24: Other (Non-linear) Classifiers: Decision Tree Learning, Boosting, and Support Vector Classification Instructor: Prof. Ganesh Ramakrishnan Lecture 24: Other (Non-linear) Classifiers: Decision Tree Learning, Boosting, and Support Vector Classification Instructor: Prof Ganesh Ramakrishnan October 20, 2016 1 / 25 Decision Trees: Cascade of step

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning Tobias Scheffer, Niels Landwehr Remember: Normal Distribution Distribution over x. Density function with parameters

More information

Support Vector Regression (SVR) Descriptions of SVR in this discussion follow that in Refs. (2, 6, 7, 8, 9). The literature

Support Vector Regression (SVR) Descriptions of SVR in this discussion follow that in Refs. (2, 6, 7, 8, 9). The literature Support Vector Regression (SVR) Descriptions of SVR in this discussion follow that in Refs. (2, 6, 7, 8, 9). The literature suggests the design variables should be normalized to a range of [-1,1] or [0,1].

More information

CSCI567 Machine Learning (Fall 2014)

CSCI567 Machine Learning (Fall 2014) CSCI567 Machine Learning (Fall 24) Drs. Sha & Liu {feisha,yanliu.cs}@usc.edu October 2, 24 Drs. Sha & Liu ({feisha,yanliu.cs}@usc.edu) CSCI567 Machine Learning (Fall 24) October 2, 24 / 24 Outline Review

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 2: Bayesian Basics https://people.orie.cornell.edu/andrew/orie6741 Cornell University August 25, 2016 1 / 17 Canonical Machine Learning

More information

Classification: The rest of the story

Classification: The rest of the story U NIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN CS598 Machine Learning for Signal Processing Classification: The rest of the story 3 October 2017 Today s lecture Important things we haven t covered yet Fisher

More information

Holdout and Cross-Validation Methods Overfitting Avoidance

Holdout and Cross-Validation Methods Overfitting Avoidance Holdout and Cross-Validation Methods Overfitting Avoidance Decision Trees Reduce error pruning Cost-complexity pruning Neural Networks Early stopping Adjusting Regularizers via Cross-Validation Nearest

More information

Learning Theory, Overfi1ng, Bias Variance Decomposi9on

Learning Theory, Overfi1ng, Bias Variance Decomposi9on Learning Theory, Overfi1ng, Bias Variance Decomposi9on Machine Learning 10-601B Seyoung Kim Many of these slides are derived from Tom Mitchell, Ziv- 1 Bar Joseph. Thanks! Any(!) learner that outputs a

More information

Notes on Discriminant Functions and Optimal Classification

Notes on Discriminant Functions and Optimal Classification Notes on Discriminant Functions and Optimal Classification Padhraic Smyth, Department of Computer Science University of California, Irvine c 2017 1 Discriminant Functions Consider a classification problem

More information

Curve Fitting Re-visited, Bishop1.2.5

Curve Fitting Re-visited, Bishop1.2.5 Curve Fitting Re-visited, Bishop1.2.5 Maximum Likelihood Bishop 1.2.5 Model Likelihood differentiation p(t x, w, β) = Maximum Likelihood N N ( t n y(x n, w), β 1). (1.61) n=1 As we did in the case of the

More information

Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 9

Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 9 Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 9 Slides adapted from Jordan Boyd-Graber Machine Learning: Chenhao Tan Boulder 1 of 39 Recap Supervised learning Previously: KNN, naïve

More information

Reminders. Thought questions should be submitted on eclass. Please list the section related to the thought question

Reminders. Thought questions should be submitted on eclass. Please list the section related to the thought question Linear regression Reminders Thought questions should be submitted on eclass Please list the section related to the thought question If it is a more general, open-ended question not exactly related to a

More information

Day 3: Classification, logistic regression

Day 3: Classification, logistic regression Day 3: Classification, logistic regression Introduction to Machine Learning Summer School June 18, 2018 - June 29, 2018, Chicago Instructor: Suriya Gunasekar, TTI Chicago 20 June 2018 Topics so far Supervised

More information

Final Overview. Introduction to ML. Marek Petrik 4/25/2017

Final Overview. Introduction to ML. Marek Petrik 4/25/2017 Final Overview Introduction to ML Marek Petrik 4/25/2017 This Course: Introduction to Machine Learning Build a foundation for practice and research in ML Basic machine learning concepts: max likelihood,

More information

Machine Learning Ensemble Learning I Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi Spring /

Machine Learning Ensemble Learning I Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi Spring / Machine Learning Ensemble Learning I Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi Spring 2015 http://ce.sharif.edu/courses/93-94/2/ce717-1 / Agenda Combining Classifiers Empirical view Theoretical

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Prediction Instructor: Yizhou Sun yzsun@ccs.neu.edu September 14, 2014 Today s Schedule Course Project Introduction Linear Regression Model Decision Tree 2 Methods

More information

Mining Classification Knowledge

Mining Classification Knowledge Mining Classification Knowledge Remarks on NonSymbolic Methods JERZY STEFANOWSKI Institute of Computing Sciences, Poznań University of Technology COST Doctoral School, Troina 2008 Outline 1. Bayesian classification

More information

CS-E3210 Machine Learning: Basic Principles

CS-E3210 Machine Learning: Basic Principles CS-E3210 Machine Learning: Basic Principles Lecture 4: Regression II slides by Markus Heinonen Department of Computer Science Aalto University, School of Science Autumn (Period I) 2017 1 / 61 Today s introduction

More information

Gaussian with mean ( µ ) and standard deviation ( σ)

Gaussian with mean ( µ ) and standard deviation ( σ) Slide from Pieter Abbeel Gaussian with mean ( µ ) and standard deviation ( σ) 10/6/16 CSE-571: Robotics X ~ N( µ, σ ) Y ~ N( aµ + b, a σ ) Y = ax + b + + + + 1 1 1 1 1 1 1 1 1 1, ~ ) ( ) ( ), ( ~ ), (

More information

CPSC 340: Machine Learning and Data Mining. Gradient Descent Fall 2016

CPSC 340: Machine Learning and Data Mining. Gradient Descent Fall 2016 CPSC 340: Machine Learning and Data Mining Gradient Descent Fall 2016 Admin Assignment 1: Marks up this weekend on UBC Connect. Assignment 2: 3 late days to hand it in Monday. Assignment 3: Due Wednesday

More information

EVALUATING MISCLASSIFICATION PROBABILITY USING EMPIRICAL RISK 1. Victor Nedel ko

EVALUATING MISCLASSIFICATION PROBABILITY USING EMPIRICAL RISK 1. Victor Nedel ko 94 International Journal "Information Theories & Applications" Vol13 [Raudys, 001] Raudys S, Statistical and neural classifiers, Springer, 001 [Mirenkova, 00] S V Mirenkova (edel ko) A method for prediction

More information

Introduction to Machine Learning and Cross-Validation

Introduction to Machine Learning and Cross-Validation Introduction to Machine Learning and Cross-Validation Jonathan Hersh 1 February 27, 2019 J.Hersh (Chapman ) Intro & CV February 27, 2019 1 / 29 Plan 1 Introduction 2 Preliminary Terminology 3 Bias-Variance

More information

Lecture 4 Discriminant Analysis, k-nearest Neighbors

Lecture 4 Discriminant Analysis, k-nearest Neighbors Lecture 4 Discriminant Analysis, k-nearest Neighbors Fredrik Lindsten Division of Systems and Control Department of Information Technology Uppsala University. Email: fredrik.lindsten@it.uu.se fredrik.lindsten@it.uu.se

More information

Machine Learning (CSE 446): Neural Networks

Machine Learning (CSE 446): Neural Networks Machine Learning (CSE 446): Neural Networks Noah Smith c 2017 University of Washington nasmith@cs.washington.edu November 6, 2017 1 / 22 Admin No Wednesday office hours for Noah; no lecture Friday. 2 /

More information

Lecture 2. Judging the Performance of Classifiers. Nitin R. Patel

Lecture 2. Judging the Performance of Classifiers. Nitin R. Patel Lecture 2 Judging the Performance of Classifiers Nitin R. Patel 1 In this note we will examine the question of how to udge the usefulness of a classifier and how to compare different classifiers. Not only

More information

Nearest Neighbor. Machine Learning CSE546 Kevin Jamieson University of Washington. October 26, Kevin Jamieson 2

Nearest Neighbor. Machine Learning CSE546 Kevin Jamieson University of Washington. October 26, Kevin Jamieson 2 Nearest Neighbor Machine Learning CSE546 Kevin Jamieson University of Washington October 26, 2017 2017 Kevin Jamieson 2 Some data, Bayes Classifier Training data: True label: +1 True label: -1 Optimal

More information

Contents Lecture 4. Lecture 4 Linear Discriminant Analysis. Summary of Lecture 3 (II/II) Summary of Lecture 3 (I/II)

Contents Lecture 4. Lecture 4 Linear Discriminant Analysis. Summary of Lecture 3 (II/II) Summary of Lecture 3 (I/II) Contents Lecture Lecture Linear Discriminant Analysis Fredrik Lindsten Division of Systems and Control Department of Information Technology Uppsala University Email: fredriklindsten@ituuse Summary of lecture

More information

Consistency of Nearest Neighbor Methods

Consistency of Nearest Neighbor Methods E0 370 Statistical Learning Theory Lecture 16 Oct 25, 2011 Consistency of Nearest Neighbor Methods Lecturer: Shivani Agarwal Scribe: Arun Rajkumar 1 Introduction In this lecture we return to the study

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Prediction Instructor: Yizhou Sun yzsun@ccs.neu.edu September 21, 2015 Announcements TA Monisha s office hour has changed to Thursdays 10-12pm, 462WVH (the same

More information

Chapter ML:II (continued)

Chapter ML:II (continued) Chapter ML:II (continued) II. Machine Learning Basics Regression Concept Learning: Search in Hypothesis Space Concept Learning: Search in Version Space Measuring Performance ML:II-96 Basics STEIN/LETTMANN

More information

Midterm Review CS 6375: Machine Learning. Vibhav Gogate The University of Texas at Dallas

Midterm Review CS 6375: Machine Learning. Vibhav Gogate The University of Texas at Dallas Midterm Review CS 6375: Machine Learning Vibhav Gogate The University of Texas at Dallas Machine Learning Supervised Learning Unsupervised Learning Reinforcement Learning Parametric Y Continuous Non-parametric

More information

Machine Learning Lecture 7

Machine Learning Lecture 7 Course Outline Machine Learning Lecture 7 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Statistical Learning Theory 23.05.2016 Discriminative Approaches (5 weeks) Linear Discriminant

More information

Artificial Neural Networks

Artificial Neural Networks Artificial Neural Networks Stephan Dreiseitl University of Applied Sciences Upper Austria at Hagenberg Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support Knowledge

More information

Support Vector Machine (continued)

Support Vector Machine (continued) Support Vector Machine continued) Overlapping class distribution: In practice the class-conditional distributions may overlap, so that the training data points are no longer linearly separable. We need

More information

VBM683 Machine Learning

VBM683 Machine Learning VBM683 Machine Learning Pinar Duygulu Slides are adapted from Dhruv Batra Bias is the algorithm's tendency to consistently learn the wrong thing by not taking into account all the information in the data

More information

Max Margin-Classifier

Max Margin-Classifier Max Margin-Classifier Oliver Schulte - CMPT 726 Bishop PRML Ch. 7 Outline Maximum Margin Criterion Math Maximizing the Margin Non-Separable Data Kernels and Non-linear Mappings Where does the maximization

More information

Support Vector Machine. Natural Language Processing Lab lizhonghua

Support Vector Machine. Natural Language Processing Lab lizhonghua Support Vector Machine Natural Language Processing Lab lizhonghua Support Vector Machine Introduction Theory SVM primal and dual problem Parameter selection and practical issues Compare to other classifier

More information

+E x, y ρ. (fw (x) y) 2] (4)

+E x, y ρ. (fw (x) y) 2] (4) Bias-Variance Analysis Let X be a set (or space) of objects and let ρ be a fixed probabiity distribution (or density) on X R. In other worlds ρ is a probability density on pairs x, y with x X and y R.

More information

9/26/17. Ridge regression. What our model needs to do. Ridge Regression: L2 penalty. Ridge coefficients. Ridge coefficients

9/26/17. Ridge regression. What our model needs to do. Ridge Regression: L2 penalty. Ridge coefficients. Ridge coefficients What our model needs to do regression Usually, we are not just trying to explain observed data We want to uncover meaningful trends And predict future observations Our questions then are Is β" a good estimate

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Lecture 4: Curse of Dimensionality, High Dimensional Feature Spaces, Linear Classifiers, Linear Regression, Python, and Jupyter Notebooks Peter Belhumeur Computer Science

More information

Look before you leap: Some insights into learner evaluation with cross-validation

Look before you leap: Some insights into learner evaluation with cross-validation Look before you leap: Some insights into learner evaluation with cross-validation Gitte Vanwinckelen and Hendrik Blockeel Department of Computer Science, KU Leuven, Belgium, {gitte.vanwinckelen,hendrik.blockeel}@cs.kuleuven.be

More information

SCUOLA DI SPECIALIZZAZIONE IN FISICA MEDICA. Sistemi di Elaborazione dell Informazione. Regressione. Ruggero Donida Labati

SCUOLA DI SPECIALIZZAZIONE IN FISICA MEDICA. Sistemi di Elaborazione dell Informazione. Regressione. Ruggero Donida Labati SCUOLA DI SPECIALIZZAZIONE IN FISICA MEDICA Sistemi di Elaborazione dell Informazione Regressione Ruggero Donida Labati Dipartimento di Informatica via Bramante 65, 26013 Crema (CR), Italy http://homes.di.unimi.it/donida

More information

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Overview Introduction Linear Methods for Dimensionality Reduction Nonlinear Methods and Manifold

More information

Linear vs Non-linear classifier. CS789: Machine Learning and Neural Network. Introduction

Linear vs Non-linear classifier. CS789: Machine Learning and Neural Network. Introduction Linear vs Non-linear classifier CS789: Machine Learning and Neural Network Support Vector Machine Jakramate Bootkrajang Department of Computer Science Chiang Mai University Linear classifier is in the

More information

INTRODUCTION TO PATTERN RECOGNITION

INTRODUCTION TO PATTERN RECOGNITION INTRODUCTION TO PATTERN RECOGNITION INSTRUCTOR: WEI DING 1 Pattern Recognition Automatic discovery of regularities in data through the use of computer algorithms With the use of these regularities to take

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information

Machine Learning Tom M. Mitchell Machine Learning Department Carnegie Mellon University. September 20, 2012

Machine Learning Tom M. Mitchell Machine Learning Department Carnegie Mellon University. September 20, 2012 Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University September 20, 2012 Today: Logistic regression Generative/Discriminative classifiers Readings: (see class website)

More information

Discriminative Learning and Big Data

Discriminative Learning and Big Data AIMS-CDT Michaelmas 2016 Discriminative Learning and Big Data Lecture 2: Other loss functions and ANN Andrew Zisserman Visual Geometry Group University of Oxford http://www.robots.ox.ac.uk/~vgg Lecture

More information

1/sqrt(B) convergence 1/B convergence B

1/sqrt(B) convergence 1/B convergence B The Error Coding Method and PICTs Gareth James and Trevor Hastie Department of Statistics, Stanford University March 29, 1998 Abstract A new family of plug-in classication techniques has recently been

More information

MINIMUM EXPECTED RISK PROBABILITY ESTIMATES FOR NONPARAMETRIC NEIGHBORHOOD CLASSIFIERS. Maya Gupta, Luca Cazzanti, and Santosh Srivastava

MINIMUM EXPECTED RISK PROBABILITY ESTIMATES FOR NONPARAMETRIC NEIGHBORHOOD CLASSIFIERS. Maya Gupta, Luca Cazzanti, and Santosh Srivastava MINIMUM EXPECTED RISK PROBABILITY ESTIMATES FOR NONPARAMETRIC NEIGHBORHOOD CLASSIFIERS Maya Gupta, Luca Cazzanti, and Santosh Srivastava University of Washington Dept. of Electrical Engineering Seattle,

More information

Machine Learning. Ensemble Methods. Manfred Huber

Machine Learning. Ensemble Methods. Manfred Huber Machine Learning Ensemble Methods Manfred Huber 2015 1 Bias, Variance, Noise Classification errors have different sources Choice of hypothesis space and algorithm Training set Noise in the data The expected

More information

Bayesian Learning (II)

Bayesian Learning (II) Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning (II) Niels Landwehr Overview Probabilities, expected values, variance Basic concepts of Bayesian learning MAP

More information

Overfitting, Bias / Variance Analysis

Overfitting, Bias / Variance Analysis Overfitting, Bias / Variance Analysis Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 8, 207 / 40 Outline Administration 2 Review of last lecture 3 Basic

More information

Large-Scale Nearest Neighbor Classification with Statistical Guarantees

Large-Scale Nearest Neighbor Classification with Statistical Guarantees Large-Scale Nearest Neighbor Classification with Statistical Guarantees Guang Cheng Big Data Theory Lab Department of Statistics Purdue University Joint Work with Xingye Qiao and Jiexin Duan July 3, 2018

More information