1. The Problem. To recapitulate the argument, suppose we want totasetofnmeasurements y to a set

Size: px
Start display at page:

Download "1. The Problem. To recapitulate the argument, suppose we want totasetofnmeasurements y to a set"

Transcription

1 Paul Aver CBX 9, 74 October 8, 99 Applied Fitting Theor III Non-Optimal Least Squares Fitting and Multiple Scattering Section : The Problem Section 2: Non-Optimal Least Squares Fitting Section 3: Non-Optimal Fitting with Constraints Section 4: Simple Application to Multiple Scattering Section 5: Summar of Multiple Scattering Formulas. The Problem In the rst paper in this series, I gave a general overview of least squares tting theor and showed that if the dependence of the measurements on the parameters can be linearized, the parameters which minimize the 2 function can be obtained rather easil, even in the presence of constraints. To recapitulate the argument, suppose we want totasetofnmeasurements to a set of m parameters through the relation l = f l () for l n. If the f l () are nonlinear we can expand them about an approximate solution = A : l = f l ( A )+(@f l =@ i )( i, Ai ). This linearization permits us to dene the 2 statistic as 2 =(,f A ( A ),A(, A )) t V, (, A) t V, (, A) (, f A ( A ), A( A, )) where =, f A ( A ), A li l ()=@ ia is a constant matrix, =, A is the new vector of unknowns, and V, is the inverse of the covariance matrix of the measurements. Since the 2 measures how much the measurements \miss" the function, the solution we want is that which minimizes 2, 2 =@ i = 0. The solution was found to be = V A A t V, with covariance matrix V, where V = V A =(A t V, A),. The Gauss- Markov theorem states that the parameters obtained b this procedure are both unbiased and have minimum uncertainties, i.e., the are the best parameters that can be determined b an method. So far, so good.

2 Under normal circumstances the measurment errors l are independent of each other, i.e., the weight matrix V, can be written in diagonal form: V, = 0 = = = 2 n C A ; which is obtained b inversion of the diagonal covariance matrix V ij = h i j i = 2 i ij. Thus it is a trivial matter to t an arbitrar number of measurements. There are situations, however, where the data measurements l are not independent of each other, so that movement of a particular measurement will cause the simultaneous adjustment of other measurements. An example of this is multiple scattering, in which a single scattering event at a particular point aects the drift distance measurements at all subsequent points. In this case the deviation of the measurements from the original track will have an independent component due to random measurement errors and a correlated component due to the presence of the multiple scattering event. The correlations among the data points can be computed and put into the measurement covariance matrix V. The problem now is obtaining V, : the inversion of the covariance matrix can be prohibitivel time consuming when the number of measurements n is large. In the CLEO central detector, for instance, a track can have as man as 7 measurements. Inverting a 7 7 matrix at least once per track to account for multiple scattering is just not ver practical, unless one has a lot of CPU time to waste. 2. Non-Optimal Least Squares Fitting Several attempts have been made in the literature to account for multiple scattering eects in track tting. The methods emploed range from the mundane to the elegant, but a common goal links all of them: nding a set of track parameters whose errors are as close as possible to the optimal values calculated in Section, but without the high cost in CPU time which that technique entails. I call this the \optimal" approach. 2

3 For most tracks inclusion of multiple scattering eects in the tting algorithm does not improve the parameters of the t signicantl, except for ver slow tracks. A large amount of programming and CPU time is invested in making marginal improvements in the track parameters. In fact, what is man times desired is not the best possible parameters, but parameters whose errors are well understood. Knowledge of these errors is important when the are used as input to kinematic tting or when a sensitive lifetime measurement depends criticall on uncertainties in the vertex resolution. In both cases, lack of understanding of the parameter errors and their correlations can give erroneous phsics results, especiall when those results are based on a quoted number of standard deviations. I start b noting that the procedure whereb one looks for parameters which minimize the 2 function is merel one possible estimation scheme although it is the optimal one and that others are possible. Assume, for instance, that an approximation for V, exists which we call V ~,. V ~, will almost certainl be diagonal, but this assumption is not necessar in what is to follow. We dene a modied form of the 2 function ~ 2 =(,f A,A) t V ~, (,f A,A) (, A) t V ~, (, A) The parameters obtained b minimizing ~ 2 are given b = V ~ A A t V ~,, where V ~ A = (A t V ~, A),. The covariance matrix must be calculated from the denition V h t i = ~ V A A t ~ V, ht i ~ V, A ~ V A = ~ V A A t ~ V, V ~ V, A ~ V A : This equation collapses to V = V A when ~ V, = V,. Notice what has been accomplished here: I have produced an estimate of the tting parameters and their associated covariance matrix without inverting the measurement covariance matrix V. Furthermore, the estimate is unbiased (the parameters converge to the true values if the experiment is repeated indenitel) and the covariance matrix and hence the errors are known exactl. The price paid for this estimation scheme is that the parameter errors are no longer the best possible; that would require the minimization of the original 2 function. However, if V ~, is a reasonable representation of V, then the \non-optimal" estimate ma in fact be close to optimal. 3

4 3. Non-Optimal Fitting with Constraints The eect of constraints can easil be taken into account b the standard Lagrange Multiplier method where the \initial" unconstrained values and their covariance matrix are obtained b the non-optimal tting procedure. This procedure works exactl the same as if the parameters were obtained b the normal optimal least squares technique. The reason is because constraints act onl to move the tted parameters awa from their unconstrained values and the relative motion of each of the parameters is governed b the covariance matrix of the t, which has absorbed all the information regarding details of the measurement errors and correlations. This point was discussed in Section 5 of the rst paper in this series, CBX 9{ Simple Application to Multiple Scattering Particles moving through a detector suer innumerable collisions which alter the trajector of the particle b a stochastic process. In general, a particle traversing material of length x and a radiation length L R will be deected in an particular plane b an random angle whose r.m.s. value can be calculated from h 2 0:04 2 x i = = Hx; p L R where p is the momentum in GeV/c and is the velocit in units of c. Note that this is the width in each of two planes perpendicular to each other and ling along the ight path. I am onl accounting for standard multiple scattering eects that can be described b Gaussian statistics; single scattering theor is too complicated to incorporate in least squares tting, at least b me. Now consider a particle moving in a solenoidal detector (having a magnetic eld in the z direction) from a point near the center and assume that the drift distance to a wire is measured in ever laer. If the particle has sucient momentum so that there is not much bending, we can equate this situation to a simple geometr in which n planar drift chamber are arraed along the x axis which is dened to be the direction of the particle in the r, plane (i.e., x is reall a measurement of the radius r and measures the 4

5 drift distance). The covariance matrix of the measurements can be represented b the sum V = V 0 + V D + V C, where V 0 = diag( 2 i ) is the component due to independent measurement errors, V D is due to multiple scattering at discrete surfaces and V C is a result of continuous multiple scattering in gas. Let's consider discrete scatterers rst. If material of thickness t is present atx=x S, the track will be deected stochasticall from its nominal ight path b an angle s, causing the drift distance measurements at plane i to be changed b an amount i = s (x i, x S ). The covariance matrix element (V D ) ij can then be calculated from its denition, viz. (V D ) ij = h i j i = h 2 s i(x i, x S )(x j, x S ) Ht(x i, x S )(x j, x S ); and is 0 if x i x S or x j x S. Note that t should reect the total path length of the track through the scatterer; this is expeciall important for tracks having signicant components in the z direction. Continuous scattering is slightl more complicated. Assume the presence of gas in the region x G x x G2, where L = x G2, x G. If we divide up the path into small regions x the total scattering angle and deviation up to a point x in the gas volume is = = NX l NX l x = NX (N, l) l x; where x =(x,x G)=N.Thus the covariance matrix element for points x i and x j (where x j x i ) in the gas volume is (V G ) ij = XN i N j X (N i, l)(n j, l 0 )h l l 0ix 2 = l = 0 Z x i x G = H 2 (x i, x G) 2 (x j, x G, 3 (x i, x G)); H(x i, x)(x j, x)dx where I have used h l l 0i = Hx ll 0. 5

6 If x i and x j both are beond the gas region the above equations have to be modied to XN G = l XN G XN G = l x + (x, x G2) = (N G, l) l x + (x, x G2); where N G = L=x. In this case the covariance matrix is (V D ) ij = HL 3 L2 + 2 L[(x i, x G2)+(x j,x G2)]+(x j,x G2)(x i, x G2) : If x j is beond the gas region and x i is inside it the covariance matrix becomes (V D ) ij = H 2 (x i, x G) 2 (L, 3 (x i, x G)+(x j,x G2)): x i and x j are interchanged in the above equation if x i is beond the gas region and x j is inside of it. 5. Summar of Multiple Scattering Formulas A summar of the contributions to the multiple scattering matrix V = V 0+V D +V C is shown below (remember that x j and x i are dened such that x j x i ).. Measurement error: (V 0) ij = 2 i ij where i is the measurement error of laer i. 2. Scattering from discrete material (thin) at x = x S and thickness t (remember that H =(0:04=p) 2 =L R is the square of the r.m.s. scattering angle per unit length in a plane 6

7 and L R is the radiation length): (V D ) ij = Ht(x i, x S )(x j, x S ) for x i ;x j x S =0 otherwise 3. Scattering in a gas region x G x x G2; L= x G, x G2: (V G ) ij = H 2 (x i, x G) 2 (x j, x G, 3 (x i, x G)) for x G x i ;x j x G2 (V D ) ij = H 2 (x i, x G) 2 (L, 3 (x i, x G)+(x j,x G2)) for x G x i x G2; x j x G2 (V D ) ij = H 2 (x j, x G) 2 (L, 3 (x j, x G)+(x i,x G2)) for x G x j x G2; x i x G2 (V D ) ij = HL 3 L2+ 2 L[(x i, x G2)+(x j,x G2)] + (x j, x G2)(x i, x G2) for x i ;x j x G2 =0 otherwise 7

2. How Tracks are Measured Charged particle tracks in high energy physics experiments are measured through a two step process. First, detector measure

2. How Tracks are Measured Charged particle tracks in high energy physics experiments are measured through a two step process. First, detector measure Applied Fitting Theory V Track Fitting Using the Kalman Filter Paul Avery CBX 92{39 August 2, 992 Section : Introduction Section 2: How Tracks are Measured Section 3: The Standard Track Fit Section 4:

More information

Tracking and Fitting. Natalia Kuznetsova, UCSB. BaBar Detector Physics Series. November 19, November 19, 1999 Natalia Kuznetsova, UCSB 1

Tracking and Fitting. Natalia Kuznetsova, UCSB. BaBar Detector Physics Series. November 19, November 19, 1999 Natalia Kuznetsova, UCSB 1 Tracking and Fitting Natalia Kuznetsova, UCSB BaBar Detector Physics Series November 19, 1999 November 19, 1999 Natalia Kuznetsova, UCSB 1 Outline BaBar tracking devices: SVT and DCH Track finding SVT

More information

Linear Regression and Its Applications

Linear Regression and Its Applications Linear Regression and Its Applications Predrag Radivojac October 13, 2014 Given a data set D = {(x i, y i )} n the objective is to learn the relationship between features and the target. We usually start

More information

Drift Chamber Tracking Volume. 40 cm. 35 cm. 31 cm.

Drift Chamber Tracking Volume. 40 cm. 35 cm. 31 cm. Permeable Materials in the CLEO III Magnetic Field James J. Welch October 13, 1997 Two pairs of superconducting magnets will be inserted into CLEO as part of the CESR/CLEO phase III upgrade. Stray elds

More information

On the determination of the longitudinal. component of the fragmentation function of the. N.B.Skachkov, O.G.Smirnova, L.G.Tkatchev.

On the determination of the longitudinal. component of the fragmentation function of the. N.B.Skachkov, O.G.Smirnova, L.G.Tkatchev. DELPHI Collaboration DELPHI 95- PHYS 472 30 January, 995 On the determination of the longitudinal component of the fragmentation function of the process e + e??! h + X from DELPHI data N.B.Skachkov, O.G.Smirnova,

More information

1 GSW Gaussian Elimination

1 GSW Gaussian Elimination Gaussian elimination is probabl the simplest technique for solving a set of simultaneous linear equations, such as: = A x + A x + A x +... + A x,,,, n n = A x + A x + A x +... + A x,,,, n n... m = Am,x

More information

z = f (x; y) f (x ; y ) f (x; y) f (x; y )

z = f (x; y) f (x ; y ) f (x; y) f (x; y ) BEEM0 Optimization Techiniques for Economists Lecture Week 4 Dieter Balkenborg Departments of Economics University of Exeter Since the fabric of the universe is most perfect, and is the work of a most

More information

A NEW TECHNIQUE FOR DETERMINING CHARGE AND MOMENTUM OF ELECTRONS AND POSITRONS USING CALORIMETRY AND SILICON TRACKING. Qun Fan & Arie Bodek

A NEW TECHNIQUE FOR DETERMINING CHARGE AND MOMENTUM OF ELECTRONS AND POSITRONS USING CALORIMETRY AND SILICON TRACKING. Qun Fan & Arie Bodek A NEW TECHNIQUE FOR DETERMINING CHARGE AND MOMENTUM OF ELECTRONS AND POSITRONS USING CALORIMETRY AND SILICON TRACKING Qun Fan & Arie Bodek Department of Physics and Astronomy University of Rochester Rochester,

More information

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2018 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

More information

National Accelerator Laboratory

National Accelerator Laboratory Fermi National Accelerator Laboratory FERMILAB-Conf-97/149-E DØ QCD Results Using the? Jet-Finding Algorithm in p p Collisions at p s = 1800 GeV D. Lincoln For the D Collaboration University of Michigan

More information

CS281 Section 4: Factor Analysis and PCA

CS281 Section 4: Factor Analysis and PCA CS81 Section 4: Factor Analysis and PCA Scott Linderman At this point we have seen a variety of machine learning models, with a particular emphasis on models for supervised learning. In particular, we

More information

> 12 GeV. (a) Value 43% 7-12 GeV 11% 13% 11% 9% 8% (b) Uncertainty. narrow resonan ces 14% 31% 11% ρ 25%

> 12 GeV. (a) Value 43% 7-12 GeV 11% 13% 11% 9% 8% (b) Uncertainty. narrow resonan ces 14% 31% 11% ρ 25% Measurement of R Between 2-5 GeV Derrick Kong University of Hawaii We have obtained measurements of the total cross section for e + e? annihilation into hadronic nal states for 6 energy points (2.6, 3.2,

More information

Section 3.1. ; X = (0, 1]. (i) f : R R R, f (x, y) = x y

Section 3.1. ; X = (0, 1]. (i) f : R R R, f (x, y) = x y Paul J. Bruillard MATH 0.970 Problem Set 6 An Introduction to Abstract Mathematics R. Bond and W. Keane Section 3.1: 3b,c,e,i, 4bd, 6, 9, 15, 16, 18c,e, 19a, 0, 1b Section 3.: 1f,i, e, 6, 1e,f,h, 13e,

More information

Elementary maths for GMT

Elementary maths for GMT Elementary maths for GMT Linear Algebra Part 2: Matrices, Elimination and Determinant m n matrices The system of m linear equations in n variables x 1, x 2,, x n a 11 x 1 + a 12 x 2 + + a 1n x n = b 1

More information

σ ε ω 1 /σ ω ε α=ω 2 /ω 1

σ ε ω 1 /σ ω ε α=ω 2 /ω 1 The measurement line at the Antiproton Decelerator Ulrik Mikkelsen Institute for Storage Ring Facilities, ISA, University of Aarhus, DK{8000 Aarhus C, Denmark and PS-CA, CERN, CH-1211 Geneva 23, Switzerland

More information

Detectors for High Energy Physics

Detectors for High Energy Physics Detectors for High Energy Physics Ingrid-Maria Gregor, DESY DESY Summer Student Program 2017 Hamburg July 26th/27th Disclaimer Particle Detectors are very complex, a lot of physics is behind the detection

More information

Autonomous Equations / Stability of Equilibrium Solutions. y = f (y).

Autonomous Equations / Stability of Equilibrium Solutions. y = f (y). Autonomous Equations / Stabilit of Equilibrium Solutions First order autonomous equations, Equilibrium solutions, Stabilit, Longterm behavior of solutions, direction fields, Population dnamics and logistic

More information

1 Solutions to selected problems

1 Solutions to selected problems Solutions to selected problems Section., #a,c,d. a. p x = n for i = n : 0 p x = xp x + i end b. z = x, y = x for i = : n y = y + x i z = zy end c. y = (t x ), p t = a for i = : n y = y(t x i ) p t = p

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures AB = BA = I,

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures AB = BA = I, FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 7 MATRICES II Inverse of a matri Sstems of linear equations Solution of sets of linear equations elimination methods 4

More information

Constrained Optimization

Constrained Optimization Constrained Optimization Joshua Wilde, revised by Isabel Tecu, Takeshi Suzuki and María José Boccardi August 13, 2013 1 General Problem Consider the following general constrained optimization problem:

More information

No. of dimensions 1. No. of centers

No. of dimensions 1. No. of centers Contents 8.6 Course of dimensionality............................ 15 8.7 Computational aspects of linear estimators.................. 15 8.7.1 Diagonalization of circulant andblock-circulant matrices......

More information

pp physics, RWTH, WS 2003/04, T.Hebbeker

pp physics, RWTH, WS 2003/04, T.Hebbeker 3. PP TH 03/04 Accelerators and Detectors 1 pp physics, RWTH, WS 2003/04, T.Hebbeker 2003-12-16 1.2.4. (Inner) tracking and vertexing As we will see, mainly three types of tracking detectors are used:

More information

The model reduction algorithm proposed is based on an iterative two-step LMI scheme. The convergence of the algorithm is not analyzed but examples sho

The model reduction algorithm proposed is based on an iterative two-step LMI scheme. The convergence of the algorithm is not analyzed but examples sho Model Reduction from an H 1 /LMI perspective A. Helmersson Department of Electrical Engineering Linkoping University S-581 8 Linkoping, Sweden tel: +6 1 816 fax: +6 1 86 email: andersh@isy.liu.se September

More information

ICHEP'96 Ref. pa DELPHI CONF 41. Submitted to Pa 1, Pa 5, Pa 7 25 June, Measurement of the Partial Decay. had.

ICHEP'96 Ref. pa DELPHI CONF 41. Submitted to Pa 1, Pa 5, Pa 7 25 June, Measurement of the Partial Decay. had. ICHEP'96 Ref. pa01-061 DELPHI 96-115 CONF 41 Submitted to Pa 1, Pa 5, Pa 7 25 June, 1996 Pl 7, Pl 9 Measurement of the Partial Decay Width R 0 b = b b had with the DELPHI detector at LEP Preliminary DELPHI

More information

Strain Transformation and Rosette Gage Theory

Strain Transformation and Rosette Gage Theory Strain Transformation and Rosette Gage Theor It is often desired to measure the full state of strain on the surface of a part, that is to measure not onl the two etensional strains, and, but also the shear

More information

The Yukawa Particle and the Heisenberg Uncertainty Principle Revisited *

The Yukawa Particle and the Heisenberg Uncertainty Principle Revisited * OpenStax-CNX module: m42669 1 The Yukawa Particle and the Heisenberg Uncertainty Principle Revisited * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 19: Midterm 2 Review Prof. John Gunnar Carlsson November 22, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I November 22, 2010 1 / 34 Administrivia

More information

is a 3 4 matrix. It has 3 rows and 4 columns. The first row is the horizontal row [ ]

is a 3 4 matrix. It has 3 rows and 4 columns. The first row is the horizontal row [ ] Matrices: Definition: An m n matrix, A m n is a rectangular array of numbers with m rows and n columns: a, a, a,n a, a, a,n A m,n =...... a m, a m, a m,n Each a i,j is the entry at the i th row, j th column.

More information

Study of the Optimum Momentum Resolution in the. CMS Muon System

Study of the Optimum Momentum Resolution in the. CMS Muon System Study of the Optimum Momentum Resolution in the CMS Muon System T. McDonald Oklahoma Baptist University, Shawnee, OK D. Acosta University of Florida, Gainesville, FL July 24, 2000 Abstract This project

More information

z = 1 2 x 3 4 y + 3 y dt

z = 1 2 x 3 4 y + 3 y dt Exact First Order Differential Equations This Lecture covers material in Section 2.6. A first order differential equations is exact if it can be written in the form M(x, ) + N(x, ) d dx = 0, where M =

More information

Unit 3 NOTES Honors Common Core Math 2 1. Day 1: Properties of Exponents

Unit 3 NOTES Honors Common Core Math 2 1. Day 1: Properties of Exponents Unit NOTES Honors Common Core Math Da : Properties of Eponents Warm-Up: Before we begin toda s lesson, how much do ou remember about eponents? Use epanded form to write the rules for the eponents. OBJECTIVE

More information

p(z)

p(z) Chapter Statistics. Introduction This lecture is a quick review of basic statistical concepts; probabilities, mean, variance, covariance, correlation, linear regression, probability density functions and

More information

Numerical Integration for Multivariable. October Abstract. We consider the numerical integration of functions with point singularities over

Numerical Integration for Multivariable. October Abstract. We consider the numerical integration of functions with point singularities over Numerical Integration for Multivariable Functions with Point Singularities Yaun Yang and Kendall E. Atkinson y October 199 Abstract We consider the numerical integration of functions with point singularities

More information

Probability: The Heisenberg Uncertainty Principle *

Probability: The Heisenberg Uncertainty Principle * OpenStax-CNX module: m42579 1 Probability: The Heisenberg Uncertainty Principle * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract

More information

Nonlinear Perturbations for High Luminosity e+e Collider Interaction Region

Nonlinear Perturbations for High Luminosity e+e Collider Interaction Region Nonlinear Perturbations for High Luminosit e+e Collider Interaction Region A.Bogomagkov, E.Levichev, P.Piminov Budker Institute of Nuclear Phsics Novosibirsk, RUSSIA IAS HEP Conference, 18-1 Jan 016, Hong

More information

Phys 201. Matrices and Determinants

Phys 201. Matrices and Determinants Phys 201 Matrices and Determinants 1 1.1 Matrices 1.2 Operations of matrices 1.3 Types of matrices 1.4 Properties of matrices 1.5 Determinants 1.6 Inverse of a 3 3 matrix 2 1.1 Matrices A 2 3 7 =! " 1

More information

HADRONIZATION IN A NUCLEAR ENVIRONMENT. Nationaal Instituut voor Kernfysica en Hoge-Energiefysica, NIKHEF

HADRONIZATION IN A NUCLEAR ENVIRONMENT. Nationaal Instituut voor Kernfysica en Hoge-Energiefysica, NIKHEF 98 7 HADRONIZATION IN A NUCLEAR ENVIRONMENT J. J. VAN HUNEN (for the HERMES collaboration) Nationaal Instituut voor Kernfysica en Hoge-Energiefysica, NIKHEF Postbus 41882, 1009 DB Amsterdam, The Netherlands

More information

ICHEP94 Ref. gls0229 c DELPHI PHYS 410. Submitted to Pa 01 1st June, New Measurement of the b = had. Branching Ratio of the Z with

ICHEP94 Ref. gls0229 c DELPHI PHYS 410. Submitted to Pa 01 1st June, New Measurement of the b = had. Branching Ratio of the Z with ICHEP94 Ref. gls229 c DELPHI 94-93 PHYS 41 Submitted to Pa 1 1st June, 1994 Pl 2 New Measurement of the b b = had Branching Ratio of the Z with Minimal Model Dependence Preliminary DELPHI Collaboration

More information

Methods for Solving Linear Systems Part 2

Methods for Solving Linear Systems Part 2 Methods for Solving Linear Systems Part 2 We have studied the properties of matrices and found out that there are more ways that we can solve Linear Systems. In Section 7.3, we learned that we can use

More information

MATH LECTURE NOTES FIRST ORDER SEPARABLE DIFFERENTIAL EQUATIONS OVERVIEW

MATH LECTURE NOTES FIRST ORDER SEPARABLE DIFFERENTIAL EQUATIONS OVERVIEW MATH 234 - LECTURE NOTES FIRST ORDER SEPARABLE DIFFERENTIAL EQUATIONS OVERVIEW Now will will begin with the process of learning how to solve differential equations. We will learn different techniques for

More information

Econometria. Estimation and hypotheses testing in the uni-equational linear regression model: cross-section data. Luca Fanelli. University of Bologna

Econometria. Estimation and hypotheses testing in the uni-equational linear regression model: cross-section data. Luca Fanelli. University of Bologna Econometria Estimation and hypotheses testing in the uni-equational linear regression model: cross-section data Luca Fanelli University of Bologna luca.fanelli@unibo.it Estimation and hypotheses testing

More information

DELPHI Collaboration DELPHI PHYS 656. Measurement of mass dierence between? and + and mass of -neutrino from three-prong -decays

DELPHI Collaboration DELPHI PHYS 656. Measurement of mass dierence between? and + and mass of -neutrino from three-prong -decays DELPHI Collaboration DELPHI 96-167 PHYS 656 2 December, 1996 Measurement of mass dierence between? and + and mass of -neutrino from three-prong -decays M.Chapkin V.Obraztsov IHEP, Protvino Abstract The

More information

Math 313 Chapter 1 Review

Math 313 Chapter 1 Review Math 313 Chapter 1 Review Howard Anton, 9th Edition May 2010 Do NOT write on me! Contents 1 1.1 Introduction to Systems of Linear Equations 2 2 1.2 Gaussian Elimination 3 3 1.3 Matrices and Matrix Operations

More information

The Multivariate Gaussian Distribution

The Multivariate Gaussian Distribution The Multivariate Gaussian Distribution Chuong B. Do October, 8 A vector-valued random variable X = T X X n is said to have a multivariate normal or Gaussian) distribution with mean µ R n and covariance

More information

Results from BABAR/PEP-II - One Year of Operations

Results from BABAR/PEP-II - One Year of Operations SLAC-PUB-9158 March 22 Results from /PEP-II - One Year of Operations Paul C. Bloom Representing the Collaboration Presented at the 4th International Conference on Hyperons, Charm and Beauty Hadrons, 6/27/2

More information

1 + x 1/2. b) For what values of k is g a quasi-concave function? For what values of k is g a concave function? Explain your answers.

1 + x 1/2. b) For what values of k is g a quasi-concave function? For what values of k is g a concave function? Explain your answers. Questions and Answers from Econ 0A Final: Fall 008 I have gone to some trouble to explain the answers to all of these questions, because I think that there is much to be learned b working through them

More information

MAC Module 2 Systems of Linear Equations and Matrices II. Learning Objectives. Upon completing this module, you should be able to :

MAC Module 2 Systems of Linear Equations and Matrices II. Learning Objectives. Upon completing this module, you should be able to : MAC 0 Module Systems of Linear Equations and Matrices II Learning Objectives Upon completing this module, you should be able to :. Find the inverse of a square matrix.. Determine whether a matrix is invertible..

More information

dn/dy y

dn/dy y DOE/ER/456-298-INT96-2-3 Frame Dependence of Parton Cascade results CU-TP-794 Bin Zhang Department of Phsics, Columbia Universit, New York, NY 27 and INT, Universit of Washington, Seatle, WA 9895-55 Yang

More information

ground state degeneracy ground state energy

ground state degeneracy ground state energy Searching Ground States in Ising Spin Glass Systems Steven Homer Computer Science Department Boston University Boston, MA 02215 Marcus Peinado German National Research Center for Information Technology

More information

Orientations of digraphs almost preserving diameter

Orientations of digraphs almost preserving diameter Orientations of digraphs almost preserving diameter Gregor Gutin Department of Computer Science Roal Hollowa, Universit of London Egham, Surre TW20 0EX, UK, gutin@dcs.rhbnc.ac.uk Anders Yeo BRICS, Department

More information

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2016 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

More information

Fall Quarter 2010 UCSB Physics 225A & UCSD Physics 214 Homework 1

Fall Quarter 2010 UCSB Physics 225A & UCSD Physics 214 Homework 1 Fall Quarter 2010 UCSB Physics 225A & UCSD Physics 214 Homework 1 Problem 2 has nothing to do with what we have done in class. It introduces somewhat strange coordinates called rapidity and pseudorapidity

More information

Constrained Optimization

Constrained Optimization 1 / 22 Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 30, 2015 2 / 22 1. Equality constraints only 1.1 Reduced gradient 1.2 Lagrange

More information

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2.

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2. APPENDIX A Background Mathematics A. Linear Algebra A.. Vector algebra Let x denote the n-dimensional column vector with components 0 x x 2 B C @. A x n Definition 6 (scalar product). The scalar product

More information

A matrix over a field F is a rectangular array of elements from F. The symbol

A matrix over a field F is a rectangular array of elements from F. The symbol Chapter MATRICES Matrix arithmetic A matrix over a field F is a rectangular array of elements from F The symbol M m n (F ) denotes the collection of all m n matrices over F Matrices will usually be denoted

More information

In the published results 9, the value of top cross section was extracted within the assumption of SM. This value was then used to evaluate the number

In the published results 9, the value of top cross section was extracted within the assumption of SM. This value was then used to evaluate the number IS THERE ONLY TOP QUARK? - REVIEW OF TOP RESULTS M.J. WANG CDF, MS-8, Fermilab, P.O. Box, Batavia, IL, USA E-mail: ming@fnal.gov The CDF published top results on counting experiments, cross section measurements(

More information

Inverses. Stephen Boyd. EE103 Stanford University. October 28, 2017

Inverses. Stephen Boyd. EE103 Stanford University. October 28, 2017 Inverses Stephen Boyd EE103 Stanford University October 28, 2017 Outline Left and right inverses Inverse Solving linear equations Examples Pseudo-inverse Left and right inverses 2 Left inverses a number

More information

GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511)

GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511) GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511) D. ARAPURA Gaussian elimination is the go to method for all basic linear classes including this one. We go summarize the main ideas. 1.

More information

nm nm

nm nm The Quantum Mechanical Model of the Atom You have seen how Bohr s model of the atom eplains the emission spectrum of hdrogen. The emission spectra of other atoms, however, posed a problem. A mercur atom,

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 Recitation 3 1 Gaussian Graphical Models: Schur s Complement Consider

More information

Notes on Convexity. Roy Radner Stern School, NYU. September 11, 2006

Notes on Convexity. Roy Radner Stern School, NYU. September 11, 2006 Notes on Convexit Ro Radner Stern School, NYU September, 2006 Abstract These notes are intended to complement the material in an intermediate microeconomic theor course. In particular, the provide a rigorous

More information

OPAL =0.08) (%) (y cut R 3. N events T ρ. L3 Data PYTHIA ARIADNE HERWIG. L3 Data PYTHIA ARIADNE HERWIG

OPAL =0.08) (%) (y cut R 3. N events T ρ. L3 Data PYTHIA ARIADNE HERWIG. L3 Data PYTHIA ARIADNE HERWIG CR-244 15 May 1996 QCD-RESULTS AND STUDIES OF FOUR FERMION PROCESSES AT THE INTERMEDIATE LEP ENERGY SCALE p s = 130{136 GEV Hans-Christian Schultz-Coulon Universitat Freiburg, Fakultat fur Physik Hermann-Herder-Strae

More information

Introduction For a long time, so-called wall functions has been used for calculating wall-bounded turbulent ows. It means that boundar conditions can

Introduction For a long time, so-called wall functions has been used for calculating wall-bounded turbulent ows. It means that boundar conditions can Helsini Universit of Technolog CFD-group/ Laborator of Applied Thermodnamics MEMO No CFD/TERMO-9-96 DATE: Ma 24,996 TITLE TEST CALCULATIONS OF VARIOUS TWO-EQUATION LOW REYNOLDS NUMBER TURBULENCE MODELS

More information

1.6 ELECTRONIC STRUCTURE OF THE HYDROGEN ATOM

1.6 ELECTRONIC STRUCTURE OF THE HYDROGEN ATOM 1.6 ELECTRONIC STRUCTURE OF THE HYDROGEN ATOM 23 How does this wave-particle dualit require us to alter our thinking about the electron? In our everda lives, we re accustomed to a deterministic world.

More information

Force on a Moving Charge in a Magnetic Field: Examples and Applications *

Force on a Moving Charge in a Magnetic Field: Examples and Applications * OpenStax-CNX module: m55387 1 Force on a Moving Charge in a Magnetic Field: Examples and Applications * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2 a: Conditional Probability and Bayes Rule

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2 a: Conditional Probability and Bayes Rule 2E1395 - Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2 a: Conditional Probability and Bayes Rule Exercise 2A1 We can call X the observation (X i indicates that the program

More information

Kalman Filter. Predict: Update: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q

Kalman Filter. Predict: Update: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q Kalman Filter Kalman Filter Predict: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q Update: K = P k k 1 Hk T (H k P k k 1 Hk T + R) 1 x k k = x k k 1 + K(z k H k x k k 1 ) P k k =(I

More information

Second year seminar. Massimiliano Marchisone. Torino, 03/05/2013. Università di Torino e INFN Université Blaise Pascal de Clermont-Ferrand et LPC

Second year seminar. Massimiliano Marchisone. Torino, 03/05/2013. Università di Torino e INFN Université Blaise Pascal de Clermont-Ferrand et LPC Second year seminar Massimiliano Marchisone Università di orino e INFN Université Blaise Pascal de Clermont-Ferrand et LPC orino, 03/05/2013 Massimiliano Marchisone, 03/05/2013 Second year seminar, orino

More information

New concepts: Span of a vector set, matrix column space (range) Linearly dependent set of vectors Matrix null space

New concepts: Span of a vector set, matrix column space (range) Linearly dependent set of vectors Matrix null space Lesson 6: Linear independence, matrix column space and null space New concepts: Span of a vector set, matrix column space (range) Linearly dependent set of vectors Matrix null space Two linear systems:

More information

Interaction of Particles with Matter

Interaction of Particles with Matter Chapter 10 Interaction of Particles with Matter A scattering process at an experimental particle physics facility is called an event. Stable particles emerging from an event are identified and their momenta

More information

Recent CMS results on heavy quarks and hadrons. Alice Bean Univ. of Kansas for the CMS Collaboration

Recent CMS results on heavy quarks and hadrons. Alice Bean Univ. of Kansas for the CMS Collaboration Recent CMS results on heavy quarks and hadrons Alice Bean Univ. of Kansas for the CMS Collaboration July 25, 2013 Outline CMS at the Large Hadron Collider Cross section measurements Search for state decaying

More information

MAE 323: Lecture 1. Review

MAE 323: Lecture 1. Review This review is divided into two parts. The first part is a mini-review of statics and solid mechanics. The second part is a review of matrix/vector fundamentals. The first part is given as an refresher

More information

4 Strain true strain engineering strain plane strain strain transformation formulae

4 Strain true strain engineering strain plane strain strain transformation formulae 4 Strain The concept of strain is introduced in this Chapter. The approimation to the true strain of the engineering strain is discussed. The practical case of two dimensional plane strain is discussed,

More information

Mark Scheme 2605 June 2005

Mark Scheme 2605 June 2005 Mark Scheme 6 June (i α, αβ, αβγ (ii α ( α αβ ( 7 ( (iii Roots cannot all be real One real, two comple (conjugate roots (iv α β ( α ( αβ (v ( ( ( 6 αβγ βγ ( γα γβ α αβ βγ ( α βγ α( αβγ βγ α βγ ( γ α( α

More information

Physics of fusion power. Lecture 13 : Diffusion equation / transport

Physics of fusion power. Lecture 13 : Diffusion equation / transport Physics of fusion power Lecture 13 : Diffusion equation / transport Many body problem The plasma has some 10 22 particles. No description is possible that allows for the determination of position and velocity

More information

Tracking properties of the ATLAS Transition Radiation Tracker (TRT)

Tracking properties of the ATLAS Transition Radiation Tracker (TRT) 2 racking properties of the ALAS ransition Radiation racker (R) 3 4 5 6 D V Krasnopevtsev on behalf of ALAS R collaboration National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),

More information

Linear Algebra, 4th day, Thursday 7/1/04 REU Info:

Linear Algebra, 4th day, Thursday 7/1/04 REU Info: Linear Algebra, 4th day, Thursday 7/1/04 REU 004. Info http//people.cs.uchicago.edu/laci/reu04. Instructor Laszlo Babai Scribe Nick Gurski 1 Linear maps We shall study the notion of maps between vector

More information

ψ( ) k (r) which take the asymtotic form far away from the scattering center: k (r) = E kψ (±) φ k (r) = e ikr

ψ( ) k (r) which take the asymtotic form far away from the scattering center: k (r) = E kψ (±) φ k (r) = e ikr Scattering Theory Consider scattering of two particles in the center of mass frame, or equivalently scattering of a single particle from a potential V (r), which becomes zero suciently fast as r. The initial

More information

Frascati Physics Series Vol. XVI (2000), pp PHYSICS AND DETECTORS FOR DANE { Frascati, Nov , 1999 BNL E787 results on K +! + Takahiro S

Frascati Physics Series Vol. XVI (2000), pp PHYSICS AND DETECTORS FOR DANE { Frascati, Nov , 1999 BNL E787 results on K +! + Takahiro S Frascati Physics Series Vol. XVI (2000), pp. 000-000 PHYSICS AND DETECTORS FOR DANE { Frascati, Nov. 16-19, 1999 BNL E787 results on K +! + Takahiro Sato KEK ; High Energy Accelerator Research Organization

More information

BMVC 1996 doi: /c.10.58

BMVC 1996 doi: /c.10.58 B-Fitting: An Estimation Technique With Automatic Parameter Selection. N.A.Thacker, D.Prendergast, and P.I.Rockett. Dept. of Electronic and Electrical Engineering University of Sheeld email: n.thacker@sheffield.ac.uk

More information

N.G.Bean, D.A.Green and P.G.Taylor. University of Adelaide. Adelaide. Abstract. process of an MMPP/M/1 queue is not a MAP unless the queue is a

N.G.Bean, D.A.Green and P.G.Taylor. University of Adelaide. Adelaide. Abstract. process of an MMPP/M/1 queue is not a MAP unless the queue is a WHEN IS A MAP POISSON N.G.Bean, D.A.Green and P.G.Taylor Department of Applied Mathematics University of Adelaide Adelaide 55 Abstract In a recent paper, Olivier and Walrand (994) claimed that the departure

More information

Introduction Radiative habhas can be used as one of the calibrations of the aar electromagnetic calorimeter (EM). Radiative habha events (e ; e +! e ;

Introduction Radiative habhas can be used as one of the calibrations of the aar electromagnetic calorimeter (EM). Radiative habha events (e ; e +! e ; aar Note # 52 September 28, 2 Kinematic Fit for the EM Radiative habha alibration J. M. auer University of Mississippi bstract For the radiative habha calibration of aar's electromagnetic calorimeter,

More information

Linear Algebra Review

Linear Algebra Review Linear Algebra Review ORIE 4741 September 1, 2017 Linear Algebra Review September 1, 2017 1 / 33 Outline 1 Linear Independence and Dependence 2 Matrix Rank 3 Invertible Matrices 4 Norms 5 Projection Matrix

More information

KINEMATIC MAGNETIC RECONNECTION AT 3D NULL POINTS

KINEMATIC MAGNETIC RECONNECTION AT 3D NULL POINTS KINEMATIC MAGNETIC RECONNECTION AT 3D NULL POINTS D. I. Pontin, G. Hornig, and E. R. Priest Mathematical Institute, Universit of St Andrews, St Andrews, Fife, KY6 9SS, UK, Email: davidp@mcs.st-and.ac.uk

More information

Gas Chamber. (for the HERMES collaboration) Nationaal Instituut voor Kernfysica en Hoge-Energiefysica, NIKHEF

Gas Chamber. (for the HERMES collaboration) Nationaal Instituut voor Kernfysica en Hoge-Energiefysica, NIKHEF HERMES 97-34 Performance of the HERMES Micro-Strip Gas Chamber J.J. van Hunen 1 (for the HERMES collaboration) Nationaal Instituut voor Kernfysica en Hoge-Energiefysica, NIKHEF Postbus 41882, 19 DB Amsterdam,

More information

(a) B-V 6 V. (b) B-V

(a) B-V 6 V. (b) B-V 721 TOWARDS AN IMPROVED MODEL OF THE GALAXY Johan Holmberg 1, Chris Flynn 2, Lennart Lindegren 1 1 Lund Observatory, Box 43, SE-22100 Lund, Sweden 2 Tuorla Observatory, Vaisalantie 20, FI-21500 Piikkio,

More information

1 Solutions to selected problems

1 Solutions to selected problems Solutions to selected problems Section., #a,c,d. a. p x = n for i = n : 0 p x = xp x + i end b. z = x, y = x for i = : n y = y + x i z = zy end c. y = (t x ), p t = a for i = : n y = y(t x i ) p t = p

More information

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation Variations ECE 6540, Lecture 10 Last Time BLUE (Best Linear Unbiased Estimator) Formulation Advantages Disadvantages 2 The BLUE A simplification Assume the estimator is a linear system For a single parameter

More information

2 Tikhonov Regularization and ERM

2 Tikhonov Regularization and ERM Introduction Here we discusses how a class of regularization methods originally designed to solve ill-posed inverse problems give rise to regularized learning algorithms. These algorithms are kernel methods

More information

Consider a slender rod, fixed at one end and stretched, as illustrated in Fig ; the original position of the rod is shown dotted.

Consider a slender rod, fixed at one end and stretched, as illustrated in Fig ; the original position of the rod is shown dotted. 4.1 Strain If an object is placed on a table and then the table is moved, each material particle moves in space. The particles undergo a displacement. The particles have moved in space as a rigid bod.

More information

Math Review ECON 300: Spring 2014 Benjamin A. Jones MATH/CALCULUS REVIEW

Math Review ECON 300: Spring 2014 Benjamin A. Jones MATH/CALCULUS REVIEW MATH/CALCULUS REVIEW SLOPE, INTERCEPT, and GRAPHS REVIEW (adapted from Paul s Online Math Notes) Let s start with some basic review material to make sure everybody is on the same page. The slope of a line

More information

Polynomial functions over nite commutative rings

Polynomial functions over nite commutative rings Polynomial functions over nite commutative rings Balázs Bulyovszky a, Gábor Horváth a, a Institute of Mathematics, University of Debrecen, Pf. 400, Debrecen, 4002, Hungary Abstract We prove a necessary

More information

1 Introduction A large proportion of all optimization problems arising in an industrial or scientic context are characterized by the presence of nonco

1 Introduction A large proportion of all optimization problems arising in an industrial or scientic context are characterized by the presence of nonco A Global Optimization Method, BB, for General Twice-Dierentiable Constrained NLPs I. Theoretical Advances C.S. Adjiman, S. Dallwig 1, C.A. Floudas 2 and A. Neumaier 1 Department of Chemical Engineering,

More information

a11 a A = : a 21 a 22

a11 a A = : a 21 a 22 Matrices The study of linear systems is facilitated by introducing matrices. Matrix theory provides a convenient language and notation to express many of the ideas concisely, and complicated formulas are

More information

Absolute D Hadronic Branching Fractions at CLEO-c

Absolute D Hadronic Branching Fractions at CLEO-c Absolute D Hadronic Branching Fractions at CLEO-c Xin Shi Cornell University CLEO Collaboration Lake Louise Winter Institute 24 February 2011 Xin Shi (Cornell University) Absolute D Hadronic BFs at CLEO-c

More information

Calculating Forward Rate Curves Based on Smoothly Weighted Cubic Splines

Calculating Forward Rate Curves Based on Smoothly Weighted Cubic Splines Calculating Forward Rate Curves Based on Smoothly Weighted Cubic Splines February 8, 2017 Adnan Berberovic Albin Göransson Jesper Otterholm Måns Skytt Peter Szederjesi Contents 1 Background 1 2 Operational

More information

where (E) is the partition function of the uniform ensemble. Recalling that we have (E) = E (E) (E) i = ij x (E) j E = ij ln (E) E = k ij ~ S E = kt i

where (E) is the partition function of the uniform ensemble. Recalling that we have (E) = E (E) (E) i = ij x (E) j E = ij ln (E) E = k ij ~ S E = kt i G25.265: Statistical Mechanics Notes for Lecture 4 I. THE CLASSICAL VIRIAL THEOREM (MICROCANONICAL DERIVATION) Consider a system with Hamiltonian H(x). Let x i and x j be specic components of the phase

More information

Status of GEp III high Q form factor ratio analysis. Andrew Puckett, MIT on behalf of the GEp III Collaboration

Status of GEp III high Q form factor ratio analysis. Andrew Puckett, MIT on behalf of the GEp III Collaboration Status of GEp III high Q form factor ratio 2 analysis Andrew Puckett, MIT on behalf of the GEp III Collaboration Experiments E04 108 and E04 019 e' e p Analysis Method Two primary tasks for form factor

More information

Math 4381 / 6378 Symmetry Analysis

Math 4381 / 6378 Symmetry Analysis Math 438 / 6378 Smmetr Analsis Elementar ODE Review First Order Equations Ordinar differential equations of the form = F(x, ( are called first order ordinar differential equations. There are a variet of

More information

More on Lagrange multipliers

More on Lagrange multipliers More on Lagrange multipliers CE 377K April 21, 2015 REVIEW The standard form for a nonlinear optimization problem is min x f (x) s.t. g 1 (x) 0. g l (x) 0 h 1 (x) = 0. h m (x) = 0 The objective function

More information