Sparse Grid Tutorial

Size: px
Start display at page:

Download "Sparse Grid Tutorial"

Transcription

1 Sparse Grid Tutorial Jochen Garcke Centre for Mathematics and its Applications Mathematical Sciences Institute Australian National University Canberra ACT 0200, Australia August 12, Introduction The sparse grid method is a special discretization technique, which allows to cope with the curse of dimensionality of grid based approaches to some extent. It is based on a hierarchical basis [Fab09, Yse86, Yse92], a representation of a discrete function space which is equivalent to the conventional nodal basis, and a sparse tensor product construction. The method was originally developed for the solution of partial differential equations [Zen91, Gri91, Bun92, Bal94, Ach03] and is now also successfully used for integral equations [FHP96, GOS99], interpolation and approximation [Bas85, Tem89, SS99, GK00, Kna00, KW05b]. Furthermore there is work on stochastic differential equations [ST03a, ST03b], differential forms in the context of the Maxwell-equation [GH03] and with a wavelet-based sparse grid discretization parabolic problems are treated in [vps04]. Besides Galerkin finite element approaches there are also finite differences on sparse grids [Gri98, Sch99, Kos02, GK03] and finite volume approaches [Hem95]. Besides working directly in the hierarchical basis a sparse grid representation of a function can also be computed using the combination technique [GSZ92], where a certain sequence of partial functions is linearly combined. Applications include eigenvalue problems [GG00], numerical integration [GG98, BD03, GG03], parabolic equations for options pricing [Rei04], machine learning [GGT01, GG02, Gar04, GG05] and data analysis [LNSH05] and it is used for solving the stochastic master equation applied to gene regulatory networks [HBS + 06]. The underlying idea of sparse grids can be traced back to the Russian mathematician Smolyak [Smo63], who used it for numerical integration. The concept is also closely related to hyperbolic crosses [Bab60, Tem89, Tem93a, Tem93b], boolean methods [Del82, DS89], discrete blending methods [BDJ92] and splitting extrapolation methods [LLS95]. 1

2 For the representation of a function f defined over a d-dimensional domain the sparse grid approach employs O(h 1 n log(h 1 n ) d 1 ) grid points in the discretization process, where h n := 2 n denotes the mesh size. It can be shown that the order of approximation to describe a function f, under certain smoothness conditions, is O(h 2 n log(h 1 n ) d 1 ). This is in contrast to conventional grid methods, which need O(h d n ) for an accuracy of O(h2 n ). Since the curse of dimensionality of full grid method arises for sparse grids at this much smaller extent they can be used for higher dimensional problems. For ease of presentation we will consider the domain Ω = [0, 1] d here and in the following. This situation can be achieved for bounded rectangular domains by a proper rescaling. 2 Sparse grids We introduce some notation while describing the conventional case of a piecewise linear finite element basis. Let l = (l 1,..., l d ) d denote a multi-index. We define the anisotropic grid Ω l on Ω with mesh size h l := (h l1,..., h ld ) := (2 l1,..., 2 l d ), it has different, but equidistant mesh sizes in each coordinate direction t. This way the grid Ω l consists of the points x l,j := (x l1,j 1,..., x ld,j d ), (1) with x lt,j t := j t h lt = j t 2 lt and j t = 0,..., 2 lt. For a grid Ω l we define an associated space V l of piecewise d-linear functions V l := span{φ l,j j t = 0,..., 2 lt, t = 1,..., d}, (2) which is spanned by the usual basis of d-dimensional piecewise d-linear hat functions d φ l,j (x) := φ lt,j t (x t ). (3) t=1 The one-dimensional functions φ l,j (x) with support [x l,j h l, x l,j + h l ] [0, 1] = [(j 1)h l, (j + 1)h l ] [0, 1] are defined by: { 1 x/hl j, x [(j 1)h φ l,j (x) = l, (j + 1)h l ] [0, 1]; 0, otherwise. (4) See Figure 1(a) for a one-dimensional example and Figure 2 for a two-dimensional basis function. 2.1 Hierarchical subspace-splitting Till now and in the following the multi-index l d denotes the level, i.e. the discretization resolution, of a grid Ω l, a space V l or a function f l, whereas the multi-index j d gives the position of a grid point x l,j or the corresponding basis function φ l,j ( ). 2

3 (a) Nodal basis für V 3 (b) Hierarchical basis für V 3 Figure 1: Nodal and hierarchical basis of level 3 Figure 2: Basis function φ 1,1 on grid Ω 2,1. 3

4 We now define a hierarchical difference space W l via W l := V l \ d V l et, (5) t=1 where e t is the t-th unit vector. In other words, W l consists of all φ k,j V l which are not included in any of the spaces V k smaller 1 than V l. To complete the definition, we formally set V l := 0, if l t = 1 for at least one t {1,..., d}. As can easily be seen from (2) and (5), the definition of the index set { } B l := j d j t = 1,..., 2 lt 1, j t odd, t = 1,..., d, if l t > 0, (6) j t = 0, 1, t = 1,..., d, if l t = 0 leads to W l = span{φ l,j j B l }. (7) These hierarchical difference spaces now allow us the definition of a multilevel subspace decomposition. We can write V n := V n as a direct sum of subspaces V n := n n W l = W l. (8) l 1=0 l d =0 l n Here and in the following refers to the element-wise relation. l := max 1 t d l t and l 1 := d t=1 l t are the discrete L - and the discrete L 1 -norm of l, respectively. The family of functions {φ l,j j B l } n l=0 (9) is just the hierarchical basis [Fab09, Yse86, Yse92] of V n, which generalizes the one-dimensional hierarchical basis [Fab09], see Figure 1(b), to the d-dimensional case with a tensor product ansatz. Observe that the supports of the basis functions φ l,j (x), which span W l, are disjunct. See Figure 3 for a representation of the supports of the basis functions of the difference spaces W l1,l 2 forming V 3,3. Now each function f V n can be represented as f(x) = α l,j φ l,j (x), (10) j B l l n where α l,j are the coefficients of the representation in the hierarchical tensor product basis. The number of basis functions, which describe a f V n in nodal or hierarchical basis is (2 n + 1) d. For example a resolution of 17 points in each dimensions, i.e. n = 4, for a ten-dimensional problem therefore needs coefficients, we encounter the curse of dimensionality. 1 We call a discrete space V k smaller than a space V l if tk t l t and t : k t < l t. In the same way a grid Ω k is smaller than a grid Ω l. 4

5 W 0,0 W 1,0 W 2,0 W 3,0 W 0,1 W 1,1 W 2,1 W 3,1 W 0,2 W 1,2 W 2,2 W 3,2 W 0,3 W 1,3 W 2,3 W 3,3 Figure 3: Supports of the basisfunctions of the hierarchical subspaces W l of the space V 3 Note, that for the spaces V l the following decomposition holds V l := l 1 k 1=0 l d k d =0 W k = k l W k. 2.2 Properties of the hierarchical subspaces Now consider the d-linear interpolation of a function f V by a f n V n, i.e. a representation as in (10). First we look at the linear interpolation in one dimension, for the hierarchical coefficients α l,j, l 1, holds α l,j = f(x l,j ) f(x l,j h) + f(x l,j + h) 2 5 = f(x l,j ) f(x l,j 1) + f(x l,j+1 ). 2

6 φ φ φ 3,1 2,1 φ 1,1 3,3 φ 3,5 φ 2,3 φ 3,7 Figure 4: Interpolation with the hierarchical basis This and Figure 4 illustrate why the α l,j are also called hierarchical surplus, they specify what has to be added to the hierarchical representation from level l 1 to obtain the one of level l. We can rewrite this in the following operator form [ α l,j = ] f 2 2 and with that we generalize to the d-dimensional hierarchization operator as follows ( d [ α l,j = ] ) f (11) 2 2 t=1 Note that the coefficients for the basis functions associated to the boundary are just α 0,j = f(x 0,j ), j = 0, 1. Now let us define the so-called Sobolev-space with dominating mixed derivative Hmix 2 in which we then will show approximation properties of the hierarchical basis. We define the norm as f 2 H = k 1 2 mix s x k f, and the space Hmix 2 in the usual way: 0 k s l,j l t,j t H s mix := {f : Ω : f 2 H s mix < } 2 Furthermore we define the semi-norm f H 2 mix := f H 2 mix f k H := k 1 2 mix x k f, 2 6

7 Note that the continuous function spaces H s mix, like the discrete spaces V l, have a tensor product structure [Wah90, Hoc99, GK00, HKZ00] and can be represented as a tensor product of one dimensional spaces: H s mix = H s H s. We now look at the properties of the hierarchical representation of a function f, especially at the size of the hierarchical surplusses. We recite the following proofs from [Bun92, Bun98, BG99, BG04], see these references for more details on the following and results in other norms like or E. For ease of presentation we assume f H0,mix 2 ( Ω), i.e. zero boundary values, and l > 0 to avoid the special treatment of level 0, i.e. the boundary functions in the hierarchical representation. Straightforward calculation shows Lemma 1. For any piecewise d-linear basis function φ l,j holds φ l,j 2 C(d) 2 l 1/2. Lemma 2. For any hierarchical coefficient α l,j of f H 2 0,mix ( Ω) it holds α l,j = d t=1 h t 2 Proof. In one dimension partial integration provides Ω φ l,j 2 f(x)dx x 2 = = xl,j +h x l,j h Ω φ l,j D 2 f(x)dx. (12) φ l,j 2 f(x)dx x 2 [ φ l,j f(x)dx x ] xl,j +h x l,j h xl,j 1 = x l,j h h f(x)dx + x xl,j +h φ l,j x l,j h x f(x)dx x xl,j +h 1 x l,j h f(x)dx x = 1 h (f(x l,j h) 2f(x l,j ) + f(x l,j + h)) = 2 h α l,j The d-dimensional result is achieved via the tensor product formulation (11). Lemma 3. Let f H0,mix 2 ( Ω) be as in hierarchical representation above, it holds α l,j C(d) 2 (3/2) l 1. H 2 mix f supp(φl,j ) 7

8 Proof. d α l,j = h t 2 t=1 Ω φ l,j D 2 f(x)dx d h t 2 φ l,j 2 D 2 f supp(φl,j ) t=1 C(d) 2 (3/2) l 1 2 f supp(φl,j ) H 2 mix Lemma 4. f H 2 0,mix ( Ω) is as above in hierarchical representation. For its components f l W l holds f l 2 C(d) 2 2 l 1 f H 2 mix. (13) Proof. Since the supports of all φ l,j are mutually disjoint we can write f l 2 2 = α l,j φ l,j (x) j B l With Lemma 3 and 1 it now follows f l 2 2 C(d) 2 3 l 1 j B l 2 2 = j B l α l,j 2 φ l,j 2 2 f supp(φl,j ) 2 Hmix 2 C(d) 2 l 1 C(d) 2 4 l 1 f 2 H 2 mix which completes the proof. 2.3 Sparse grids Motivated by the relation (13) of the importance of the hierachical components f l Zenger [Zen91] and Griebel [Gri91] introduce the so-called sparse grids, where hierarchical basis functions with a small support, and therefore a small part in the function representation, are not included in the discrete space of level n anymore. Formally we define the sparse grid function space Vn s V n as Vn s := W l. (14) l 1 n We replace in the definition (8) of V n in terms of hierarchical subspaces the condition l n with l 1 n. In Figure 3 the used subspaces are given in black, the difference spaces W l which are not used anymore, in comparison to (8), are given in grey. Every f Vn s can now be represented, analogue to (10), as fn s (x) = α l,j φ l,j (x). (15) j B l l 1 n 8

9 Figure 5: Two-dimensional sparse grid (left) and three-dimensional sparse grid (right) of level n = 5 each. The resulting grids corresponding to the approximation space Vn s are called sparse grids. Note that sparse grids were introduced in [Zen91, Gri91] using the definition V0,n s := W l. (16) l 1 n+d 1 This definition is useful for the numerical treatment of partial differential equations with Dirichlet boundary conditions where no degrees of freedom exist on the boundary. Using V0,n s the level of refinement n in the sparse grid corresponds to the full grid case again. Examples in two and three dimensions are given in Figure 5. Sparse grids are studied in detail in [Bun92, Bun98, BG99, Kna00, BG04] besides others. The following results hold for both definitions Vn s and V 0,n s. The proofs are somewhat easier without basis functions on the boundary, so we use Vn,0 s in the following, like it is done in the referenced source publications. First we look at the size of the sparse grid space. Lemma 5. The dimension of the sparse grid space V0,n s, i.e. the number of inner grid points, is given by V0,n s = O(h 1 n log(h 1 n ) d 1 ) (17) Proof. We follow [BG04] and use in first part the definition (16), the size of a hierarchical subspace W l = 2 l 1 1 and that there are ( i 1 d 1) possibilities to 9

10 represent i as a sum of d natural numbers. V0,n s = W l = 2 l 1 1 = l 1 n+d 1 l 1 n+d 1 = = n+d 1 i=d n+d 1 i=d n 1 2 i i=0 2 i d l 1=i 1 ( ) i 1 2 i d d 1 ( ) i + d 1 d 1 We now represent the summand as the (d 1)-derivation of a function evaluated at x = 2 = = n 1 ( ) i + d 1 2 i d 1 i=0 n 1 1 (d 1)! 1 (d 1)! i=0 ( x i+d 1 ) (d 1) x=2 (x d 1 1 xn 1 x ) (d 1) 1 d 1 ( d 1 = (d 1)! i i=0 d 1 ( n + d 1 = ( 1) d + 2 n i i=0 x=2 ) (x d 1 x n+d 1) (i) ) ( 2) d 1 i. The summand for i = d 1 is the largest one and it holds 2 n (n + d 1)! (d + 1)!n! ( ) n = 2 n d 1 (d 1)! + O(nd 2 ) ( ) (d 1 i) 1 1 x x=2 which gives a total order of O(2 n n d 1 ) or in other notation, with h n = 2 n, of O(h 1 n log(h 1 n ) d 1 ). This is far less than the size of the corresponding full grid space V n = O(h d n ) = O(2 d n ) and allows the treatment of higher dimensional problems. We now look at approximation properties of sparse grids. For the proof we again follow [BG04] and first look at the error for the interpolation of a function f H0,mix 2 by f 0,n V0,n s which can be written in regard to the partial functions from the hierarchical subspaces as f f0,n s = f l f l = f l. l l 1 n+d 1 l 1>n+d 1 10

11 For any norm now holds f f s 0,n l 1>n+d 1 f l. (18) We need the following lemma to estimate the interpolation error Lemma 6. For s it holds ( ) i + n + d 1 2 s l 1 = 2 s n 2 s d 2 s i d 1 l 1>n+d 1 i=0 ( ) n 2 s n 2 s d d 1 2 (d 1)! + O(nd 2 ), Proof. The steps of the proof are similar to the ones in the previous lemma, first we get Since l 1>n+d 1 2 s l 1 = i=n+d 2 s i l 1=i i=0 1 ( ) i 1 = 2 s i d 1 i=n+d ( ) i + n + d 1 = 2 s n 2 s d 2 s i. d 1 ( ) ( ) (d 1) i + n + d 1 x i = x n x i+n+d 1 d 1 (d 1)! i=0 i=0 ( ) (d 1) = x n (d 1)! x n+d x = x n (d 1)! d 1 ( d 1 k k=0 d 1 ( n + d 1 = k k=0 it follows with x = 2 s the relation ) ) (x n+d 1) (k) ( ) d 1 k x 1 x ( ) i + n + d 1 d 1 ( ) n + d 1 2 s i 2 d 1 k i=0 which finishes the proof. k=0 ( 1 ) (d 1 k) 1 x 1 1 x, ( ) n d 1 = 2 (d 1)! + O(nd 2 ) 11

12 Theorem 1. For the interpolation error of a function f H0,mix 2 in the sparse grid space V0,n s holds Proof. f f s n 2 l 1>n+d 1 which gives the wanted relation. f f s n 2 = O(h 2 n log(h 1 n ) d 1 ). (19) f l 2 C(d) 2 2 l 1 f H 2 mix ( ) n C(d) 2 2 n d 1 f H 2 mix (d 1)! + O(nd 2 ), Note that same results holds in the maximum-norm as well: for f H 2 0,mix. f f s n = O(h 2 n log(h 1 n ) d 1 ) 2.4 Sparse grid combination technique The so-called combination technique [GSZ92], which is based on multi-variate extrapolation [BGR94], is another method to achieve a function representation on a sparse grid. The function is discretized on a certain sequence of grids using a nodal discretization.a linear combination of these partial functions then gives the sparse grid representation. This approach can have numerical advantages over working directly in the hierarchical basis, where e.g. the stiffness matrix is not sparse and the on-the-fly computation of the matrix-vector-product, which complexity scales better, is challenging in the implementation [Ach03, Bal94, Bun98]. In particular, we discretize the function f on a certain sequence of anisotropic grids Ω l = Ω l1,...,l d with uniform mesh sizes h t = 2 lt in the t-th coordinate direction. These grids possess in general different mesh sizes for the different coordinate directions. To be precise, we consider all grids Ω l with l 1 := l l d = n q, q = 0,.., d 1, l t 0. Note that in the original [GSZ92] and other papers as well, a slightly different definition was used, again due to Dirichlet boundary conditions, l 1 := l l d = n + (d 1) q, q = 0,.., d 1, l t > 0. The grids employed by the combination technique of level 4 in two dimensions are shown in Figure 6. A finite element approach with piecewise d-linear functions φ l,j (x) on each grid Ω l now gives the representation in the nodal basis f l (x) = 2 l 1 j 1= l d j d =0 α l,j φ l,j (x). 12

13 Ω 4,0 Ω 3,1 Ω 2,2 Ω 1,3 Ω 0,4 Ω 3,0 Ω 2,1 Ω 1,2 Ω 0,3 = fn c = f l1,l 2 l 1+l 2=n l 1+l 2=n 1 f l1,l 2 Ω s 4 Figure 6: Combination technique with level n = 4 in two dimensions Finally, we linearly combine the discrete partial functions f l (x) from the different grids Ω l according to the combination formula d 1 ( ) d 1 fn(x) c := ( 1) q f l (x). (20) q q=0 l 1=n q The resulting function fn c lives in the sparse grid space V n s, the combined interpolant is identically with the hierarchical sparse grid interpolant fn s [GSZ92]. This can be seen by rewriting each f l in their hierarchical representation (10) and some straightforward calculation using the telescope sum property, i.e. the hierarchical functions get added and subtracted. We write it exemplary in the two dimensional case, using ˆf l1+l 2 W l1,l 2 instead of all the basis functions of W l1,l 2 for ease of presentation fn c = f l1,l 2 l 1+l 2=n = l 1 n k 1 l 1 k 2 n l 1 = = = k 1 l 1 ˆfk1,1 + k 1 l 1 ˆfk1,1 + k 1+t n ˆf k1,t l 1+l 2=n 1 ˆfk1,k 2 l 1 n 1 k 1 l 1 f l1,l 2 ˆfk1,k 2 l 1 n 1 k 1 l 1 k 2 n 1 l 1 k 2 n l 1 ˆfk1,n l 1 l 1 n 1 k 1 l 1 with t := n + 1 l 1. This is exactly (15). ˆfk1,k 2 k 2 n 1 l 1 ˆfk1,k 2 13

14 Note that the solution obtained with the combination technique fn c for the numerical treatment of partial differential equations is in general not the sparse grid solution fn s. However, the approximation property is of the same order as long a series expansion of the error f f l = d i=1 j 1,...,j m 1,...,d c j1,...,j m (h j1,..., h jm ) h p j 1... h p j m, (21) with bounded c j1,...,j m (h j1,..., h jm ) κ exists, see [GSZ92]. Its existence was shown for model-problems in [BGRZ94]. Let us again consider the two dimensional case and consider the error of the combined solution f fn c following [GSZ92]. We have f fn c = f f l1,l 2 + = l 1+l 2=n l 1+l 2=n l 1+l 2=n 1 (f f l1,l 2 ) l 1+l 2=n 1 f l1,l 2 (f f l1,l 2 ). Plugging in the error expansion (21) leads to f fn c ( = c1 (h l1 ) h 2 l 1 + c 2 (h l2 ) h 2 l 2 + c 1,2 (h l1, h l2 ) h 2 l 1 h 2 ) l 2 = l 1+l 2=n l 1+l 2=n 1 ( ( c1 (h l1 ) h 2 l 1 + c 2 (h l2 ) h 2 l 2 + c 1,2 (h l1, h l2 ) h 2 l 1 h 2 l 2 ) c 1 (h n ) + c 2 (h n ) + l 1+l 2=n c 1,2 (h l1, h l2 ) 4 l 1+l 2=n 1 c 1,2 (h l1, h l2 ) And we get the estimation, using c i κ, f fn c 2κ h2 n + c 1,2 (h l1, h l2 ) 4 c 1,2 (h l1, h l2 ) h2 n l 1+l 2=n l 1+l 2=n 1 2κ h 2 n + c 1,2 (h l1, h l2 ) h 2 n + 4 c 1,2 (h l1, h l2 ) h 2 n l 1+l 2=n 2κ h 2 n + κ nh2 n + 4κ(n 1)h2 n = κ h 2 n(5n 2) = κ h 2 n(5 log(h 1 n ) 2) = O(h 2 n log(h 1 n )) l 1+l 2=n 1 ) h 2 n Observe that terms are canceled for h li with l i n and the accumulated h 2 l 1 h 2 l 2 result in log(h 1 n )-term. The approximation order O(h 2 n log(h 1 n )) is just as in Theorem 1. See [GSZ92, PZ99, Rei04] for results in higher dimension. The combination technique was used in fluid dynamics [GHSZ93, GH95, GT95, Hub96, Kra02], for the Lamé-equation [Heu97], for eigenvalue-problems [Gar98, GG00], singular perturbation problems [NH00], machine learning and 14

15 data analysis [GGT01, GG02, Gar04, GG05, LNSH05] and parabolic equations for option pricing [Rei04]. There are close connections to so-called boolean [Del82, DS89] and discrete blending methods [BDJ92], as well as the splitting extrapolation-method [LLS95]. Furthermore, there are relations between the sparse grid combination technique and additive models like e.g. ANOVA [Wah90] or MARS [Fri91]. A Sparse grids in python We give the listing of some python code for a sparse grid without functions on the boundary, i.e. according to formula (16). If you are interested in the source files, write to jochen.garcke@anu.edu.au. A MATLAB implementation of sparse grids [KW05a, Kli06] can be found here import math Listing 1: sparse grid representation class g r i d P o i n t : def i n i t ( s e l f, index=none, domain=none ) : s e l f. hv = [ ] # h i e r a r c h i c a l v a l u e s e l f. fv = [ ] # f u n c t i o n v a l u e i f index i s None : s e l f. pos = [ ] # p o s i t i o n o f g r i d p o i n t else : s e l f. pos = s e l f. p o i n t P o s i t i o n ( index, domain ) def p o i n t P o s i t i o n ( s e l f, index, domain=none ) : coord = l i s t ( ) i f domain i s None : for i in range ( l e n ( index ) ) : coord. append ( index [ i ] [ 1 ] / 2. index [ i ] [ 0 ] ) else : for i in range ( l e n ( index ) ) : coord. append ( ( domain [ i ] [ 1 ] domain [ i ] [ 0 ] ) \ index [ i ] [ 1 ] / 2. index [ i ] [ 0 ] + domain [ i ] [ 0 ] ) return coord def p r i n t P o i n t ( s e l f ) : i f s e l f. pos i s [ ] : pass else : out = for i in range ( l e n ( s e l f. pos ) ) : out += s t r ( s e l f. pos [ i ] ) + \ t 15

16 print out class sparsegrid : def i n i t ( s e l f, dim=1, l e v e l =1): s e l f. dim = dim s e l f. l e v e l = l e v e l s e l f. gp = {} s e l f. i n d i c e s = [ ] s e l f. domain = ( ( 0. 0, 1. 0 ), ) dim s e l f. a c t i o n = ( ) def printgrid ( s e l f ) : print s e l f. hspace def evalaction ( s e l f ) : b a s i s = ( s e l f. evalperdim [ 0 ] [ s e l f. hspace [ 0 ] 1 ] [ 0 ], ) value = s e l f. evalperdim [ 0 ] [ s e l f. hspace [ 0 ] 1 ] [ 1 ] # compute index o f non zero b a s i s f u n c t i o n in hspace and i t s v a l u e on for i in range ( 1, s e l f. dim ) : value = s e l f. evalperdim [ i ] [ s e l f. hspace [ i ] 1 ] [ 1 ] b a s i s += ( s e l f. evalperdim [ i ] [ s e l f. hspace [ i ] 1 ] [ 0 ], ) s e l f. value += s e l f. gp [ b a s i s ]. hv value def evalfunct ( s e l f, x ) : s e l f. value = 0. 0 s e l f. evalperdim = [ ] for i in range ( s e l f. dim ) : s e l f. evalperdim. append ( [ ] ) for j in range ( 1, s e l f. l e v e l +1): # which b a s i s i s unzero on x f o r dim i and l e v e l j pos = ( x [ i ] s e l f. domain [ i ] [ 0 ] ) / ( s e l f. domain [ i ] [ 1 ] \ s e l f. domain [ i ] [ 0 ] ) b a s i s = i n t ( math. c e i l ( pos 2 ( j 1)) 2 1) i f b a s i s == 1: b a s i s = 1 s e l f. evalperdim [ i ]. append ( [ ( j, b a s i s ) ] ) else : s e l f. evalperdim [ i ]. append ( [ ( j, b a s i s ) ] ) # v a l u e o f t h i s b a s i s f u n c t i o n on x [ i ] s e l f. evalperdim [ i ] [ j 1]. append ( evalbasis1d ( x [ i ], \ s e l f. evalperdim [ i ] [ j 1 ] [ 0 ], s e l f. domain [ i ] ) ) s e l f. a c t i o n = s e l f. evalaction s e l f. loophierspaces ( ) return s e l f. value # go through the h i e r a r c h i c a l subspaces o f s e l f. l e v e l 16

17 def loophierspaces ( s e l f ) : for i in range ( 1, s e l f. l e v e l +1): s e l f. hspace = [ i ] s e l f. loophierspacesrec ( s e l f. dim 1, s e l f. l e v e l (i 1)) def loophierspacesrec ( s e l f, dim, l e v e l ) : i f dim > 1 : for i in range ( 1, l e v e l +1): s e l f. hspace. append ( i ) s e l f. loophierspacesrec ( dim 1, l e v e l (i 1)) s e l f. hspace. pop ( ) else : for i in range ( 1, l e v e l +1): s e l f. hspace. append ( i ) s e l f. a c t i o n ( ) s e l f. hspace. pop ( ) # f i l l s e l f. gp with the p o i n t s f o r the i n d i c e s generated beforehand def g e n e r a t e P o i n t s ( s e l f ) : s e l f. i n d i c e s = s e l f. generatepointsrec ( s e l f. dim, s e l f. l e v e l ) for i in range ( l e n ( s e l f. i n d i c e s ) ) : s e l f. gp [ s e l f. i n d i c e s [ i ] ] = g r i d P o i n t ( s e l f. i n d i c e s [ i ], s e l f. domain ) def generatepointsrec ( s e l f, dim, l e v e l, a k t l e v e l=none ) : b a s i s a k t = l i s t ( ) i f a k t l e v e l == None : a k t l e v e l = 1 for i in range ( 1, 2 ( a k t l e v e l )+1,2): b a s i s a k t. append ( ( a k t l e v e l, i ) ) i f dim == 1 and a k t l e v e l == l e v e l : return b a s i s a k t e l i f dim == 1 : b a s i s a k t += s e l f. generatepointsrec ( dim, l e v e l, a k t l e v e l +1) return b a s i s a k t e l i f a k t l e v e l == l e v e l : return c r o s s ( b a s i s a k t, \ s e l f. generatepointsrec ( dim 1, l e v e l a k t l e v e l +1)) else : return c r o s s ( b a s i s a k t, s e l f. generatepointsrec ( dim 1,\ l e v e l a k t l e v e l +1)) \ + s e l f. generatepointsrec ( dim, l e v e l, a k t l e v e l +1) # conversion from nodal to h i e r a r c h i c a l b a s i s in one dimension def nodal2hier1d ( s e l f, node, i, j, dim ) : l e f t = ( i 1, j /2) r i g h t = ( i 1, j /2+1) 17

18 while l e f t [1]%2 == 0 and l e f t [ 0 ] > 0 : l e f t = ( l e f t [0] 1, l e f t [ 1 ] / 2 ) while r i g h t [1]%2 == 0 and r i g h t [ 0 ] > 0 : r i g h t = ( r i g h t [0] 1, r i g h t [ 1 ] / 2 ) i f i s i n s t a n c e ( node [ 0 ], t u p l e ) : precurdim = node [ 0 : dim ] postcurdim = node [ dim : l e n ( node )+1] index = precurdim + ( ( i, j ), ) + postcurdim l e f t = precurdim + ( l e f t, ) + postcurdim r i g h t = precurdim + ( r i g h t, ) + postcurdim else : i f dim == 0 : index = ( ( i, j ), ) + ( node, ) l e f t = ( l e f t, ) + ( node, ) r i g h t = ( r i g h t, ) + ( node, ) else : #dim w i l l be 1 o t h e r w i s e in t h i s case index = ( node, ) + ( ( i, j ), ) l e f t = ( node, ) + ( l e f t, ) r i g h t = ( node, ) + ( r i g h t, ) i f l e f t [ dim ] [ 0 ] == 0 : i f r i g h t [ dim ] [ 0 ]!= 0 : s e l f. gp [ index ]. hv = 0.5 s e l f. gp [ r i g h t ]. hv e l i f r i g h t [ dim ] [ 0 ] == 0 : s e l f. gp [ index ]. hv = 0.5 s e l f. gp [ l e f t ]. hv else : s e l f. gp [ index ]. hv = 0. 5 ( s e l f. gp [ l e f t ]. hv + s e l f. gp [ r i g h t ]. hv ) # conversion from nodal to h i e r a r c h i c a l b a s i s def nodal2hier ( s e l f ) : for i in range ( l e n ( s e l f. i n d i c e s ) ) : s e l f. gp [ s e l f. i n d i c e s [ i ] ]. hv = s e l f. gp [ s e l f. i n d i c e s [ i ] ]. fv for d in range ( 0, s e l f. dim ) : for i in range ( s e l f. l e v e l,0, 1): i n d i c e s = s e l f. generatepointsrec ( s e l f. dim 1, s e l f. l e v e l i +1) for j in range (1,2 i +1,2): for k in range ( l e n ( i n d i c e s ) ) : s e l f. nodal2hier1d ( i n d i c e s [ k ], i, j, d ) # compute cross product o f args def c r o s s ( args ) : ans = [ [ ] ] for arg in args : ans = [ x+[y ] for x in ans for y in arg ] ans2 = [ ] for i in range ( l e n ( ans ) ) : i f i s i n s t a n c e ( ans [ i ] [ 1 ] [ 0 ], t u p l e ) : 18

19 dummy = ( ans [ i ] [ 1 ] [ 0 ], ) for j in range ( 1, l e n ( ans [ i ] [ 1 ] ) ) : dummy = (dummy [ 0 : l e n (dummy) ] ) + ( ans [ i ] [ 1 ] [ j ], ) ans2. append ( ( ans [ i ] [ 0 ], ) + dummy) else : ans2. append ( ( ans [ i ] [ 0 ], ans [ i ] [ 1 ] ) ) return ans2 # e v a l u a t i o n o f the b a s i s f u n c t i o n s in one dimension def evalbasis1d ( x, basis, i n t e r v a l=none ) : i f i n t e r v a l i s None : return 1. abs ( x 2 b a s i s [0] b a s i s [ 1 ] ) else : pos = ( x i n t e r v a l [ 0 ] ) / ( i n t e r v a l [1] i n t e r v a l [ 0 ] ) return 1. abs ( pos 2 b a s i s [0] b a s i s [ 1 ] ) Listing 2: unit test for listing 1 # d e f i n e the u n i t t e s t s import pysg import u n i t t e s t import math class t e s t F u n c t e s t ( u n i t t e s t. TestCase ) : def testsgnobound ( s e l f ) : sg = pysg. sparsegrid ( 3, 3 ) sg. g e n e r a t e P o i n t s ( ) s e l f. a s s e r t E q u a l ( l e n ( sg. i n d i c e s ), 3 1 ) for i in range ( l e n ( sg. i n d i c e s ) ) : sum = 1. 0 pos = sg. gp [ sg. i n d i c e s [ i ] ]. pos for j in range ( l e n ( pos ) ) : sum = 4. pos [ j ] (1.0 pos [ j ] ) sg. gp [ sg. i n d i c e s [ i ] ]. fv = sum sg. nodal2hier ( ) for i in range ( l e n ( sg. i n d i c e s ) ) : s e l f. a s s e r t E q u a l ( sg. gp [ sg. i n d i c e s [ i ] ]. fv, \ sg. evalfunct ( sg. gp [ sg. i n d i c e s [ i ] ]. pos ) ) # t e s t i n g i f name == m a i n : u n i t t e s t. main ( ) References [Ach03] Achatz, S. Higher Order Sparse Grid Methods for Elliptic Partial Differential Equations with Variable Coefficients. Computing, 19

20 71(1):1 15, [Bab60] [Bal94] [Bas85] [BD03] [BDJ92] [BG99] [BG04] [BGR94] Babenko, KI. Approximation of periodic functions of many variables by trigonometric polynomials. Dokl. Akad. Nauk SSSR, 132: , Russian, Engl. Transl.: Soviet Math. Dokl. 1: , Balder, R. Adaptive Verfahren für elliptische und parabolische Differentialgleichungen auf dünnen Gittern. Dissertation, Technische Universität München, Baszenski, G. N th order polynomial spline blending. In Schempp, W and Zeller, K, editors, Multivariate Approximation Theory III, ISNM 75, pages Birkhäuser, Basel, Bungartz, HJ and Dirnstorfer, S. Multivariate Quadrature on Adaptive Sparse Grids. Computing, 71:89 114, August Baszenski, G, Delvos, FJ, and Jester, S. Blending approximations with sine functions. In Braess, D, editor, Numerical Methods in Approximation Theory IX, ISNM 105, pages Birkhäuser, Basel, Bungartz, HJ and Griebel, M. A Note on the Complexity of Solving Poisson s Equation for Spaces of Bounded Mixed Derivatives. J. Complexity, 15: , Also as Report No 524, SFB 256, Univ. Bonn, Bungartz, HJ and Griebel, M. Sparse Grids. Acta Numerica, 13: , Bungartz, HJ, Griebel, M, and Rüde, U. Extrapolation, combination, and sparse grid techniques for elliptic boundary value problems. Comput. Methods Appl. Mech. Eng., 116: , Also in C. Bernardi and Y. Maday, Editoren, International conference on spectral and high order methods, ICOSAHOM 92. Elsevier, [BGRZ94] Bungartz, HJ, Griebel, M, Röschke, D, and Zenger, C. Pointwise convergence of the combination technique for the Laplace equation. East-West J. Numer. Math., 2:21 45, [Bun92] Bungartz, HJ. Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung. Dissertation, Institut für Informatik, Technische Universität München, [Bun98] Bungartz, HJ. Finite Elements of Higher Order on Sparse Grids. Habilitation, Institut für Informatik, Technische Universität München and Shaker Verlag, Aachen,

21 [Del82] [DS89] Delvos, FJ. d-variate Boolean Interpolation. J. Approx. Theory, 34:99 114, Delvos, FJ and Schempp, W. Boolean Methods in Interpolation and Approximation. Pitman Research Notes in Mathematics Series 230. Longman Scientific & Technical, Harlow, [Fab09] Faber, G. Über stetige Funktionen. Mathematische Annalen, 66:81 94, [FHP96] Frank, K, Heinrich, S, and Pereverzev, S. Information Complexity of Multivariate Fredholm Integral Equations in Sobolev Classes. J. of Complexity, 12:17 34, [Fri91] Friedman, JH. Multivariate adaptive regression splines. Ann. Statist., 19(1):1 141, [Gar98] Garcke, J. Berechnung von Eigenwerten der stationären Schrödingergleichung mit der Kombinationstechnik. Diplomarbeit, Institut für Angewandte Mathematik, Universität Bonn, [Gar04] Garcke, J. Maschinelles Lernen durch Funktionsrekonstruktion mit verallgemeinerten dünnen Gittern. Doktorarbeit, Institut für Numerische Simulation, Universität Bonn, [GG98] Gerstner, T and Griebel, M. Numerical Integration using Sparse Grids. Numer. Algorithms, 18: , [GG00] [GG02] Garcke, J and Griebel, M. On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique. Journal of Computational Physics, 165(2): , Garcke, J and Griebel, M. Classification with sparse grids using simplicial basis functions. Intelligent Data Analysis, 6(6): , (shortened version appeared in KDD 2001, Proc. of the Seventh ACM SIGKDD, F. Provost and R. Srikant (eds.), pages 87-96, ACM, 2001). [GG03] Gerstner, T and Griebel, M. Dimension Adaptive Tensor Product Quadrature. Computing, 71(1):65 87, [GG05] [GGT01] Garcke, J and Griebel, M. Semi-supervised learning with sparse grids. In Amini, MR, Chapelle, O, and Ghani, R, editors, Proceedings of ICML, Workshop on Learning with Partially Classified Training Data, pages Garcke, J, Griebel, M, and Thess, M. Data mining with sparse grids. Computing, 67(3): ,

22 [GH95] Griebel, M and Huber, W. Turbulence simulation on sparse grids using the combination method. In Satofuka, N, Periaux, J, and Ecer, A, editors, Parallel Computational Fluid Dynamics, New Algorithms and Applications, pages North-Holland, Elsevier, [GH03] Gradinaru, V and Hiptmair, R. Multigrid for discrete differential forms on sparse grids. Computing, 71(1):17 42, [GHSZ93] Griebel, M, Huber, W, Störtkuhl, T, and Zenger, C. On the parallel solution of 3D PDEs on a network of workstations and on vector computers. In Bode, A and Cin, MD, editors, Parallel Computer Architectures: Theory, Hardware, Software, Applications, volume 732 of Lecture Notes in Computer Science, pages Springer Verlag, [GK00] [GK03] [GOS99] [Gri91] [Gri98] Griebel, M and Knapek, S. Optimized tensor-product approximation spaces. Constructive Approximation, 16(4): , Griebel, M and Koster, F. Multiscale Methods for the Simulation of Turbulent Flows. In Hirschel, E, editor, Numerical Flow Simulation III, volume 82 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pages Springer-Verlag, Griebel, M, Oswald, P, and Schiekofer, T. Sparse Grids for Boundary Integral Equations. Numer. Mathematik, 83(2): , Griebel, M. A parallelizable and vectorizable multi-level algorithm on sparse grids. In Hackbusch, W, editor, Parallel Algorithms for partial differential equations, Notes on Numerical Fluid Mechanics, volume 31, pages Vieweg Verlag, Braunschweig, Also as SFB Bericht, 342/20/90 A, Institut für Informatik, TU München, Griebel, M. Adaptive Sparse Grid Multilevel Methods for elliptic PDEs based on finite differences. Computing, 61(2): , [GSZ92] Griebel, M, Schneider, M, and Zenger, C. A combination technique for the solution of sparse grid problems. In de Groen, P and Beauwens, R, editors, Iterative Methods in Linear Algebra, pages IMACS, Elsevier, North Holland, [GT95] Griebel, M and Thurner, V. The efficient solution of fluid dynamics problems by the combination technique. Int. J. Num. Meth. for Heat and Fluid Flow, 5(3): , Also as SFB Bericht 342/1/93 A, Institut für Informatik. TU München,

23 [HBS + 06] Hegland, M, Burden, C, Santoso, L, MacNamara, S, and Booth, H. A solver for the stochastic master equation applied to gene regulatory networks. Journal of Computational and Applied Mathematics, In Press, Corrected Proof, [Hem95] Hemker, P. Sparse-Grid finite-volume multigrid for 3D-problems. Advances in Computational Mathematics, 4:83 110, [Heu97] Heußer, N. Berechnung einer Dünngitterlösung der dreidimensionalen Lamé-Gleichung mit der Kombinationsmethode. Diplomarbeit, Institut für Angewandte Mathematik, Rheinische Friedrich- Wilhelms-Universität Bonn, [HKZ00] Hochmuth, R, Knapek, S, and Zumbusch, G. Tensor products of Sobolev spaces and applications. submitted, Also as Technical Report 685, SFB 256, Univ. Bonn. [Hoc99] [Hub96] [Kli06] [Kna00] [Kos02] [Kra02] [KW05a] [KW05b] Hochmuth, R. Wavelet Bases in numerical Analysis and Restrictal Nonlinear Approximation. Habilitation, Freie Universität Berlin, Huber, W. Turbelenzsimulation mit der Kombinationsmethode auf Workstation-Netzen und Parallelrechnern. Dissertation, Institut für Informatik, Technische Universität München, Klimke, A. Sparse Grid Interpolation Toolbox User s Guide. Technical Report IANS report 2006/001, University of Stuttgart, Knapek, S. Approximation und Kompression mit Tensorprodukt- Multiskalenräumen. Doktorarbeit, Universität Bonn, April Koster, F. Multiskalen-basierte Finite Differenzen Verfahren auf adaptiven dnnen Gittern. Doktorarbeit, Universität Bonn, January Kranz, CJ. Untersuchungen zur Kombinationstechnik bei der numerischen Strömungssimulation auf versetzten Gittern. Dissertation, Institut für Informatik, Technische Universität München, Klimke, A and Wohlmuth, B. Algorithm 847: Spinterp: piecewise multilinear hierarchical sparse grid interpolation in MATLAB. ACM Trans. Math. Softw., 31(4): , Klimke, A and Wohlmuth, B. Computing expensive multivariate functions of fuzzy numbers using sparse grids. Fuzzy Sets and Systems, 154(3): , [LLS95] Liem, CB, Lü, T, and Shih, TM. The Splitting Extrapolation Method. World Scientific, Singapore,

24 [LNSH05] Laffan, SW, Nielsen, OM, Silcock, H, and Hegland, M. Sparse Grids: a new predictive modelling method for the analysis of geographic data. International Journal of Geographical Information Science, 19(3): , [NH00] [PZ99] Noordmans, J and Hemker, P. Application of an Adaptive Sparse Grid Technique to a Model Singular Perturbation Problem. Computing, 65: , Pflaum, C and Zhou, A. Error analysis of the combination technique. Numer. Math., 84(2): , [Rei04] Reisinger, C. Numerische Methoden für hochdimensionale parabolische Gleichungen am Beispiel von Optionspreisaufgaben. Ph.D. thesis, Ruprecht-Karls-Universität Heidelberg, In Vorbereitung. [Sch99] [Smo63] [SS99] [ST03a] Schiekofer, T. Die Methode der Finiten Differenzen auf dünnen Gittern zur Lösung elliptischer und parabolischer partieller Differentialgleichungen. Doktorarbeit, Universität Bonn, Smolyak, SA. Quadrature and interpolation formulas for Tensor Products of Certain Classes of Functions. Dokl. Akad. Nauk SSSR, 148: , Russian, Engl. Transl.: Soviet Math. Dokl. 4: , Sickel, W and Sprengel, F. Interpolation on Sparse Grids and Nikol skij Besov spaces of dominating mixed smoothness. J. Comput. Anal. Appl., 1: , Schwab, C and Todor, R. Sparse finite elements for stochastic elliptic problems higher order moments. Computing, 71(1):43 63, [ST03b] Schwab, C and Todor, RA. Sparse finite elements for elliptic problems with stochastic loading. Numer. Math., 95(4): , [Tem89] [Tem93a] Temlyakov, VN. Approximation of functions with bounded mixed derivative. Proc. Steklov Inst. Math., 1, Temlyakov, VN. Approximation of Periodic Functions. Nova Science, New York, [Tem93b] Temlyakov, VN. On approximate recovery of functions with bounded mixed derivative. J. Complexity, 9:41 59, [vps04] von Petersdorff, T and Schwab, C. Numerical Solution of Parabolic Equations in High Dimensions. Mathematical Modeling and Numerical Analysis, To appear. 24

25 [Wah90] Wahba, G. Spline models for observational data, volume 59 of Series in Applied Mathematics. SIAM, Philadelphia, [Yse86] Yserentant, H. On the Multi-Level Splitting of Finite Element Spaces. Numerische Mathematik, 49: , [Yse92] [Zen91] Yserentant, H. Hierarchical bases. In R. E. O Malley, J et al., editors, Proc. ICIAM 91. SIAM, Philadelphia, Zenger, C. Sparse Grids. In Hackbusch, W, editor, Parallel Algorithms for Partial Differential Equations, Proceedings of the Sixth GAMM-Seminar, Kiel, 1990, volume 31 of Notes on Num. Fluid Mech., pages Vieweg-Verlag,

Sparse Grid Tutorial

Sparse Grid Tutorial Sparse Grid Tutorial Jochen Garcke Technische Universität Berlin Institut für Mathematik Sekretariat MA 3-3 Straße des 17. Juni 136 D-1063 Berlin garcke@math.tu-berlin.de Thursday 16 th August, 007 1 Introduction

More information

Sparse Grids in a Nutshell

Sparse Grids in a Nutshell Sparse Grids in a Nutshell Jochen Garcke Abstract The technique of sparse grids allows to overcome the curse of dimensionality, which prevents the use of classical numerical discretization schemes in more

More information

Parametrische Modellreduktion mit dünnen Gittern

Parametrische Modellreduktion mit dünnen Gittern Parametrische Modellreduktion mit dünnen Gittern (Parametric model reduction with sparse grids) Ulrike Baur Peter Benner Mathematik in Industrie und Technik, Fakultät für Mathematik Technische Universität

More information

The Galerkin method for solving problem (1.1) numerically is to select a finitedimensional

The Galerkin method for solving problem (1.1) numerically is to select a finitedimensional COMPRESSON OF ANSOTROPC TENSOR-PRODUCT DSCRETZATONS S KNAPEK D-80333 MÜNCHEN STKNAPEK}@YAHOODE Abstract This paper is concerned with the discretization and compression of integral operators t continues

More information

On the convergence of the combination technique

On the convergence of the combination technique Wegelerstraße 6 53115 Bonn Germany phone +49 228 73-3427 fax +49 228 73-7527 www.ins.uni-bonn.de M. Griebel, H. Harbrecht On the convergence of the combination technique INS Preprint No. 1304 2013 On

More information

Fitting multidimensional data using gradient penalties and combination techniques

Fitting multidimensional data using gradient penalties and combination techniques 1 Fitting multidimensional data using gradient penalties and combination techniques Jochen Garcke and Markus Hegland Mathematical Sciences Institute Australian National University Canberra ACT 0200 jochen.garcke,markus.hegland@anu.edu.au

More information

Fitting multidimensional data using gradient penalties and the sparse grid combination technique

Fitting multidimensional data using gradient penalties and the sparse grid combination technique Fitting multidimensional data using gradient penalties and the sparse grid combination technique Jochen Garcke 1 and Markus Hegland 2 1 Institut für Mathematik, Technische Universität Berlin Straße des

More information

Interpolation and function representation with grids in stochastic control

Interpolation and function representation with grids in stochastic control with in classical Sparse for Sparse for with in FIME EDF R&D & FiME, Laboratoire de Finance des Marchés de l Energie (www.fime-lab.org) September 2015 Schedule with in classical Sparse for Sparse for 1

More information

Adaptive sparse grids

Adaptive sparse grids ANZIAM J. 44 (E) ppc335 C353, 2003 C335 Adaptive sparse grids M. Hegland (Received 1 June 2001) Abstract Sparse grids, as studied by Zenger and Griebel in the last 10 years have been very successful in

More information

Suboptimal feedback control of PDEs by solving Hamilton-Jacobi Bellman equations on sparse grids

Suboptimal feedback control of PDEs by solving Hamilton-Jacobi Bellman equations on sparse grids Suboptimal feedback control of PDEs by solving Hamilton-Jacobi Bellman equations on sparse grids Jochen Garcke joint work with Axel Kröner, INRIA Saclay and CMAP, Ecole Polytechnique Ilja Kalmykov, Universität

More information

Suboptimal feedback control of PDEs by solving HJB equations on adaptive sparse grids

Suboptimal feedback control of PDEs by solving HJB equations on adaptive sparse grids Wegelerstraße 6 53115 Bonn Germany phone +49 228 73-3427 fax +49 228 73-7527 www.ins.uni-bonn.de Jochen Garcke and Axel Kröner Suboptimal feedback control of PDEs by solving HJB equations on adaptive sparse

More information

Space-time sparse discretization of linear parabolic equations

Space-time sparse discretization of linear parabolic equations Space-time sparse discretization of linear parabolic equations Roman Andreev August 2, 200 Seminar for Applied Mathematics, ETH Zürich, Switzerland Support by SNF Grant No. PDFMP2-27034/ Part of PhD thesis

More information

A sparse grid based generative topographic mapping for the dimensionality reduction of high-dimensional data

A sparse grid based generative topographic mapping for the dimensionality reduction of high-dimensional data Wegelerstraße 6 535 Bonn Germany phone +49 228 73-3427 fax +49 228 73-7527 www.ins.uni-bonn.de M. Griebel, A. Hullmann A sparse grid based generative topographic mapping for the dimensionality reduction

More information

Algorithms for Scientific Computing

Algorithms for Scientific Computing Algorithms for Scientific Computing Hierarchical Methods and Sparse Grids d-dimensional Hierarchical Basis Michael Bader Technical University of Munich Summer 208 Intermezzo/ Big Picture : Archimedes Quadrature

More information

A LAGRANGE MULTIPLIER METHOD FOR ELLIPTIC INTERFACE PROBLEMS USING NON-MATCHING MESHES

A LAGRANGE MULTIPLIER METHOD FOR ELLIPTIC INTERFACE PROBLEMS USING NON-MATCHING MESHES A LAGRANGE MULTIPLIER METHOD FOR ELLIPTIC INTERFACE PROBLEMS USING NON-MATCHING MESHES P. HANSBO Department of Applied Mechanics, Chalmers University of Technology, S-4 96 Göteborg, Sweden E-mail: hansbo@solid.chalmers.se

More information

Compact High Order Finite Difference Stencils for Elliptic Variable Coefficient and Interface Problems

Compact High Order Finite Difference Stencils for Elliptic Variable Coefficient and Interface Problems Compact High Order Finite Difference Stencils for Elliptic Variable Coefficient and Interface Problems Daniel Ritter 1, Ulrich Rüde 1, Björn Gmeiner 1, Rochus Schmid 2 Copper Mountain, March 18th, 2013

More information

Dimension Adaptive Tensor Product Quadrature

Dimension Adaptive Tensor Product Quadrature Dimension Adaptive Tensor Product Quadrature Thomas Gerstner and Michael Griebel Department for Applied Mathematics University of Bonn {gerstner,griebel}@iam.uni-bonn.de Abstract We consider the numerical

More information

Lena Leitenmaier & Parikshit Upadhyaya KTH - Royal Institute of Technology

Lena Leitenmaier & Parikshit Upadhyaya KTH - Royal Institute of Technology Data mining with sparse grids Lena Leitenmaier & Parikshit Upadhyaya KTH - Royal Institute of Technology Classification problem Given: training data d-dimensional data set (feature space); typically relatively

More information

Variational problems in machine learning and their solution with finite elements

Variational problems in machine learning and their solution with finite elements Variational problems in machine learning and their solution with finite elements M. Hegland M. Griebel April 2007 Abstract Many machine learning problems deal with the estimation of conditional probabilities

More information

On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique

On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique Jochen Garcke and Michael Griebel Institut für Angewandte

More information

Numerical Solution I

Numerical Solution I Numerical Solution I Stationary Flow R. Kornhuber (FU Berlin) Summerschool Modelling of mass and energy transport in porous media with practical applications October 8-12, 2018 Schedule Classical Solutions

More information

Stability of implicit extrapolation methods. Abstract. Multilevel methods are generally based on a splitting of the solution

Stability of implicit extrapolation methods. Abstract. Multilevel methods are generally based on a splitting of the solution Contemporary Mathematics Volume 00, 0000 Stability of implicit extrapolation methods Abstract. Multilevel methods are generally based on a splitting of the solution space associated with a nested sequence

More information

Orthogonal Polynomials, Quadratures & Sparse-Grid Methods for Probability Integrals

Orthogonal Polynomials, Quadratures & Sparse-Grid Methods for Probability Integrals 1/33 Orthogonal Polynomials, Quadratures & Sparse-Grid Methods for Probability Integrals Dr. Abebe Geletu May, 2010 Technische Universität Ilmenau, Institut für Automatisierungs- und Systemtechnik Fachgebiet

More information

Finite Elements. Colin Cotter. January 15, Colin Cotter FEM

Finite Elements. Colin Cotter. January 15, Colin Cotter FEM Finite Elements January 15, 2018 Why Can solve PDEs on complicated domains. Have flexibility to increase order of accuracy and match the numerics to the physics. has an elegant mathematical formulation

More information

On the numerical solution of the chemical master equation with sums of rank one tensors

On the numerical solution of the chemical master equation with sums of rank one tensors ANZIAM J. 52 (CTAC21) pp.c628 C643, 211 C628 On the numerical solution of the chemical master equation with sums of rank one tensors Markus Hegland 1 Jochen Garcke 2 (Received 2 January 211; revised 4

More information

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes www.oeaw.ac.at From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes D. Copeland, U. Langer, D. Pusch RICAM-Report 2008-10 www.ricam.oeaw.ac.at From the Boundary Element

More information

Notes on Numerical Fluid Mechanics

Notes on Numerical Fluid Mechanics Notes on Numerical Fluid Mechanics Volume 31 Parallel Algorithm,s for Partial Differential Equations Edited by Wolfgang Hackbusch al V1eweg Parallel Algorithms for Partial Differential Equations Proceedings

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz A note on the stable coupling of finite and boundary elements O. Steinbach Berichte aus dem Institut für Numerische Mathematik Bericht 2009/4 Technische Universität Graz A

More information

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes Dylan Copeland 1, Ulrich Langer 2, and David Pusch 3 1 Institute of Computational Mathematics,

More information

STRANG SPLITTING FOR THE TIME DEPENDENT SCHRÖDINGER EQUATION ON SPARSE GRIDS

STRANG SPLITTING FOR THE TIME DEPENDENT SCHRÖDINGER EQUATION ON SPARSE GRIDS STRANG SPLITTING FOR THE TIME DEPENDENT SCHRÖDINGER EQUATION ON SPARSE GRIDS V GRADINARU Abstract The time-dependent Schrödinger equation is discretized in space by a sparse grid pseudo-spectral method

More information

A very short introduction to the Finite Element Method

A very short introduction to the Finite Element Method A very short introduction to the Finite Element Method Till Mathis Wagner Technical University of Munich JASS 2004, St Petersburg May 4, 2004 1 Introduction This is a short introduction to the finite element

More information

1 Discretizing BVP with Finite Element Methods.

1 Discretizing BVP with Finite Element Methods. 1 Discretizing BVP with Finite Element Methods In this section, we will discuss a process for solving boundary value problems numerically, the Finite Element Method (FEM) We note that such method is a

More information

A Balancing Algorithm for Mortar Methods

A Balancing Algorithm for Mortar Methods A Balancing Algorithm for Mortar Methods Dan Stefanica Baruch College, City University of New York, NY 11, USA Dan Stefanica@baruch.cuny.edu Summary. The balancing methods are hybrid nonoverlapping Schwarz

More information

Key-Words: - fast algorithms, boundary value problems, partial differential equations, Radon transform, MATLAB software

Key-Words: - fast algorithms, boundary value problems, partial differential equations, Radon transform, MATLAB software Fast Algorithms and MATLAB Software for Solution of the Dirichlet Boundary Value Problems for Elliptic Partial Differential Equations in Domains with Complicated Geometry ALEXANDRE GREBENNIKOV Faculty

More information

Lecture Note III: Least-Squares Method

Lecture Note III: Least-Squares Method Lecture Note III: Least-Squares Method Zhiqiang Cai October 4, 004 In this chapter, we shall present least-squares methods for second-order scalar partial differential equations, elastic equations of solids,

More information

Besov regularity for operator equations on patchwise smooth manifolds

Besov regularity for operator equations on patchwise smooth manifolds on patchwise smooth manifolds Markus Weimar Philipps-University Marburg Joint work with Stephan Dahlke (PU Marburg) Mecklenburger Workshop Approximationsmethoden und schnelle Algorithmen Hasenwinkel, March

More information

BIBLIOGRAPHY KENDALL E ATKINSON

BIBLIOGRAPHY KENDALL E ATKINSON September 28, 2017 BIBLIOGRAPHY KENDALL E ATKINSON I. BOOKS 1. K. Atkinson, D. Chien, and O. Hansen. Spectral Methods Using Multivariate Polynomials On The Unit Ball, submitted for publication. 2. K. Atkinson

More information

Book of Abstracts - Extract th Annual Meeting. March 23-27, 2015 Lecce, Italy. jahrestagung.gamm-ev.de

Book of Abstracts - Extract th Annual Meeting. March 23-27, 2015 Lecce, Italy. jahrestagung.gamm-ev.de GESELLSCHAFT für ANGEWANDTE MATHEMATIK und MECHANIK e.v. INTERNATIONAL ASSOCIATION of APPLIED MATHEMATICS and MECHANICS 86 th Annual Meeting of the International Association of Applied Mathematics and

More information

/00 $ $.25 per page

/00 $ $.25 per page Contemporary Mathematics Volume 00, 0000 Domain Decomposition For Linear And Nonlinear Elliptic Problems Via Function Or Space Decomposition UE-CHENG TAI Abstract. In this article, we use a function decomposition

More information

Interpolation lattices for hyperbolic cross trigonometric polynomials

Interpolation lattices for hyperbolic cross trigonometric polynomials Interpolation lattices for hyperbolic cross trigonometric polynomials Lutz Kämmerer a, Stefan Kunis b, Daniel Potts a a Chemnitz University of Technology, Faculty of Mathematics, 09107 Chemnitz, Germany

More information

A Bibliography of Publications of Ulrich Ruede

A Bibliography of Publications of Ulrich Ruede A Bibliography of Publications of Ulrich Ruede Ulrich Ruede Fakultaet fuer Mathematik Technische Universitaet Chemnitz-Zwickau D-09009 Chemnitz Germany Tel: +49-0371 - 561-2159 FAX:?n/a? E-mail: ruede@mathematik.tu-chemnitz.de

More information

Approximation of High-Dimensional Rank One Tensors

Approximation of High-Dimensional Rank One Tensors Approximation of High-Dimensional Rank One Tensors Markus Bachmayr, Wolfgang Dahmen, Ronald DeVore, and Lars Grasedyck March 14, 2013 Abstract Many real world problems are high-dimensional in that their

More information

A gradient recovery method based on an oblique projection and boundary modification

A gradient recovery method based on an oblique projection and boundary modification ANZIAM J. 58 (CTAC2016) pp.c34 C45, 2017 C34 A gradient recovery method based on an oblique projection and boundary modification M. Ilyas 1 B. P. Lamichhane 2 M. H. Meylan 3 (Received 24 January 2017;

More information

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Institut für Numerische Mathematik und Optimierung Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Oliver Ernst Computational Methods with Applications Harrachov, CR,

More information

The Deflation Accelerated Schwarz Method for CFD

The Deflation Accelerated Schwarz Method for CFD The Deflation Accelerated Schwarz Method for CFD J. Verkaik 1, C. Vuik 2,, B.D. Paarhuis 1, and A. Twerda 1 1 TNO Science and Industry, Stieltjesweg 1, P.O. Box 155, 2600 AD Delft, The Netherlands 2 Delft

More information

FINITE ELEMENT APPROXIMATION OF ELLIPTIC DIRICHLET OPTIMAL CONTROL PROBLEMS

FINITE ELEMENT APPROXIMATION OF ELLIPTIC DIRICHLET OPTIMAL CONTROL PROBLEMS Numerical Functional Analysis and Optimization, 28(7 8):957 973, 2007 Copyright Taylor & Francis Group, LLC ISSN: 0163-0563 print/1532-2467 online DOI: 10.1080/01630560701493305 FINITE ELEMENT APPROXIMATION

More information

Simple Examples on Rectangular Domains

Simple Examples on Rectangular Domains 84 Chapter 5 Simple Examples on Rectangular Domains In this chapter we consider simple elliptic boundary value problems in rectangular domains in R 2 or R 3 ; our prototype example is the Poisson equation

More information

Domain decomposition methods via boundary integral equations

Domain decomposition methods via boundary integral equations Domain decomposition methods via boundary integral equations G. C. Hsiao a O. Steinbach b W. L. Wendland b a Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716, USA. E

More information

Least-Squares Spectral Collocation with the Overlapping Schwarz Method for the Incompressible Navier Stokes Equations

Least-Squares Spectral Collocation with the Overlapping Schwarz Method for the Incompressible Navier Stokes Equations Least-Squares Spectral Collocation with the Overlapping Schwarz Method for the Incompressible Navier Stokes Equations by Wilhelm Heinrichs Universität Duisburg Essen, Ingenieurmathematik Universitätsstr.

More information

Partial Differential Equations with Numerical Methods

Partial Differential Equations with Numerical Methods Stig Larsson Vidar Thomée Partial Differential Equations with Numerical Methods May 2, 2003 Springer Berlin Heidelberg New York Barcelona Hong Kong London Milan Paris Tokyo Preface Our purpose in this

More information

ACM/CMS 107 Linear Analysis & Applications Fall 2017 Assignment 2: PDEs and Finite Element Methods Due: 7th November 2017

ACM/CMS 107 Linear Analysis & Applications Fall 2017 Assignment 2: PDEs and Finite Element Methods Due: 7th November 2017 ACM/CMS 17 Linear Analysis & Applications Fall 217 Assignment 2: PDEs and Finite Element Methods Due: 7th November 217 For this assignment the following MATLAB code will be required: Introduction http://wwwmdunloporg/cms17/assignment2zip

More information

High order, finite volume method, flux conservation, finite element method

High order, finite volume method, flux conservation, finite element method FLUX-CONSERVING FINITE ELEMENT METHODS SHANGYOU ZHANG, ZHIMIN ZHANG, AND QINGSONG ZOU Abstract. We analyze the flux conservation property of the finite element method. It is shown that the finite element

More information

Suboptimal feedback control of PDEs by solving HJB equations on adaptive sparse grids

Suboptimal feedback control of PDEs by solving HJB equations on adaptive sparse grids Suboptimal feedback control of PDEs by solving HJB equations on adaptive sparse grids Jochen Garcke, Axel Kröner To cite this version: Jochen Garcke, Axel Kröner. Suboptimal feedback control of PDEs by

More information

DIRECT ERROR BOUNDS FOR SYMMETRIC RBF COLLOCATION

DIRECT ERROR BOUNDS FOR SYMMETRIC RBF COLLOCATION Meshless Methods in Science and Engineering - An International Conference Porto, 22 DIRECT ERROR BOUNDS FOR SYMMETRIC RBF COLLOCATION Robert Schaback Institut für Numerische und Angewandte Mathematik (NAM)

More information

A Recursive Trust-Region Method for Non-Convex Constrained Minimization

A Recursive Trust-Region Method for Non-Convex Constrained Minimization A Recursive Trust-Region Method for Non-Convex Constrained Minimization Christian Groß 1 and Rolf Krause 1 Institute for Numerical Simulation, University of Bonn. {gross,krause}@ins.uni-bonn.de 1 Introduction

More information

Non-Conforming Finite Element Methods for Nonmatching Grids in Three Dimensions

Non-Conforming Finite Element Methods for Nonmatching Grids in Three Dimensions Non-Conforming Finite Element Methods for Nonmatching Grids in Three Dimensions Wayne McGee and Padmanabhan Seshaiyer Texas Tech University, Mathematics and Statistics (padhu@math.ttu.edu) Summary. In

More information

Abstract. 1. Introduction

Abstract. 1. Introduction Journal of Computational Mathematics Vol.28, No.2, 2010, 273 288. http://www.global-sci.org/jcm doi:10.4208/jcm.2009.10-m2870 UNIFORM SUPERCONVERGENCE OF GALERKIN METHODS FOR SINGULARLY PERTURBED PROBLEMS

More information

EXISTENCE OF SET-INTERPOLATING AND ENERGY- MINIMIZING CURVES

EXISTENCE OF SET-INTERPOLATING AND ENERGY- MINIMIZING CURVES EXISTENCE OF SET-INTERPOLATING AND ENERGY- MINIMIZING CURVES JOHANNES WALLNER Abstract. We consider existence of curves c : [0, 1] R n which minimize an energy of the form c (k) p (k = 1, 2,..., 1 < p

More information

Multigrid finite element methods on semi-structured triangular grids

Multigrid finite element methods on semi-structured triangular grids XXI Congreso de Ecuaciones Diferenciales y Aplicaciones XI Congreso de Matemática Aplicada Ciudad Real, -5 septiembre 009 (pp. 8) Multigrid finite element methods on semi-structured triangular grids F.J.

More information

Multigrid Methods for Elliptic Obstacle Problems on 2D Bisection Grids

Multigrid Methods for Elliptic Obstacle Problems on 2D Bisection Grids Multigrid Methods for Elliptic Obstacle Problems on 2D Bisection Grids Long Chen 1, Ricardo H. Nochetto 2, and Chen-Song Zhang 3 1 Department of Mathematics, University of California at Irvine. chenlong@math.uci.edu

More information

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations S. Hussain, F. Schieweck, S. Turek Abstract In this note, we extend our recent work for

More information

Numerical techniques for linear and nonlinear eigenvalue problems in the theory of elasticity

Numerical techniques for linear and nonlinear eigenvalue problems in the theory of elasticity ANZIAM J. 46 (E) ppc46 C438, 005 C46 Numerical techniques for linear and nonlinear eigenvalue problems in the theory of elasticity Aliki D. Muradova (Received 9 November 004, revised April 005) Abstract

More information

arxiv: v1 [math.na] 11 Jul 2011

arxiv: v1 [math.na] 11 Jul 2011 Multigrid Preconditioner for Nonconforming Discretization of Elliptic Problems with Jump Coefficients arxiv:07.260v [math.na] Jul 20 Blanca Ayuso De Dios, Michael Holst 2, Yunrong Zhu 2, and Ludmil Zikatanov

More information

On the Lebesgue constant of barycentric rational interpolation at equidistant nodes

On the Lebesgue constant of barycentric rational interpolation at equidistant nodes On the Lebesgue constant of barycentric rational interpolation at equidistant nodes by Len Bos, Stefano De Marchi, Kai Hormann and Georges Klein Report No. 0- May 0 Université de Fribourg (Suisse Département

More information

Max-Planck-Institut fur Mathematik in den Naturwissenschaften Leipzig H 2 -matrix approximation of integral operators by interpolation by Wolfgang Hackbusch and Steen Borm Preprint no.: 04 200 H 2 -Matrix

More information

Local discontinuous Galerkin methods for elliptic problems

Local discontinuous Galerkin methods for elliptic problems COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING Commun. Numer. Meth. Engng 2002; 18:69 75 [Version: 2000/03/22 v1.0] Local discontinuous Galerkin methods for elliptic problems P. Castillo 1 B. Cockburn

More information

Domain Decomposition Preconditioners for Spectral Nédélec Elements in Two and Three Dimensions

Domain Decomposition Preconditioners for Spectral Nédélec Elements in Two and Three Dimensions Domain Decomposition Preconditioners for Spectral Nédélec Elements in Two and Three Dimensions Bernhard Hientzsch Courant Institute of Mathematical Sciences, New York University, 51 Mercer Street, New

More information

Algorithms for Scientific Computing

Algorithms for Scientific Computing Algorithms for Scientific Computing Finite Element Methods Michael Bader Technical University of Munich Summer 2016 Part I Looking Back: Discrete Models for Heat Transfer and the Poisson Equation Modelling

More information

INTERNATIONAL PUBLICATIONS (USA)

INTERNATIONAL PUBLICATIONS (USA) INTERNATIONAL PUBLICATIONS (USA) Communications on Applied Nonlinear Analysis Volume 17(2010), Number 4, 81 88 Pohozaev s Identity and Non-existence of Solutions for Elliptic Systems Philip Korman University

More information

An interpolation operator for H 1 functions on general quadrilateral and hexahedral meshes with hanging nodes

An interpolation operator for H 1 functions on general quadrilateral and hexahedral meshes with hanging nodes An interpolation operator for H 1 functions on general quadrilateral and hexahedral meshes with hanging nodes Vincent Heuveline Friedhelm Schieweck Abstract We propose a Scott-Zhang type interpolation

More information

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Dr. Noemi Friedman Contents of the course Fundamentals

More information

Werner Balser January 11, 2014 LIST OF PUBLICATIONS

Werner Balser January 11, 2014 LIST OF PUBLICATIONS Werner Balser January 11, 2014 LIST OF PUBLICATIONS 1. Über Abschnittslimitierbarkeit, Dissertation, Ulm 1972. 2. Über Abschnittslimitierbarkeit, J. reine u. ang. Math. 281 (1976) 211 218. 3. On linear

More information

element stiffness matrix, 21

element stiffness matrix, 21 Bibliography [1] R. Adams, Sobolev Spaces, Academic Press, 1975. [2] C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potentials in three-diemnsional nonsmooth domains, Math. Meth. Appl. Sci.,

More information

Decomposition of Riesz frames and wavelets into a finite union of linearly independent sets

Decomposition of Riesz frames and wavelets into a finite union of linearly independent sets Decomposition of Riesz frames and wavelets into a finite union of linearly independent sets Ole Christensen, Alexander M. Lindner Abstract We characterize Riesz frames and prove that every Riesz frame

More information

Algebraic Multigrid Preconditioners for Computing Stationary Distributions of Markov Processes

Algebraic Multigrid Preconditioners for Computing Stationary Distributions of Markov Processes Algebraic Multigrid Preconditioners for Computing Stationary Distributions of Markov Processes Elena Virnik, TU BERLIN Algebraic Multigrid Preconditioners for Computing Stationary Distributions of Markov

More information

High-order ADI schemes for convection-diffusion equations with mixed derivative terms

High-order ADI schemes for convection-diffusion equations with mixed derivative terms High-order ADI schemes for convection-diffusion equations with mixed derivative terms B. Düring, M. Fournié and A. Rigal Abstract We consider new high-order Alternating Direction Implicit ADI) schemes

More information

Beyond Wiener Askey Expansions: Handling Arbitrary PDFs

Beyond Wiener Askey Expansions: Handling Arbitrary PDFs Journal of Scientific Computing, Vol. 27, Nos. 1 3, June 2006 ( 2005) DOI: 10.1007/s10915-005-9038-8 Beyond Wiener Askey Expansions: Handling Arbitrary PDFs Xiaoliang Wan 1 and George Em Karniadakis 1

More information

Volterra integral equations solved in Fredholm form using Walsh functions

Volterra integral equations solved in Fredholm form using Walsh functions ANZIAM J. 45 (E) ppc269 C282, 24 C269 Volterra integral equations solved in Fredholm form using Walsh functions W. F. Blyth R. L. May P. Widyaningsih (Received 8 August 23; revised 6 Jan 24) Abstract Recently

More information

Computation of operators in wavelet coordinates

Computation of operators in wavelet coordinates Computation of operators in wavelet coordinates Tsogtgerel Gantumur and Rob Stevenson Department of Mathematics Utrecht University Tsogtgerel Gantumur - Computation of operators in wavelet coordinates

More information

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) RAYTCHO LAZAROV 1 Notations and Basic Functional Spaces Scalar function in R d, d 1 will be denoted by u,

More information

Efficient Algorithms for Solving the Black-Scholes Equation on Dimensionally Adaptive Sparse Grids

Efficient Algorithms for Solving the Black-Scholes Equation on Dimensionally Adaptive Sparse Grids FAKULTÄT FÜR INFORMATIK DER TECHNISCHEN UNIVERSITÄT MÜNCHEN Bachelorarbeit in Informatik Efficient Algorithms for Solving the Black-Scholes Equation on Dimensionally Adaptive Sparse Grids Matthias Fischer

More information

Local Mesh Refinement with the PCD Method

Local Mesh Refinement with the PCD Method Advances in Dynamical Systems and Applications ISSN 0973-5321, Volume 8, Number 1, pp. 125 136 (2013) http://campus.mst.edu/adsa Local Mesh Refinement with the PCD Method Ahmed Tahiri Université Med Premier

More information

A Bibliography of Publications of Andrew Knyazev

A Bibliography of Publications of Andrew Knyazev A Bibliography of Publications of Andrew Knyazev Andrew Knyazev Associate Professor Department of Mathematics University of Colorado at Denver, P.O. Box 173364, Campus Box 170 Denver, CO 80217-3364 USA

More information

The Mortar Wavelet Method Silvia Bertoluzza Valerie Perrier y October 29, 1999 Abstract This paper deals with the construction of wavelet approximatio

The Mortar Wavelet Method Silvia Bertoluzza Valerie Perrier y October 29, 1999 Abstract This paper deals with the construction of wavelet approximatio The Mortar Wavelet Method Silvia Bertoluzza Valerie Perrier y October 9, 1999 Abstract This paper deals with the construction of wavelet approximation spaces, in the framework of the Mortar method. We

More information

Key Words: cardinal B-spline, coefficients, moments, rectangular rule, interpolating quadratic spline, hat function, cubic B-spline.

Key Words: cardinal B-spline, coefficients, moments, rectangular rule, interpolating quadratic spline, hat function, cubic B-spline. M a t h e m a t i c a B a l a n i c a New Series Vol. 24, 2, Fasc.3-4 Splines in Numerical Integration Zlato Udovičić We gave a short review of several results which are related to the role of splines

More information

SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS

SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS Proceedings of ALGORITMY 2009 pp. 1 10 SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS MILOSLAV VLASÁK Abstract. We deal with a numerical solution of a scalar

More information

Sparse Tensor Galerkin Discretizations for First Order Transport Problems

Sparse Tensor Galerkin Discretizations for First Order Transport Problems Sparse Tensor Galerkin Discretizations for First Order Transport Problems Ch. Schwab R. Hiptmair, E. Fonn, K. Grella, G. Widmer ETH Zürich, Seminar for Applied Mathematics IMA WS Novel Discretization Methods

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. (997) 76: 479 488 Numerische Mathematik c Springer-Verlag 997 Electronic Edition Exponential decay of C cubic splines vanishing at two symmetric points in each knot interval Sang Dong Kim,,

More information

Optimal multilevel preconditioning of strongly anisotropic problems.part II: non-conforming FEM. p. 1/36

Optimal multilevel preconditioning of strongly anisotropic problems.part II: non-conforming FEM. p. 1/36 Optimal multilevel preconditioning of strongly anisotropic problems. Part II: non-conforming FEM. Svetozar Margenov margenov@parallel.bas.bg Institute for Parallel Processing, Bulgarian Academy of Sciences,

More information

1. Introduction. We consider the model problem that seeks an unknown function u = u(x) satisfying

1. Introduction. We consider the model problem that seeks an unknown function u = u(x) satisfying A SIMPLE FINITE ELEMENT METHOD FOR LINEAR HYPERBOLIC PROBLEMS LIN MU AND XIU YE Abstract. In this paper, we introduce a simple finite element method for solving first order hyperbolic equations with easy

More information

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Problem Jörg-M. Sautter Mathematisches Institut, Universität Düsseldorf, Germany, sautter@am.uni-duesseldorf.de

More information

Numerical Programming I (for CSE)

Numerical Programming I (for CSE) Technische Universität München WT 1/13 Fakultät für Mathematik Prof. Dr. M. Mehl B. Gatzhammer January 1, 13 Numerical Programming I (for CSE) Tutorial 1: Iterative Methods 1) Relaxation Methods a) Let

More information

The mortar element method for quasilinear elliptic boundary value problems

The mortar element method for quasilinear elliptic boundary value problems The mortar element method for quasilinear elliptic boundary value problems Leszek Marcinkowski 1 Abstract We consider a discretization of quasilinear elliptic boundary value problems by the mortar version

More information

Maximum norm estimates for energy-corrected finite element method

Maximum norm estimates for energy-corrected finite element method Maximum norm estimates for energy-corrected finite element method Piotr Swierczynski 1 and Barbara Wohlmuth 1 Technical University of Munich, Institute for Numerical Mathematics, piotr.swierczynski@ma.tum.de,

More information

Schemes. Philipp Keding AT15, San Antonio, TX. Quarklet Frames in Adaptive Numerical. Schemes. Philipp Keding. Philipps-University Marburg

Schemes. Philipp Keding AT15, San Antonio, TX. Quarklet Frames in Adaptive Numerical. Schemes. Philipp Keding. Philipps-University Marburg AT15, San Antonio, TX 5-23-2016 Joint work with Stephan Dahlke and Thorsten Raasch Let H be a Hilbert space with its dual H. We are interested in the solution u H of the operator equation Lu = f, with

More information

Numerical Integration over Pyramids

Numerical Integration over Pyramids Numerical Integration over Pyramids Chuan Miao Chen, Michal řížek, Liping Liu Corresponding Author: Dr. Liping Liu Department of Mathematical Sciences Lakehead University Thunder Bay, ON Canada P7B 5E1

More information

Spectral element agglomerate AMGe

Spectral element agglomerate AMGe Spectral element agglomerate AMGe T. Chartier 1, R. Falgout 2, V. E. Henson 2, J. E. Jones 4, T. A. Manteuffel 3, S. F. McCormick 3, J. W. Ruge 3, and P. S. Vassilevski 2 1 Department of Mathematics, Davidson

More information

Analysis of Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems

Analysis of Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems Analysis of Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems Christian Waluga 1 advised by Prof. Herbert Egger 2 Prof. Wolfgang Dahmen 3 1 Aachen Institute for Advanced Study in Computational

More information

On Nonlinear Dirichlet Neumann Algorithms for Jumping Nonlinearities

On Nonlinear Dirichlet Neumann Algorithms for Jumping Nonlinearities On Nonlinear Dirichlet Neumann Algorithms for Jumping Nonlinearities Heiko Berninger, Ralf Kornhuber, and Oliver Sander FU Berlin, FB Mathematik und Informatik (http://www.math.fu-berlin.de/rd/we-02/numerik/)

More information

INDUSTRIAL MATHEMATICS INSTITUTE. B.S. Kashin and V.N. Temlyakov. IMI Preprint Series. Department of Mathematics University of South Carolina

INDUSTRIAL MATHEMATICS INSTITUTE. B.S. Kashin and V.N. Temlyakov. IMI Preprint Series. Department of Mathematics University of South Carolina INDUSTRIAL MATHEMATICS INSTITUTE 2007:08 A remark on compressed sensing B.S. Kashin and V.N. Temlyakov IMI Preprint Series Department of Mathematics University of South Carolina A remark on compressed

More information