arxiv:hep-th/ v2 11 Sep 1996

Size: px
Start display at page:

Download "arxiv:hep-th/ v2 11 Sep 1996"

Transcription

1 Gauge Independence of the Lagrangian Path Integral in a Higher-Order Formalism arxiv:hep-th/ v2 Sep 996 I.A. Batalin I.E. Tamm Theory Division P.N. Lebedev Physics Institute Russian Academy of Sciences 53 Leniniski Prospect Moscow 7924 Russia K. Bering Institute of Theoretical Physics Uppsala University P.O. Box 803 S Uppsala Sweden and P.H. Damgaard The Niels Bohr Institute Blegdamsvej 7 Dk-200 Copenhagen Denmark August, 208 Abstract We propose a Lagrangian path integral based on gauge symmetries generated by a symmetric higher-order -operator, and demonstrate that this path integral is independent of the chosen gauge-fixing function. No explicit change of variables in the functional integral is required to show this. NBI-HE UUITP-20/96 hep-th/

2 . Introduction. The usual field-antifield formalism for gauge theories [] is based on a Grassmannodd nilpotent operator, which is assumed to be of 2nd order. In covariant form [2], = 2 ( )ǫ A ρ(γ) Aρ(Γ)E AB (Γ) B. () Here ρ(γ) coincides with the measure density in the functional integral, and the non-degenerate E AB satisfies the following symmetry condition: E AB = ( ) (ǫ A+)(ǫ B +) E BA. (2) The -operator is the basic building block of the whole Lagrangian quantization program in the field-antifield formalism. From it derives the Master Equations as well as the antibracket, which in turn provides an anticanonical framework on the space of fields and antifields. The -operator also generates a global symmetry which is useful for proving independence of the chosen gauge-fixing surface on the field-antifield supermanifold. In view of this, it is natural to ask if an analogous Lagrangian quantization prescription can be established with the help of a -operator of arbitrary (perhaps even infinite) order. Investigations along these lines were initiated by a study of possible quantum deformations of the field-antifield formalism [3]. More recently, such considerations have been prompted by the observed analogies between the -operator and a certain quantized Hamiltonian BRST operator Ω [4] in the ghost momentum representation [5], as well as by a study of the associated algebraic structure [6]. The relevant mathematical foundations date back to work of Koszul [7]. 2. Gauge Independence. Let there be given a functional measure dµ dγdλρ(γ). While Γ represents the usual set of fields and antifields, the λ s can be seen either as implementing the gauge (or hypergauge) fixing condition [8], or as the ghost fields for which the antifields are usual antighosts [9]. We assume that the general odd -operator satisfies two properties: It is nilpotent, and it is symmetric, Here the transposed operator T is defined by dµ F G = ( ) ǫ F 2 = 0, (3) T =. (4) ( ) dµ T F G. (5) It is conventional to assume in addition that () = 0, but this assumption can easily be discarded [7, 6], and in fact we do not need it here. Consider the two Master Equations e ī h W = 0, e ī h X = 0, (6) and the path integral [8, 0] Z X dµ e ī h [W+X]. (7) We wish to establish that Z X = Z X for an arbitrary deformation X X that preserves the master equation for X. We consider here -operators and solutions X belonging to the class for which the following represents a maximal deformation [8, 0]: e ī h X = e [,Ψ] e ī h X, (8)

3 i.e. for an infinitesimal transformation, δe ī h X = [,Ψ]e ī h X. (9) Proof: We will use 3 ingredients: ) The Master Equation for W, 2) The Master Equation for X, and 3) The symmetry of. Then, Z X Z X = = dµ e ī h W [,Ψ]e ī h X dµ [( e ī W) h Ψe ī h X +e ī h W Ψ e ī X] h = 0. (0) 3. BRST Symmetry. We can also understand gauge independence of the path integral from the existence of a nilpotent BRST symmetry. We can define two BRST transformations, one associated with W, and one associated with X [5, 6]. They are: σ W F = ( h i )e ī h W [,F]e ī h W σ X F = ( h i )e ī h X [,F]e ī h X. () The Master Equations for W and X are preserved under transformations W W + σ W Ψ and X X + σ X Ψ. Thus another way of phrasing the gauge independence of the path integral is Z X = Z X+δX with δx σ X Ψ. This is precisely the content of eqs. (9) and (0). The operators () are the natural generalizations of the so-called quantum BRST operator for the case of the conventional 2nd order -operator []. If we define BRST invariant operators G by σ W G = 0, (2) we observe that expectation values of such operators do not depend on X: G X+δX G X = Z dµ Ge ī h [W+X] e ī h X [,Ψ]e ī h X ( = ( ) ǫ G Z dµ Ge ī W) h Ψe ī h X ( = ( ) ǫ G Z dµ [,G]e ī W) h Ψe ī h X = ( ) ǫ G Z dµ e ī h W ( īσ h WG)Ψe ī h X Similarly we can show that σ W F = 0 for any F: = 0. (3) σ W F = Z dµ e ī h [W+X] σ W F = Z dµ e ī h [W+X] ( h i )e ī h W [,F]e ī h W = Z ( h ) dµ [( e ī X) h Fe ī h W ( ) ǫ F e ī h X F e ī W] h i = 0. (4) We can also consider their difference [0], or in fact any linear combination. When both Master Equations are satisfied, we can remove the commutator, but the present form is convenient.

4 The formalism is symmetric under exchanges of W and X. The choice of boundary conditions stipulates which part will play the rôle of action (here taken to be W), and which part will play the rôle of gauge fixing (here taken to be X). 4. Generalizations. We note that the requirement of symmetry of, eq. (4), can be relaxed if we instead impose two conjugate Master Equations on W and X: Under arbitrary infinitesimal deformations e ī h W = 0, T e ī h X = 0. (5) δe ī h X = [ T,Ψ]e ī h X, (6) one finds again Z X = Z X. Similarly the BRST operator σ X of eq. () will have replaced by T. The rest of the conclusions then remain unaltered. 5. Quantum Deformations of. Up to this point we have made no further assumptions about beyond those stated in eq. (3-4), and indirectly in eq. (8). Gauge independence of the proposed path integral (0) holds in all generality. We shall end by some comments specific to -operators obtained by quantum deformations of the classical 2nd order -operator () [3]. Quantum corrections are expected to arise when operator-ordering in the Hamiltonian formalism is properly taken into account. The most general quantum deformation of the 2nd order can be written in terms of its homogeneous components as n = n+2 m=0 = ( h i )n n n=0 n,m, n,m = Am...A n,m (Γ) A... Am. (7) in an ordering with all (left) derivatives standing to the right. ( h i )n n,m is the contribution to of order n in h and differential order m. So the classical part is 0 = 0,2 + 0, + 0,0. (8) Each new order of h gives rise to one extra order of differentiation. The Master Equation has an expansion in terms of higher antibrackets Φ k [5, 6]: 0 = ( h i )2 e ī h W e ī h W = ( h i )2 = = k=0 n+2 n=0 k=0 k=2 ( h i )l + k! Φk ( ī h W,..., ī h W) ( h i )n+2 k k! Φk n (W,...,W) k! Φk k 2 (W,...,W)+ h i l=2 k=0 The original -operator () is of this form, with 0,0 = 0. k= k! Φk k (W,...,W) k! Φk k+l 2 (W,...,W). (9)

5 Here we have introduced the generalized antibracket [7] Φ k (A,...,A k ) = [ [,A ],,A k ], (20) in terms of k nested commutators. Assuming a semiclassical expansion of W, W = n=0 h n W n, one sees that the classical master equation Φ 2 0 (W 0,W 0 ) = 0 (2) will be replaced, in general, by a (possibly infinite ) sum, k=2 A similar analysis for the operator σ W yields σ W F = k= The classical transformation k! Φk+ k (W,...,W,F)+ will therefore in general be replaced by k= k! Φk k 2 (W 0,...,W 0 ) = 0. (22) ( h i )l l= k=0 k! Φk+ k+l (W,...,W,F). (23) σ cl W(F) = Φ 2 0 (W 0,F) (24) k! Φk+ k (W 0,...,W 0,F) (25) Conversely, if one assumes that quantum deformations of must be of such a form as to preserve the original classical Master Equation (22), then this places restrictions on the expansion (7). The condition is that n must be a differential operator of order n+ for n. Or, equivivalently, n,n+2 = 0 for n. Acknowledgement: The work of I.A.B. has been partially supported by a Human Capital and Mobility Program of the European Community under projects INTAS , , and by grant No from the Russian Foundation for Basic Researchers. The work of K.B. and P.H.D. has been partially supported by NorFA grants No O and O, respectively. I.A.B. would like to thank the Niels Bohr Institute and Prof. A. Niemi at Uppsala University for the warm hospitality extended to him during visits there. References [] I.A. Batalin and G.A. Vilkovisky, Phys. Lett. 02B (98) 27; Phys. Rev. D28 (983) 2567 [E: D30 (984) 508]; Nucl. Phys. B234 (984) 06. [2] O.M. Khudaverdian, J. Math. Phys. 32 (99) 934. O.M. Khudaverdian and A. Nersessian, Mod. Phys. Lett. A8 (993) A. Schwarz, Commun. Math. Phys. 55 (993) 249; ibid. 58 (993) 373. I.A. Batalin and I.V. Tyutin, Int. J. Mod. Phys. A8 (993) H. Hata and B. Zwiebach, Ann. Phys. (N.Y.) 229 (994) 77. J. Alfaro and P.H. Damgaard, Phys. Lett. 334 (994) 369; Nucl. Phys. B455 (995) 409. All sums over the order of the bracket k truncate at order N if the -operator is of order N.

6 [3] I.A. Batalin and I.V. Tyutin, Int. J. Mod. Phys. A9 (994) 57. [4] I.A. Batalin and E.S. Fradkin, Phys. Lett. 28B (983) 303. [5] J. Alfaro and P.H. Damgaard, Phys. Lett. B369 (996) 289. [6] K. Bering, P.H. Damgaard and J. Alfaro, hep-th/ [7] J.-L. Koszul, Astérisque, hors serie (985) 257. F. Akman, q-alg/ [8] I.A. Batalin and I.V. Tyutin, Mod. Phys. Lett. A8 (993) 3673; ibid. A9 (994) 707. [9] J. Alfaro and P.H. Damgaard, Nucl. Phys. B404 (993) 75. [0] I.A. Batalin, R. Marnelius and A.M. Semikhatov, Nucl. Phys. B446 (995) 249, I.A. Batalin and R. Marnelius, Nucl. Phys.B465 (996) 52. [] M. Henneaux, Nucl. Phys. B (Proc. Suppl.) 8A (990) 47.

arxiv:hep-th/ v1 21 Jan 1997

arxiv:hep-th/ v1 21 Jan 1997 SOGANG-HEP 209/96 December 996(revised) The Quantization of the Chiral Schwinger Model Based on the BFT BFV Formalism arxiv:hep-th/97002v 2 Jan 997 Won T. Kim, Yong-Wan Kim, Mu-In Park, and Young-Jai Park

More information

Jacobi - type identities in algebras and superalgebras

Jacobi - type identities in algebras and superalgebras Jacobi - type identities in algebras and superalgebras P.M. Lavrov a,b, O.V. Radchenko a and I.V. Tyutin c arxiv:1304.5050v2 [math-ph] 6 Jun 2014 a Tomsk State Pedagogical University, Kievskaya St. 60,

More information

arxiv: v1 [hep-th] 23 Mar 2015

arxiv: v1 [hep-th] 23 Mar 2015 Equivalence between two different field-dependent BRST formulations Sudhaker Upadhyay Department of Physics, Indian Institute of Technology Kanpur, Kanpur 08016, India Bhabani Prasad Mandal Department

More information

Duality between constraints and gauge conditions

Duality between constraints and gauge conditions Duality between constraints and gauge conditions arxiv:hep-th/0504220v2 28 Apr 2005 M. Stoilov Institute of Nuclear Research and Nuclear Energy, Sofia 1784, Bulgaria E-mail: mstoilov@inrne.bas.bg 24 April

More information

New Topological Field Theories from Dimensional Reduction of Nonlinear Gauge Theories

New Topological Field Theories from Dimensional Reduction of Nonlinear Gauge Theories New Topological Field Theories from Dimensional Reduction of Nonlinear Gauge Theories Noriaki Ikeda Ritsumeikan University, Japan Collaboration with K.-I. Izawa and T. Tokunaga, N. I., Izawa, hep-th/0407243,

More information

arxiv:hep-th/ v1 1 Dec 1998

arxiv:hep-th/ v1 1 Dec 1998 SOGANG-HEP 235/98 Lagrangian Approach of the First Class Constrained Systems Yong-Wan Kim, Seung-Kook Kim and Young-Jai Park arxiv:hep-th/9812001v1 1 Dec 1998 Department of Physics and Basic Science Research

More information

arxiv:hep-th/ v1 16 Aug 1996

arxiv:hep-th/ v1 16 Aug 1996 Göteborg ITP 96-12 August 1996 hep-th/yymmddd arxiv:hep-th/9608110v1 16 Aug 1996 Time evolution in general gauge theories on inner product spaces Robert Marnelius 1 Institute of Theoretical Physics Chalmers

More information

arxiv:hep-th/ v2 13 Aug 2003

arxiv:hep-th/ v2 13 Aug 2003 ULB PMIF 92/04 arxiv:hep-th/9209007v2 3 Aug 2003 BRST-anti-BRST Antifield Formalism : The Example of the Freedman-Townsend Model G. Barnich, R. Constantinescu, and P. Grgoire Faculté des Sciences, Université

More information

arxiv:quant-ph/ v2 28 Nov 2000

arxiv:quant-ph/ v2 28 Nov 2000 Improved Dirac quantization of a free particle Soon-Tae Hong, Won Tae Kim and Young-Jai Park Department of Physics and Basic Science Research Institute, Sogang University, C.P.O. Box 1142, Seoul 100-611,

More information

arxiv:hep-th/ v1 7 Nov 1998

arxiv:hep-th/ v1 7 Nov 1998 SOGANG-HEP 249/98 Consistent Dirac Quantization of SU(2) Skyrmion equivalent to BFT Scheme arxiv:hep-th/9811066v1 7 Nov 1998 Soon-Tae Hong 1, Yong-Wan Kim 1,2 and Young-Jai Park 1 1 Department of Physics

More information

arxiv:hep-th/ v2 6 Mar 2000

arxiv:hep-th/ v2 6 Mar 2000 Consistent Batalin Fradkin quantization of Infinitely Reducible First Class Constraints Stefano Bellucci and Anton Galajinsky INFN Laboratori Nazionali di Frascati, C.P. 3, 00044 Frascati, Italia arxiv:hep-th/990990v

More information

arxiv:hep-th/ v1 30 Sep 2003

arxiv:hep-th/ v1 30 Sep 2003 KL-TH / 03-03 arxiv:hep-th/0309268v1 30 Sep 2003 A Map between (q, h)-deformed Gauge Theories and ordinary Gauge Theories L. Mesref Department of Physics, Theoretical Physics University of Kaiserslautern,

More information

arxiv:hep-th/ v2 11 May 1998

arxiv:hep-th/ v2 11 May 1998 SOGANG HEP 223/97, HD THEP 97 29 Quantization of spontaneously broken gauge theory based on the BFT BFV Formalism Yong-Wan Kim and Young-Jai Park arxiv:hep-th/9712053v2 11 May 1998 Department of Physics

More information

arxiv:gr-qc/ v2 6 Apr 1999

arxiv:gr-qc/ v2 6 Apr 1999 1 Notations I am using the same notations as in [3] and [2]. 2 Temporal gauge - various approaches arxiv:gr-qc/9801081v2 6 Apr 1999 Obviously the temporal gauge q i = a i = const or in QED: A 0 = a R (1)

More information

Improved BFT quantization of O(3) nonlinear sigma model

Improved BFT quantization of O(3) nonlinear sigma model SOGANG-HEP 257/99 Improved BFT quantization of O(3) nonlinear sigma model Soon-Tae Hong a,wontaekim b, and Young-Jai Park c Department of Physics and Basic Science Research Institute, Sogang University,

More information

Higher-Spin Fermionic Gauge Fields & Their Electromagnetic Coupling

Higher-Spin Fermionic Gauge Fields & Their Electromagnetic Coupling Higher-Spin Fermionic Gauge Fields & Their Electromagnetic Coupling Rakibur Rahman Université Libre de Bruxelles, Belgium March 28, 2012 CQUeST Workshop on Higher Spins & String Geometry Sogang University,

More information

Improved BFT embedding having chain-structure arxiv:hep-th/ v1 3 Aug 2005

Improved BFT embedding having chain-structure arxiv:hep-th/ v1 3 Aug 2005 hep-th/0508022 SOGANG-HEP315/05 Improved BFT embedding having chain-structure arxiv:hep-th/0508022v1 3 Aug 2005 Yong-Wan Kim 1 and Ee Chang-Young 2 Department of Physics and Institute for Science and Technology,

More information

A Remark on BRST Singlets

A Remark on BRST Singlets A Remark on BRST Singlets E. Kazes arxiv:hep-th/00050v May 000 Department of Physics 04 Davey Laboratory University Park, PA 680 October, 07 Abstract Negative norm Hilbert space state vectors can be BRST

More information

BFT quantization of chiral-boson theories

BFT quantization of chiral-boson theories BFT quantization of chiral-boson theories IF-UFRJ-20/94 arxiv:hep-th/9408038v1 5 Aug 1994 R. Amorim and J. Barcelos-Neto Instituto de Física Universidade Federal do Rio de Janeiro RJ 21945-970 - Caixa

More information

arxiv: v2 [hep-th] 4 Sep 2009

arxiv: v2 [hep-th] 4 Sep 2009 The Gauge Unfixing Formalism and the Solutions arxiv:0904.4711v2 [hep-th] 4 Sep 2009 of the Dirac Bracket Commutators Jorge Ananias Neto Departamento de Física, ICE, Universidade Federal de Juiz de Fora,

More information

Higher-Spin Fermionic Gauge Fields & Their Electromagnetic Coupling

Higher-Spin Fermionic Gauge Fields & Their Electromagnetic Coupling Higher-Spin Fermionic Gauge Fields & Their Electromagnetic Coupling Rakibur Rahman Université Libre de Bruxelles, Belgium April 18, 2012 ESI Workshop on Higher Spin Gravity Erwin Schrödinger Institute,

More information

Representations of Sp(6,R) and SU(3) carried by homogeneous polynomials

Representations of Sp(6,R) and SU(3) carried by homogeneous polynomials Representations of Sp(6,R) and SU(3) carried by homogeneous polynomials Govindan Rangarajan a) Department of Mathematics and Centre for Theoretical Studies, Indian Institute of Science, Bangalore 560 012,

More information

Elementary realization of BRST symmetry and gauge fixing

Elementary realization of BRST symmetry and gauge fixing Elementary realization of BRST symmetry and gauge fixing Martin Rocek, notes by Marcelo Disconzi Abstract This are notes from a talk given at Stony Brook University by Professor PhD Martin Rocek. I tried

More information

FROM SLAVNOV TAYLOR IDENTITIES TO THE ZJ EQUATION JEAN ZINN-JUSTIN

FROM SLAVNOV TAYLOR IDENTITIES TO THE ZJ EQUATION JEAN ZINN-JUSTIN FROM SLAVNOV TAYLOR IDENTITIES TO THE ZJ EQUATION JEAN ZINN-JUSTIN CEA, IRFU (irfu.cea.fr) Centre de Saclay, 91191 Gif-sur-Yvette Cedex, France E-mail: jean.zinn-justin@cea.fr ABSTRACT In their work devoted

More information

HIGHER SPIN PROBLEM IN FIELD THEORY

HIGHER SPIN PROBLEM IN FIELD THEORY HIGHER SPIN PROBLEM IN FIELD THEORY I.L. Buchbinder Tomsk I.L. Buchbinder (Tomsk) HIGHER SPIN PROBLEM IN FIELD THEORY Wroclaw, April, 2011 1 / 27 Aims Brief non-expert non-technical review of some old

More information

CONSISTENT INTERACTIONS BETWEEN BF AND MASSIVE DIRAC FIELDS. A COHOMOLOGICAL APPROACH

CONSISTENT INTERACTIONS BETWEEN BF AND MASSIVE DIRAC FIELDS. A COHOMOLOGICAL APPROACH Romanian Reports in Physics, Vol. 57, No., P. 89 03, 005 NUCLEAR PHYSICS. PARTICLE PHYSICS CONSISTENT INTERACTIONS BETWEEN BF AND MASSIVE DIRAC FIELDS. A COHOMOLOGICAL APPROACH EUGEN-MIHÃIÞÃ CIOROIANU,

More information

arxiv: v3 [hep-th] 7 Jun 2013

arxiv: v3 [hep-th] 7 Jun 2013 Perturbative quantum gravity in Batalin-Vilkovisky formalism Sudhaker Upadhyay S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata -700098, India. arxiv:1305.4709v3

More information

arxiv:hep-th/ v1 13 Feb 1992

arxiv:hep-th/ v1 13 Feb 1992 Chiral Bosons Through Linear Constraints H. O. Girotti, M. Gomes and V. O. Rivelles Instituto de Física, Universidade de São Paulo, Caixa Postal 2516, 1498 São Paulo, SP, Brazil. arxiv:hep-th/92243v1 13

More information

Wilson Lines and Classical Solutions in Cubic Open String Field Theory

Wilson Lines and Classical Solutions in Cubic Open String Field Theory 863 Progress of Theoretical Physics, Vol. 16, No. 4, October 1 Wilson Lines and Classical Solutions in Cubic Open String Field Theory Tomohiko Takahashi ) and Seriko Tanimoto ) Department of Physics, Nara

More information

GRANGIAN QUANTIZATION OF THE HETEROTIC STRING IN THE BOSONIC FORMULAT

GRANGIAN QUANTIZATION OF THE HETEROTIC STRING IN THE BOSONIC FORMULAT September, 1987 IASSNS-HEP-87/draft GRANGIAN QUANTIZATION OF THE HETEROTIC STRING IN THE BOSONIC FORMULAT J. M. F. LABASTIDA and M. PERNICI The Institute for Advanced Study Princeton, NJ 08540, USA ABSTRACT

More information

arxiv:hep-th/ v1 4 Mar 1993

arxiv:hep-th/ v1 4 Mar 1993 P. N. Lebedev Institute Preprint FIAN/TD/ 20-92 I. E. Tamm Theory Department SU(2)-EFFECTIVE ACTION WITH THE NONANALYTIC TERM Desember 1992 arxiv:hep-th/9303022v1 4 Mar 1993 O. K. Kalashnikov Department

More information

Helicity conservation in Born-Infeld theory

Helicity conservation in Born-Infeld theory Helicity conservation in Born-Infeld theory A.A.Rosly and K.G.Selivanov ITEP, Moscow, 117218, B.Cheryomushkinskaya 25 Abstract We prove that the helicity is preserved in the scattering of photons in the

More information

The WZ Term of the Spinning String and its On-shell Structure

The WZ Term of the Spinning String and its On-shell Structure The WZ Term of the Spinning String and its On-shell Structure arxiv:hep-th/9603144v1 22 Mar 1996 J. Gomis, K.Kamimura and R.Kuriki Departament d Estructura i Constituents de la Matèria Universitat de Barcelona

More information

EXAMPLES OF HOMOTOPY LIE ALGEBRAS. Klaus Bering and Tom Lada

EXAMPLES OF HOMOTOPY LIE ALGEBRAS. Klaus Bering and Tom Lada ARCHIVUM MATHEMATICUM BRNO) Tomus 45 2009), 265 277 EXAMPLES OF HOMOTOPY LIE ALGEBRAS Klaus Bering and Tom Lada Abstract. We look at two examples of homotopy Lie algebras also known as L algebras) in detail

More information

The Dirac Propagator From Pseudoclassical Mechanics

The Dirac Propagator From Pseudoclassical Mechanics CALT-68-1485 DOE RESEARCH AND DEVELOPMENT REPORT The Dirac Propagator From Pseudoclassical Mechanics Theodore J. Allen California Institute of Technology, Pasadena, CA 9115 Abstract In this note it is

More information

arxiv:hep-th/ v1 10 Apr 2006

arxiv:hep-th/ v1 10 Apr 2006 Gravitation with Two Times arxiv:hep-th/0604076v1 10 Apr 2006 W. Chagas-Filho Departamento de Fisica, Universidade Federal de Sergipe SE, Brazil February 1, 2008 Abstract We investigate the possibility

More information

arxiv:hep-th/ v2 13 Sep 2001

arxiv:hep-th/ v2 13 Sep 2001 Compactification of gauge theories and the gauge invariance of massive modes. Amorim a and J. Barcelos-Neto b Instituto de Física Universidade Federal do io de Janeiro J 21945-97 - Caixa Postal 68528 -

More information

arxiv:hep-th/ v1 26 Jun 1996

arxiv:hep-th/ v1 26 Jun 1996 KUL TF 96/15 ULB TH 96/10 hep-th/9606172 June 1996 arxiv:hep-th/9606172v1 26 Jun 1996 Global Symmetries in the Antifield Formalism Friedemann Brandt a,1, Marc Henneaux b,c,2 and André Wilch b,3 a Instituut

More information

arxiv:hep-th/ v4 20 Aug 1997

arxiv:hep-th/ v4 20 Aug 1997 Göteborg ITP 97-03 April 1997 hep-th/9704209 (Appendix B inserted May 1997 and a new introduction August 1997) arxiv:hep-th/9704209v4 20 Aug 1997 Antisymplectic gauge theories Igor Batalin 1 and Robert

More information

arxiv:math/ v2 [math.qa] 25 Jun 2004

arxiv:math/ v2 [math.qa] 25 Jun 2004 arxiv:math/0402057v2 [math.qa] 25 Jun 2004 An introduction to the Batalin-Vilkovisky formalism Domenico Fiorenza February 1, 2008 Abstract The aim of these notes is to introduce the quantum master equation

More information

arxiv:hep-th/ v2 11 Jan 1999

arxiv:hep-th/ v2 11 Jan 1999 SOGANG-HEP 249/98 Consistent Dirac Quantization of SU(2) Skyrmion equivalent to BFT Scheme arxiv:hep-th/9811066v2 11 Jan 1999 Soon-Tae Hong 1, Yong-Wan Kim 1,2 and Young-Jai Park 1 1 Department of Physics

More information

Snyder noncommutative space-time from two-time physics

Snyder noncommutative space-time from two-time physics arxiv:hep-th/0408193v1 25 Aug 2004 Snyder noncommutative space-time from two-time physics Juan M. Romero and Adolfo Zamora Instituto de Ciencias Nucleares Universidad Nacional Autónoma de México Apartado

More information

arxiv:math/ v4 [math.dg] 3 Sep 2006

arxiv:math/ v4 [math.dg] 3 Sep 2006 DIFFERENTIAL FORMS AND ODD SYMPLECTIC GEOMETRY HOVHANNES M. KHUDAVERDIAN AND THEODORE TH. VORONOV arxiv:math/0606560v4 [math.dg] 3 Sep 2006 Abstract. We recall the main facts about the odd Laplacian acting

More information

String Theory and The Velo-Zwanziger Problem

String Theory and The Velo-Zwanziger Problem String Theory and The Velo-Zwanziger Problem Rakibur Rahman Scuola Normale Superiore & INFN, Pisa February 10, 2011 DAMTP, University of Cambridge M. Porrati A. Sagnotti M. Porrati, RR and A. Sagnotti,

More information

arxiv:hep-th/ v1 1 Mar 2000

arxiv:hep-th/ v1 1 Mar 2000 February 2000 IUT-Phys/00-02 arxiv:hep-th/0003010v1 1 Mar 2000 Classification of constraints using chain by chain method 1 F. Loran, 2 A. Shirzad, 3 Institute for Advanced Studies in Basic Sciences P.O.

More information

arxiv:hep-th/ v1 23 Mar 1998

arxiv:hep-th/ v1 23 Mar 1998 March 1998 Two-point Functions in Affine Current Algebra and Conjugate Weights arxiv:hep-th/9803182v1 23 Mar 1998 Jørgen Rasmussen 1 Laboratoire de Mathématiques et Physique Théorique, Université de Tours,

More information

Partial Dynamical Symmetry in Deformed Nuclei. Abstract

Partial Dynamical Symmetry in Deformed Nuclei. Abstract Partial Dynamical Symmetry in Deformed Nuclei Amiram Leviatan Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel arxiv:nucl-th/9606049v1 23 Jun 1996 Abstract We discuss the notion

More information

The BRST antifield formalism. Part II: Applications.

The BRST antifield formalism. Part II: Applications. The BRST antifield formalism. Part II: Applications. Sandrine Cnockaert Physique Théorique et Mathématique, Université Libre de Bruxelles & International Solvay Institutes ULB Campus Plaine C.P. 231, B

More information

Nobuyoshi Ohta 2;3. Jens Lyng Petersen 4. Abstract. We show that the N = 2 superstrings may be viewed as a special class of the N =4

Nobuyoshi Ohta 2;3. Jens Lyng Petersen 4. Abstract. We show that the N = 2 superstrings may be viewed as a special class of the N =4 NORDITA-94/6 P hep-th/9402042 TOWARD THE UNIVERSAL THEORY OF STRINGS Fiorenzo Bastianelli The Niels Bohr Institute, Blegdamsvej 7, DK-200 Copenhagen, Denmark Nobuyoshi Ohta 2;3 NORDITA, Blegdamsvej 7,

More information

arxiv:hep-th/ v1 2 Oct 1998

arxiv:hep-th/ v1 2 Oct 1998 SOGANG-HEP 238/98 October 2, 1998 Two Different Gauge Invariant Models in Lagrangian Approach arxiv:hep-th/9810016v1 2 Oct 1998 Seung-Kook Kim, Yong-Wan Kim, and Young-Jai Park Department of Physics, Seonam

More information

arxiv:hep-th/ v1 21 Feb 2006

arxiv:hep-th/ v1 21 Feb 2006 Spinor field realizations of the non-critical W 2,4 string based on the linear W 1,2,4 algebra Zhang Li-Jie 1 and Liu Yu-Xiao 2 1 Department of Mathematics and Physics, Dalian Jiaotong University, Dalian

More information

arxiv:solv-int/ v1 31 May 1993

arxiv:solv-int/ v1 31 May 1993 ILG-TMP-93-03 May, 993 solv-int/9305004 Alexander A.Belov #, Karen D.Chaltikian $ LATTICE VIRASORO FROM LATTICE KAC-MOODY arxiv:solv-int/9305004v 3 May 993 We propose a new version of quantum Miura transformation

More information

The descent of off-shell supersymmetry to the mass shell

The descent of off-shell supersymmetry to the mass shell Eur. Phys. J. C 54, 339 343 (2008) DOI 10.1140/epjc/s10052-008-0535-4 Special Article Scientific Note THE EUROPEAN PHYSICAL JOURNAL C The descent of off-shell supersymmetry to the mass shell short review

More information

Department of Physics and Basic Science Research Institute, Sogang University, C.P.O. Box 1142, Seoul , Korea. (November 26, 2001) Abstract

Department of Physics and Basic Science Research Institute, Sogang University, C.P.O. Box 1142, Seoul , Korea. (November 26, 2001) Abstract CP 1 model with Hopf term and fractional spin statistics Soon-Tae Hong,Bum-HoonLee, and Young-Jai Park Department of Physics and Basic Science Research Institute, Sogang University, C.P.O. Box 1142, Seoul

More information

arxiv:hep-th/ v2 20 Dec 2006

arxiv:hep-th/ v2 20 Dec 2006 QUANTIZING NON-LAGRANGIAN GAUGE THEORIES: AN AUGMENTATION METHOD S.L. LYAKHOVICH AND A.A. SHARAPOV arxiv:hep-th/0612086v2 20 Dec 2006 Abstract. We discuss a recently proposed method of quantizing general

More information

BRST renormalization

BRST renormalization BRST renormalization Peter Lavrov Tomsk State Pedagogical University Dubna, SQS 11, 23 July 2011 Based on PL, I. Shapiro, Phys. Rev. D81, 2010 P.M. Lavrov (Tomsk) BRST renormalization Dubna 2011 1 / 27

More information

General-relativistic quantum theory of the electron

General-relativistic quantum theory of the electron Allgemein-relativistische Quantentheorie des Elektrons, Zeit. f. Phys. 50 (98), 336-36. General-relativistic quantum theory of the electron By H. Tetrode in Amsterdam (Received on 9 June 98) Translated

More information

Bloch Wilson Hamiltonian and a Generalization of the Gell-Mann Low Theorem 1

Bloch Wilson Hamiltonian and a Generalization of the Gell-Mann Low Theorem 1 Bloch Wilson Hamiltonian and a Generalization of the Gell-Mann Low Theorem 1 Axel Weber 2 arxiv:hep-th/9911198v1 25 Nov 1999 Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de

More information

arxiv:hep-th/ v1 14 Jan 1997

arxiv:hep-th/ v1 14 Jan 1997 Transformation of second-class into first-class constraints in supersymmetric theories arxiv:hep-th/9701058v1 14 Jan 1997 J. Barcelos-Neto and W. Oliveira Instituto de Física Universidade Federal do Rio

More information

NILPOTENT QUANTUM MECHANICS AND SUSY

NILPOTENT QUANTUM MECHANICS AND SUSY Ó³ Ÿ. 2011.. 8, º 3(166).. 462Ä466 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ NILPOTENT QUANTUM MECHANICS AND SUSY A. M. Frydryszak 1 Institute of Theoretical Physics, University of Wroclaw, Wroclaw, Poland Formalism where

More information

arxiv:hep-th/ v1 24 Sep 1998

arxiv:hep-th/ v1 24 Sep 1998 ICTP/IR/98/19 SISSA/EP/98/101 Quantum Integrability of Certain Boundary Conditions 1 arxiv:hep-th/9809178v1 24 Sep 1998 M. Moriconi 2 The Abdus Salam International Centre for Theoretical Physics Strada

More information

arxiv:hep-th/ v1 21 May 1996

arxiv:hep-th/ v1 21 May 1996 ITP-SB-96-24 BRX-TH-395 USITP-96-07 hep-th/xxyyzzz arxiv:hep-th/960549v 2 May 996 Effective Kähler Potentials M.T. Grisaru Physics Department Brandeis University Waltham, MA 02254, USA M. Roče and R. von

More information

Hamiltonian Embedding of SU(2) Higgs Model in the Unitary Gauge

Hamiltonian Embedding of SU(2) Higgs Model in the Unitary Gauge HD THEP 97 28 SOGANG HEP 222/97 Hamiltonian Embedding of SU(2) Higgs Model in the Unitary Gauge arxiv:hep-th/9711092v1 13 Nov 1997 Yong-Wan Kim 1, Young-Jai Park 1 and Klaus D. Rothe 2 Institut für Theoretische

More information

Generalized Neutrino Equations

Generalized Neutrino Equations Generalized Neutrino Equations arxiv:quant-ph/001107v 1 Jan 016 Valeriy V. Dvoeglazov UAF, Universidad Autónoma de Zacatecas Apartado Postal 636, Zacatecas 98061 Zac., México E-mail: valeri@fisica.uaz.edu.mx

More information

DIVERGENCE OPERATORS AND ODD POISSON BRACKETS

DIVERGENCE OPERATORS AND ODD POISSON BRACKETS DIVERGENCE OPERATORS AND ODD POISSON BRACKETS YVETTE KOSMANN-SCHWARZBACH AND JUAN MONTERDE Abstract. We define the divergence operators on a graded algebra, and we show that, given an odd Poisson bracket

More information

BFT embedding of noncommutative D-brane system. Abstract

BFT embedding of noncommutative D-brane system. Abstract SOGANG-HEP 271/00 BFT embedding of noncommutative D-brane system Soon-Tae Hong,WonTaeKim, Young-Jai Park, and Myung Seok Yoon Department of Physics and Basic Science Research Institute, Sogang University,

More information

arxiv:hep-th/ v1 2 Feb 1996

arxiv:hep-th/ v1 2 Feb 1996 Polynomial Algebras and Higher Spins by arxiv:hep-th/9602008v1 2 Feb 1996 M. Chaichian High Energy Physics Laboratory, Department of Physics and Research Institute for High Energy Physics, University of

More information

Open superstring field theory I: gauge fixing, ghost structure, and propagator

Open superstring field theory I: gauge fixing, ghost structure, and propagator Open superstring field theory I: gauge fixing, ghost structure, and propagator The MIT Faculty has made this article openly available Please share how this access benefits you Your story matters Citation

More information

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams III. Quantization of constrained systems and Maxwell s theory 1. The

More information

arxiv: v3 [hep-th] 29 Jan 2016

arxiv: v3 [hep-th] 29 Jan 2016 BV Master Action for Heterotic and Type II String Field Theories arxiv:508.05387v3 [hep-th] 29 Jan 206 Ashoke Sen Harish-Chandra Research Institute Chhatnag Road, Jhusi, Allahabad 209, India E-mail: sen@mri.ernet.in

More information

UNIVERSITY OF CRAIOVA FACULTY OF PHYSICS DAN CORNEA. Summary of Ph.D. THESIS

UNIVERSITY OF CRAIOVA FACULTY OF PHYSICS DAN CORNEA. Summary of Ph.D. THESIS UNIVERSITY OF CRAIOVA FACULTY OF PHYSICS DAN CORNEA Summary of Ph.D. THESIS COHOMOLOGICAL APPROACHES TO EINSTEIN-HILBERT GRAVITY Ph.D. supervisor Prof. dr. CONSTANTIN BIZDADEA CRAIOVA 2008 Contents 1 Introduction

More information

arxiv:hep-th/ v1 31 Jan 2006

arxiv:hep-th/ v1 31 Jan 2006 hep-th/61228 arxiv:hep-th/61228v1 31 Jan 26 BTZ Black Hole with Chern-Simons and Higher Derivative Terms Bindusar Sahoo and Ashoke Sen Harish-Chandra Research Institute Chhatnag Road, Jhusi, Allahabad

More information

Remarks on Gauge Fixing and BRST Quantization of Noncommutative Gauge Theories

Remarks on Gauge Fixing and BRST Quantization of Noncommutative Gauge Theories Brazilian Journal of Physics, vol. 35, no. 3A, September, 25 645 Remarks on Gauge Fixing and BRST Quantization of Noncommutative Gauge Theories Ricardo Amorim, Henrique Boschi-Filho, and Nelson R. F. Braga

More information

arxiv:gr-qc/ v1 22 Jul 1994

arxiv:gr-qc/ v1 22 Jul 1994 A COMPARISON OF TWO QUANTIZATION PROCEDURES FOR LINEAL GRAVITY Eric Benedict arxiv:gr-qc/9407035v1 22 Jul 1994 Department of Physics Boston University 590 Commonwealth Avenue Boston, Massachusets 02215

More information

arxiv: v1 [hep-th] 4 Jul 2015

arxiv: v1 [hep-th] 4 Jul 2015 Yang-Mills theories and quadratic forms arxiv:1507.01068v1 [hep-th] 4 Jul 015 Sudarshan Ananth, Lars Brink and Mahendra Mali Indian Institute of Science Education and Research Pune 411008, India Department

More information

SUPERSYMMETRIC HADRONIC MECHANICAL HARMONIC OSCILLATOR

SUPERSYMMETRIC HADRONIC MECHANICAL HARMONIC OSCILLATOR SUPERSYMMETRIC HADRONIC MECHANICAL HARMONIC OSCILLATOR A.K.Aringazin Department of Theoretical Physics Karaganda State University Karaganda 470074, USSR 1990 Abstract Lie-isotopic lifting of the commutation

More information

BRS Symmetry, the Quantum Master Equation and the Wilsonian Renormalization Group

BRS Symmetry, the Quantum Master Equation and the Wilsonian Renormalization Group 149 Progress of Theoretical Physics, Vol. 106, No. 1, July 2001 BRS Symmetry, the Quantum Master Equation and the Wilsonian Renormalization Group Yuji Igarashi, Katsumi Itoh and Hiroto So Faculty of Education,

More information

arxiv:hep-th/ v1 23 Mar 1998

arxiv:hep-th/ v1 23 Mar 1998 SOGANG HEP 225/97 Generalized BFT Formalism of SU(2 U( Higgs Model Sean J. Yoon, Yong-Wan Kim and Young-Jai Park Department of Physics, Sogang University, C.P.O.Box 42, Seoul 00-6, Korea arxiv:hep-th/98038v

More information

Path integration in relativistic quantum mechanics

Path integration in relativistic quantum mechanics Path integration in relativistic quantum mechanics Ian H. Redmount and Wai-Mo Suen McDonnell Center for the Space Sciences Washington University, Department of Physics St. Louis, Missouri 63130 4899 USA

More information

Light-Cone Quantization of Electrodynamics

Light-Cone Quantization of Electrodynamics Light-Cone Quantization of Electrodynamics David G. Robertson Department of Physics, The Ohio State University Columbus, OH 43210 Abstract Light-cone quantization of (3+1)-dimensional electrodynamics is

More information

Problem Set No. 3: Canonical Quantization Due Date: Wednesday October 19, 2018, 5:00 pm. 1 Spin waves in a quantum Heisenberg antiferromagnet

Problem Set No. 3: Canonical Quantization Due Date: Wednesday October 19, 2018, 5:00 pm. 1 Spin waves in a quantum Heisenberg antiferromagnet Physics 58, Fall Semester 018 Professor Eduardo Fradkin Problem Set No. 3: Canonical Quantization Due Date: Wednesday October 19, 018, 5:00 pm 1 Spin waves in a quantum Heisenberg antiferromagnet In this

More information

Harmonic oscillator in Snyder space: The classical case and the quantum case

Harmonic oscillator in Snyder space: The classical case and the quantum case PRAMANA c Indian Academy of Sciences Vol. 74, No. 2 journal of February 2010 physics pp. 169 175 Harmonic oscillator in Snyder space: The classical case and the quantum case CARLOS LEIVA Departamento de

More information

arxiv:hep-th/ v1 15 Aug 2000

arxiv:hep-th/ v1 15 Aug 2000 hep-th/0008120 IPM/P2000/026 Gauged Noncommutative Wess-Zumino-Witten Models arxiv:hep-th/0008120v1 15 Aug 2000 Amir Masoud Ghezelbash,,1, Shahrokh Parvizi,2 Department of Physics, Az-zahra University,

More information

Gauge Invariant Variables for SU(2) Yang-Mills Theory

Gauge Invariant Variables for SU(2) Yang-Mills Theory Gauge Invariant Variables for SU(2) Yang-Mills Theory Cécile Martin Division de Physique Théorique, Institut de Physique Nucléaire F-91406, Orsay Cedex, France. Abstract We describe a nonperturbative calculation

More information

COULOMB SYSTEMS WITH CALOGERO INTERACTION

COULOMB SYSTEMS WITH CALOGERO INTERACTION PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical and Mathematical Sciences 016, 3, p. 15 19 COULOMB SYSTEMS WITH CALOGERO INTERACTION P h y s i c s T. S. HAKOBYAN, A. P. NERSESSIAN Academician G. Sahakyan

More information

Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism

Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism Benjamin Hornberger 1/26/1 Phy 55, Classical Electrodynamics, Prof. Goldhaber Lecture notes from Oct. 26, 21 Lecture held by Prof. Weisberger

More information

Baryon Number Non-Conservation and the Topology of Gauge Fields

Baryon Number Non-Conservation and the Topology of Gauge Fields FERMILAB-Conf-96/266-A hep-ph/9608456 Baryon Number Non-Conservation and the Topology of Gauge Fields arxiv:hep-ph/9608456v1 27 Aug 1996 Minos Axenides 1,, Andrei Johansen 2,, Holger B. Nielsen 3, and

More information

arxiv:quant-ph/ v1 24 Aug 2006

arxiv:quant-ph/ v1 24 Aug 2006 Operational approach to the Uhlmann holonomy Johan Åberg 1, David Kult, Erik Söqvist, and D. K. L. Oi 1 1 Centre for Quantum Computation, Department of Applied Mathematics and Theoretical Physics, University

More information

Jackiw-Pi Model: A Superfield Approach

Jackiw-Pi Model: A Superfield Approach Jackiw-Pi Model: A Superfield Approach Saurabh Gupta The Institute of Mathematical Sciences CIT Campus, Chennai, India July 29, 2013 Saurabh Gupta (IMSc) 3D Jackiw-Pi Model July 29, 2013 1 / 31 This talk

More information

β function and asymptotic freedom in QCD

β function and asymptotic freedom in QCD β function and asymptotic freedom in QCD Lecture notes Modave Summer School in Mathematical Physics June 2005 Glenn Barnich Physique Théorique et Mathématique Université Libre de Bruxelles and International

More information

The Mandelstam Leibbrandt prescription and the Discretized Light Front Quantization.

The Mandelstam Leibbrandt prescription and the Discretized Light Front Quantization. The Mandelstam Leibbrandt prescription and the Discretized Light Front Quantization. Roberto Soldati Dipartimento di Fisica A. Righi, Università di Bologna via Irnerio 46, 40126 Bologna, Italy Abstract

More information

1 Introduction , 1995, Protvino, Russia, eds. V.A. Petrov, A.P. Samokhin, R.N. Rogalyov (IHEP, Protvino, 1996) pp

1 Introduction , 1995, Protvino, Russia, eds. V.A. Petrov, A.P. Samokhin, R.N. Rogalyov (IHEP, Protvino, 1996) pp FUNCTIONAL APPROACH TO PHASE SPACE FORMULATION OF QUANTUM MECHANICS 1 A.K.Aringazin Department of Theoretical Physics, Karaganda State University, Karaganda 470074, Kazakstan We present BRST gauge fixing

More information

HOMOLOGICAL BV-BRST METHODS: FROM QFT TO POISSON REDUCTION

HOMOLOGICAL BV-BRST METHODS: FROM QFT TO POISSON REDUCTION HOMOLOGICAL BV-BRST METHODS: FROM QFT TO POISSON REDUCTION MATHEMATICAL-PHYSICS SEMINAR - FEB. 2008 There are more things in heaven and earth, Horatio, Than are dreamt of in your philosophy... Namely:

More information

arxiv:hep-lat/ v1 19 Jan 2005

arxiv:hep-lat/ v1 19 Jan 2005 Measure in the D Regge quantum gravity. M.A. Zubkov a a ITEP, B.Cheremushkinskaya 5, Moscow, 11759, Russia arxiv:hep-lat/0501017v1 19 Jan 005 Abstract We propose a version of the D Regge calculus obtained

More information

Supergravity in Quantum Mechanics

Supergravity in Quantum Mechanics Supergravity in Quantum Mechanics hep-th/0408179 Peter van Nieuwenhuizen C.N. Yang Institute for Theoretical Physics Stony Brook University Erice Lectures, June 2017 Vienna Lectures, Jan/Feb 2017 Aim of

More information

NOETHER'S THEOREM AND GAUGE GROUPS

NOETHER'S THEOREM AND GAUGE GROUPS MAR 1965 % ncrc.nc.inuq IC/65/20 INTERNATIONAL ATOMIC ENERGY AGENCY INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS NOETHER'S THEOREM AND GAUGE GROUPS C. A. LOPEZ 1965 PIAZZA OBERDAN TRIESTE IC/65/2O INTERNATIONAL

More information

Classical field theory 2012 (NS-364B) Feynman propagator

Classical field theory 2012 (NS-364B) Feynman propagator Classical field theory 212 (NS-364B Feynman propagator 1. Introduction States in quantum mechanics in Schrödinger picture evolve as ( Ψt = Û(t,t Ψt, Û(t,t = T exp ı t dt Ĥ(t, (1 t where Û(t,t denotes the

More information

The quantum state as a vector

The quantum state as a vector The quantum state as a vector February 6, 27 Wave mechanics In our review of the development of wave mechanics, we have established several basic properties of the quantum description of nature:. A particle

More information

3 Quantization of the Dirac equation

3 Quantization of the Dirac equation 3 Quantization of the Dirac equation 3.1 Identical particles As is well known, quantum mechanics implies that no measurement can be performed to distinguish particles in the same quantum state. Elementary

More information

A NEW PROOF OF THE EXISTENCE OF HIERARCHIES OF POISSON NIJENHUIS STRUCTURES *

A NEW PROOF OF THE EXISTENCE OF HIERARCHIES OF POISSON NIJENHUIS STRUCTURES * PORTUGALIAE MATHEMATICA Vol. 61 Fasc. 3 2004 Nova Série A NEW PROOF OF THE EXISTENCE OF HIERARCHIES OF POISSON NIJENHUIS STRUCTURES * J. Monterde Recommended by Michèle Audin Abstract: Given a Poisson

More information