HUMAN COMPUTER INTERACTION

Size: px
Start display at page:

Download "HUMAN COMPUTER INTERACTION"

Transcription

1 HUMAN COMPUTER INTERACTION. VISION-BASED INTERACTION A BASIC FEATURE EXTRACTION AND TRACKING I-Che Li, Natioal Chiao Tug Uiversity, Taiwa

2 Goals Lear the basic feature etractio from visio tech. Efficiet ad simple? approaches for real-time user iterfaces.

3 Outlie Basic feature etractio ad trackig Color matchig Groupig or clusterig Silhouette & foregroud Filterig ad predictio Robust features ad trackig Key poits ad scale-ivariat features 3D positio estimatio

4 Visio-based Iterface Poitig gesture recogitio Eye trackig Had Gesture Recogitio, Caltech Iteractive Wall, CSAIL, MIT

5 Visio-based Iterface cot. A lot of delicate ad advaced visio tech. for various targets. Our goals Not focusig o developig brad-ew algorithms. Utilizig efficiet ad simple algorithms for friedly iterfaces ad attractive applicatios. How about a simpler eviromet or coditio? Make the thig easier!!!

6 Visio-based Iterface cot. E.g. Laser poiter E.g. color markers Blue scree, Star War III cospicuous color features

7 Visio-based Iterface cot. Silhouette images, from J. Carraza et al., Free-Viewpoit Video of Huma Actors

8 Color Features RGB image array Digitizatio Effects Noise, etc. How to assig your target colors? predefied i your system? Iitializatio stages? How to estimate the target positio? A costraied coditio will make your computatio easier ad more reliable.

9 Color Features cot. How about two or more targets? Number of objects with or without Coected compoet labelig Noise effects

10 Coected Compoet Labelig 4-eighbor or 8 eighbor. Give a ew labelig umber to those without labeled eighbors. Merge the label umbers equivalet classes. You ca easily fid classic algorithms.

11 Clusterig K-meas algorithms are popularly used. E K j i j i m j Make iitial guesses for the meas m, m,..., m k Util there are o chages i ay mea Use the estimated meas to classify the samples ito clusters For i from to k Replace m i with the mea of all of the samples for cluster i ed_for ed_util

12 Lloyd s Algorithm

13 Color Features Eyetoy games, PS/PS3

14 Feature Etractios How about these applicatios? Eyetoy games, PS

15 Foregroud Etractio Uder a eviromet with fied lightig ad static scees, the detectio of ew objects ca be more reliable.

16 Foregroud Etractio cot. Noise should be take ito accout Noise suppressio T. Horprasert et al., Visio lab, UMD

17 Motio Trackig How to distiguish multiple objects or targets i a scee? The problem of occlusio? T = T = T = 3 T = 4

18 Feature Matchig Fid correspodig poits i image video sequece oe simple techique: fid two patches with miimal summed squared error or dot product. w w k w y w y l y l k I v l u k I v u E,,,,

19 Feature Matchig cot. Block matchig ca be ureliable due to: Noise Occlusio Projectio of differet view directios Reflectio of specular lights, etc. Deformatio of objects Other approaches: optic flow, etc.

20 Filterig t Simply filterig by Gaussia filters.

21 Kalma Filterig A liear system: fa+b = fa + fb. Noisy data i hopefully less oisy out. Does t have to store all previous measuremets or re-evaluate all data each time step But delay is the price for filterig... Ref: G. Welch, G. Bishop, SIGGRAPH course otes A Itroductio to Kalma Filter S.M. Bozic, Digital ad Kalma Filterig, Edward Arold

22 Kalma Filterig cot. What is it used for? Trackig missiles Trackig heads/hads/drumsticks/ Etractig lip motio from video Fittig Bezier patches to poit data Lots of computer visio applicatios Ecoomics Navigatio

23 Measuremet & State Measuremet z, z State ˆ z z Measuremet z, z State? ˆ??

24 Combie the Measuremets The d estimatio state from measuremet + : ˆ ˆ ˆ z K z K z Product of two Gaussia PDF a b a b b a a b b a e p Gaussia distributio

25 Suppose There re Motios Not all the differece is error Some may be motio Kalma filter ca iclude a motio model Estimate velocity ad positio

26 Process Model Describes how state chages over time The state for the first eample was scalar The process model was othig chages A better model might be State is a -vector [ positio, velocity ] positio + = positio + velocity * time velocity + = velocity

27 From Predictio to Correctio KF operates by Predictig the ew state ad its ucertaity Correctig with the ew measuremet Predict Correct

28 Kalma Filter P C K P P p p ˆ ˆ ˆ k CA z K A where Q A AP P R C CP C P K T p T p T p v C z w A Estimator: Whe the state equatios are Filter gai: Error covariace matri Optimal estimate = Predictio + Kalma Gai * Measuremet Predictio Variace of estimate = Variace of predictio * Kalma Gai Q = Eww t Process oise covariace R = Evv t Measuremet oise covariace

29 Eample: D Pos. Oly Apparatus: D Tablet w w A - w- v v C C z z z C v X: iteral state e.g. at scree coordiate A: state trasitio matri Z: measuremet e.g. at tablet coordiate C: measuremet matri W: oise V: oise

30 Preparatio A } { Q Q ww E Q T } { R R vv E R T State trasitio Process Noise Covariace Measuremet Noise Covariace

31 Predictio & Correctio ˆ ˆ Q A AP P A T p p ˆ ˆ ˆ P C K P P C z K R C CP C P K p p p p T p T p

32 XY Track

33 Y Track: Movig the Still

34 Motio-depedet Performace

35 Eample: D PV Model Positio-velocity model u u dt dt v v C C z z u: chage i velocity v: measuremet error

36 Preparatio & Iitializatio v E v R v v T w E w Q u u T dt z z dt z z z z P the co-variace matri of iitial guess

37 Performace of PV Model

38 May Applicatios Egieerig Robotics, spacecraft, aircraft, automobiles Computer Trackig, real-time graphics, computer visio Ecoomics Forecastig ecoomic idicators

39 Movig Object Etractio Thresholdig o Itesity differece Optical flow

40 Optical flow The optical flow slides are modified from the Motio slides, Steve Seitz, U. Washigto.

41 Problem defiitio: optical flow How to estimate piel motio from image H to image I? Solve piel correspodece problem give a piel i H, look for earby piels of the same color i I Key assumptios color costacy: a poit i H looks the same i I For grayscale images, this is brightess costacy small motio: poits do ot move very far This is called the optical flow problem

42 Optical flow costraits grayscale images Let s look at these costraits more closely brightess costacy: Q: what s the equatio? small motio: u ad v are less tha piel suppose we take the Taylor series epasio of I:

43 Optical flow equatio Combiig these two equatios I the limit as u ad v go to zero, this becomes eact

44 Cosiderig more tha oe piel How to get more equatios for a piel? Basic idea: impose additioal costraits most commo is to assume that the flow field is smooth locally oe method: preted the piel s eighbors have the same u,v If we use a 55 widow, that gives us 5 equatios per piel!

45 RGB versio How to get more equatios for a piel? Basic idea: impose additioal costraits most commo is to assume that the flow field is smooth locally oe method: preted the piel s eighbors have the same u,v If we use a 55 widow, that gives us 5*3 equatios per piel! Note that RGB is ot eough to disambiguate because R, G & B are correlated Just provides better gradiet

46 Lucas-Kaade flow Prob: we have more equatios tha ukows Solutio: solve least squares problem miimum least squares solutio give by solutio i d of: The summatios are over all piels i the K K widow This techique was first proposed by Lucas & Kaade 98

47 Coditios for solvability Optimal u, v satisfies Lucas-Kaade equatio Whe is This Solvable? A T A should be ivertible A T A should ot be too small due to oise eigevalues λ ad λ of A T A should ot be too small A T A should be well-coditioed λ / λ should ot be too large λ = larger eigevalue Does this look familiar? A T A is the Harris matri

48 Errors i Lucas-Kaade What are the potetial causes of errors i this procedure? Suppose A T A is easily ivertible Suppose there is ot much oise i the image Whe our assumptios are violated Brightess costacy is ot satisfied The motio is ot small A poit does ot move like its eighbors widow size is too large what is the ideal widow size?

49 Iterative Refiemet Iterative Lucas-Kaade Algorithm. Estimate velocity at each piel by solvig Lucas-Kaade equatios. Warp H towards I usig the estimated flow field - use image warpig techiques 3. Repeat util covergece

50 Optical Flow: D Case Brightess Costacy Assumptio:,, dt t dt t I t t I t f t t t I t I I v I t t I I v { t f Because o chage i brightess with time Slides from Optical Flow, Feature Trackig, Normal Flow, Gary Bradski, Sebastia Thru

51 Trackig i the D case: I, t I, t p v? Slides from Optical Flow, Feature Trackig, Normal Flow, Gary Bradski, Sebastia Thru

52 Trackig i the D case: I, t I, t Temporal derivative p I t v I I I t I t I t Spatial derivative v p I I t Assumptios: Brightess costacy Small motio Slides from Optical Flow, Feature Trackig, Normal Flow, Gary Bradski, Sebastia Thru

53 Trackig i the D case: Iteratig helps refiig the velocity vector I, t I, t Temporal derivative at d iteratio p I t I v v previous I I t Ca keep the same estimate for spatial derivative Coverges i about 5 iteratios Slides from Optical Flow, Feature Trackig, Normal Flow, Gary Bradski, Sebastia Thru

Machine Learning Regression I Hamid R. Rabiee [Slides are based on Bishop Book] Spring

Machine Learning Regression I Hamid R. Rabiee [Slides are based on Bishop Book] Spring Machie Learig Regressio I Hamid R. Rabiee [Slides are based o Bishop Book] Sprig 015 http://ce.sharif.edu/courses/93-94//ce717-1 Liear Regressio Liear regressio: ivolves a respose variable ad a sigle predictor

More information

3/8/2016. Contents in latter part PATTERN RECOGNITION AND MACHINE LEARNING. Dynamical Systems. Dynamical Systems. Linear Dynamical Systems

3/8/2016. Contents in latter part PATTERN RECOGNITION AND MACHINE LEARNING. Dynamical Systems. Dynamical Systems. Linear Dynamical Systems Cotets i latter part PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA Liear Dyamical Systems What is differet from HMM? Kalma filter Its stregth ad limitatio Particle Filter Its simple

More information

THE KALMAN FILTER RAUL ROJAS

THE KALMAN FILTER RAUL ROJAS THE KALMAN FILTER RAUL ROJAS Abstract. This paper provides a getle itroductio to the Kalma filter, a umerical method that ca be used for sesor fusio or for calculatio of trajectories. First, we cosider

More information

Chandrasekhar Type Algorithms. for the Riccati Equation of Lainiotis Filter

Chandrasekhar Type Algorithms. for the Riccati Equation of Lainiotis Filter Cotemporary Egieerig Scieces, Vol. 3, 00, o. 4, 9-00 Chadrasekhar ype Algorithms for the Riccati Equatio of Laiiotis Filter Nicholas Assimakis Departmet of Electroics echological Educatioal Istitute of

More information

Announcements. Computer Vision I. Foreground/Background Segmentation. Visual Tracking. CSE 252A Lecture 17

Announcements. Computer Vision I. Foreground/Background Segmentation. Visual Tracking. CSE 252A Lecture 17 Visual Trackig CSE 5A Lecture 17 Aoucemets Read Chapter 11 of Forsyth & Poce Homework 3 is due today by 11:59 PM Homework 4 is due Dec 18, 11:59 PM Please complete evaluatios Course TA Foregroud/Backgroud

More information

Grouping 2: Spectral and Agglomerative Clustering. CS 510 Lecture #16 April 2 nd, 2014

Grouping 2: Spectral and Agglomerative Clustering. CS 510 Lecture #16 April 2 nd, 2014 Groupig 2: Spectral ad Agglomerative Clusterig CS 510 Lecture #16 April 2 d, 2014 Groupig (review) Goal: Detect local image features (SIFT) Describe image patches aroud features SIFT, SURF, HoG, LBP, Group

More information

A Simplified Derivation of Scalar Kalman Filter using Bayesian Probability Theory

A Simplified Derivation of Scalar Kalman Filter using Bayesian Probability Theory 6th Iteratioal Workshop o Aalysis of Dyamic Measuremets Jue -3 0 Göteorg Swede A Simplified Derivatio of Scalar Kalma Filter usig Bayesia Proaility Theory Gregory Kyriazis Imetro - Electrical Metrology

More information

Expectation-Maximization Algorithm.

Expectation-Maximization Algorithm. Expectatio-Maximizatio Algorithm. Petr Pošík Czech Techical Uiversity i Prague Faculty of Electrical Egieerig Dept. of Cyberetics MLE 2 Likelihood.........................................................................................................

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Patter Recogitio Classificatio: No-Parametric Modelig Hamid R. Rabiee Jafar Muhammadi Sprig 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Ageda Parametric Modelig No-Parametric Modelig

More information

Affine Structure from Motion

Affine Structure from Motion Affie Structure from Motio EECS 598-8 Fall 24! Foudatios of Computer Visio!! Istructor: Jaso Corso (jjcorso)! web.eecs.umich.edu/~jjcorso/t/598f4!! Readigs: FP 8.2! Date: /5/4!! Materials o these slides

More information

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015 ECE 8527: Itroductio to Machie Learig ad Patter Recogitio Midterm # 1 Vaishali Ami Fall, 2015 tue39624@temple.edu Problem No. 1: Cosider a two-class discrete distributio problem: ω 1 :{[0,0], [2,0], [2,2],

More information

PC5215 Numerical Recipes with Applications - Review Problems

PC5215 Numerical Recipes with Applications - Review Problems PC55 Numerical Recipes with Applicatios - Review Problems Give the IEEE 754 sigle precisio bit patter (biary or he format) of the followig umbers: 0 0 05 00 0 00 Note that it has 8 bits for the epoet,

More information

Nonlinear regression

Nonlinear regression oliear regressio How to aalyse data? How to aalyse data? Plot! How to aalyse data? Plot! Huma brai is oe the most powerfull computatioall tools Works differetly tha a computer What if data have o liear

More information

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations ECE-S352 Itroductio to Digital Sigal Processig Lecture 3A Direct Solutio of Differece Equatios Discrete Time Systems Described by Differece Equatios Uit impulse (sample) respose h() of a DT system allows

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5 CS434a/54a: Patter Recogitio Prof. Olga Veksler Lecture 5 Today Itroductio to parameter estimatio Two methods for parameter estimatio Maimum Likelihood Estimatio Bayesia Estimatio Itroducto Bayesia Decisio

More information

Statistical Analysis on Uncertainty for Autocorrelated Measurements and its Applications to Key Comparisons

Statistical Analysis on Uncertainty for Autocorrelated Measurements and its Applications to Key Comparisons Statistical Aalysis o Ucertaity for Autocorrelated Measuremets ad its Applicatios to Key Comparisos Nie Fa Zhag Natioal Istitute of Stadards ad Techology Gaithersburg, MD 0899, USA Outlies. Itroductio.

More information

Jacob Hays Amit Pillay James DeFelice 4.1, 4.2, 4.3

Jacob Hays Amit Pillay James DeFelice 4.1, 4.2, 4.3 No-Parametric Techiques Jacob Hays Amit Pillay James DeFelice 4.1, 4.2, 4.3 Parametric vs. No-Parametric Parametric Based o Fuctios (e.g Normal Distributio) Uimodal Oly oe peak Ulikely real data cofies

More information

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

More information

Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion

Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion .87 Machie learig: lecture Tommi S. Jaakkola MIT CSAIL tommi@csail.mit.edu Topics The learig problem hypothesis class, estimatio algorithm loss ad estimatio criterio samplig, empirical ad epected losses

More information

Lecture 4. Hw 1 and 2 will be reoped after class for every body. New deadline 4/20 Hw 3 and 4 online (Nima is lead)

Lecture 4. Hw 1 and 2 will be reoped after class for every body. New deadline 4/20 Hw 3 and 4 online (Nima is lead) Lecture 4 Homework Hw 1 ad 2 will be reoped after class for every body. New deadlie 4/20 Hw 3 ad 4 olie (Nima is lead) Pod-cast lecture o-lie Fial projects Nima will register groups ext week. Email/tell

More information

Outline. Linear regression. Regularization functions. Polynomial curve fitting. Stochastic gradient descent for regression. MLE for regression

Outline. Linear regression. Regularization functions. Polynomial curve fitting. Stochastic gradient descent for regression. MLE for regression REGRESSION 1 Outlie Liear regressio Regularizatio fuctios Polyomial curve fittig Stochastic gradiet descet for regressio MLE for regressio Step-wise forward regressio Regressio methods Statistical techiques

More information

Chapter 12 EM algorithms The Expectation-Maximization (EM) algorithm is a maximum likelihood method for models that have hidden variables eg. Gaussian

Chapter 12 EM algorithms The Expectation-Maximization (EM) algorithm is a maximum likelihood method for models that have hidden variables eg. Gaussian Chapter 2 EM algorithms The Expectatio-Maximizatio (EM) algorithm is a maximum likelihood method for models that have hidde variables eg. Gaussia Mixture Models (GMMs), Liear Dyamic Systems (LDSs) ad Hidde

More information

1 Duality revisited. AM 221: Advanced Optimization Spring 2016

1 Duality revisited. AM 221: Advanced Optimization Spring 2016 AM 22: Advaced Optimizatio Sprig 206 Prof. Yaro Siger Sectio 7 Wedesday, Mar. 9th Duality revisited I this sectio, we will give a slightly differet perspective o duality. optimizatio program: f(x) x R

More information

Recurrence Relations

Recurrence Relations Recurrece Relatios Aalysis of recursive algorithms, such as: it factorial (it ) { if (==0) retur ; else retur ( * factorial(-)); } Let t be the umber of multiplicatios eeded to calculate factorial(). The

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

The Expectation-Maximization (EM) Algorithm

The Expectation-Maximization (EM) Algorithm The Expectatio-Maximizatio (EM) Algorithm Readig Assigmets T. Mitchell, Machie Learig, McGraw-Hill, 997 (sectio 6.2, hard copy). S. Gog et al. Dyamic Visio: From Images to Face Recogitio, Imperial College

More information

Direction of Arrival Estimation Method in Underdetermined Condition Zhang Youzhi a, Li Weibo b, Wang Hanli c

Direction of Arrival Estimation Method in Underdetermined Condition Zhang Youzhi a, Li Weibo b, Wang Hanli c 4th Iteratioal Coferece o Advaced Materials ad Iformatio Techology Processig (AMITP 06) Directio of Arrival Estimatio Method i Uderdetermied Coditio Zhag Youzhi a, Li eibo b, ag Hali c Naval Aeroautical

More information

As metioed earlier, directly forecastig o idividual product demads usually result i a far-off forecast that ot oly impairs the quality of subsequet ma

As metioed earlier, directly forecastig o idividual product demads usually result i a far-off forecast that ot oly impairs the quality of subsequet ma Semicoductor Product-mix Estimate with Dyamic Weightig Scheme Argo Che, Ziv Hsia ad Kyle Yag Graduate Istitute of Idustrial Egieerig, Natioal Taiwa Uiversity Roosevelt Rd. Sec. 4, Taipei, Taiwa, 6 ache@tu.edu.tw

More information

Factor Analysis. Lecture 10: Factor Analysis and Principal Component Analysis. Sam Roweis

Factor Analysis. Lecture 10: Factor Analysis and Principal Component Analysis. Sam Roweis Lecture 10: Factor Aalysis ad Pricipal Compoet Aalysis Sam Roweis February 9, 2004 Whe we assume that the subspace is liear ad that the uderlyig latet variable has a Gaussia distributio we get a model

More information

U8L1: Sec Equations of Lines in R 2

U8L1: Sec Equations of Lines in R 2 MCVU U8L: Sec. 8.9. Equatios of Lies i R Review of Equatios of a Straight Lie (-D) Cosider the lie passig through A (-,) with slope, as show i the diagram below. I poit slope form, the equatio of the lie

More information

Lecture 22: Review for Exam 2. 1 Basic Model Assumptions (without Gaussian Noise)

Lecture 22: Review for Exam 2. 1 Basic Model Assumptions (without Gaussian Noise) Lecture 22: Review for Exam 2 Basic Model Assumptios (without Gaussia Noise) We model oe cotiuous respose variable Y, as a liear fuctio of p umerical predictors, plus oise: Y = β 0 + β X +... β p X p +

More information

FFTs in Graphics and Vision. The Fast Fourier Transform

FFTs in Graphics and Vision. The Fast Fourier Transform FFTs i Graphics ad Visio The Fast Fourier Trasform 1 Outlie The FFT Algorithm Applicatios i 1D Multi-Dimesioal FFTs More Applicatios Real FFTs 2 Computatioal Complexity To compute the movig dot-product

More information

Morphological Image Processing

Morphological Image Processing Morphological Image Processig Biary dilatio ad erosio Set-theoretic iterpretatio Opeig, closig, morphological edge detectors Hit-miss filter Morphological filters for gray-level images Cascadig dilatios

More information

Optimization Methods MIT 2.098/6.255/ Final exam

Optimization Methods MIT 2.098/6.255/ Final exam Optimizatio Methods MIT 2.098/6.255/15.093 Fial exam Date Give: December 19th, 2006 P1. [30 pts] Classify the followig statemets as true or false. All aswers must be well-justified, either through a short

More information

Introduction to Optimization Techniques. How to Solve Equations

Introduction to Optimization Techniques. How to Solve Equations Itroductio to Optimizatio Techiques How to Solve Equatios Iterative Methods of Optimizatio Iterative methods of optimizatio Solutio of the oliear equatios resultig form a optimizatio problem is usually

More information

Math 257: Finite difference methods

Math 257: Finite difference methods Math 257: Fiite differece methods 1 Fiite Differeces Remember the defiitio of a derivative f f(x + ) f(x) (x) = lim 0 Also recall Taylor s formula: (1) f(x + ) = f(x) + f (x) + 2 f (x) + 3 f (3) (x) +...

More information

EECS 442 Computer vision. Multiple view geometry Affine structure from Motion

EECS 442 Computer vision. Multiple view geometry Affine structure from Motion EECS 442 Computer visio Multiple view geometry Affie structure from Motio - Affie structure from motio problem - Algebraic methods - Factorizatio methods Readig: [HZ] Chapters: 6,4,8 [FP] Chapter: 2 Some

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

5. Fast NLMS-OCF Algorithm

5. Fast NLMS-OCF Algorithm 5. Fast LMS-OCF Algorithm The LMS-OCF algorithm preseted i Chapter, which relies o Gram-Schmidt orthogoalizatio, has a compleity O ( M ). The square-law depedece o computatioal requiremets o the umber

More information

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0.

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0. THE SOLUTION OF NONLINEAR EQUATIONS f( ) = 0. Noliear Equatio Solvers Bracketig. Graphical. Aalytical Ope Methods Bisectio False Positio (Regula-Falsi) Fied poit iteratio Newto Raphso Secat The root of

More information

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece 1, 1, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet

More information

CS537. Numerical Analysis and Computing

CS537. Numerical Analysis and Computing CS57 Numerical Aalysis ad Computig Lecture Locatig Roots o Equatios Proessor Ju Zhag Departmet o Computer Sciece Uiversity o Ketucky Leigto KY 456-6 Jauary 9 9 What is the Root May physical system ca be

More information

Study on Coal Consumption Curve Fitting of the Thermal Power Based on Genetic Algorithm

Study on Coal Consumption Curve Fitting of the Thermal Power Based on Genetic Algorithm Joural of ad Eergy Egieerig, 05, 3, 43-437 Published Olie April 05 i SciRes. http://www.scirp.org/joural/jpee http://dx.doi.org/0.436/jpee.05.34058 Study o Coal Cosumptio Curve Fittig of the Thermal Based

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

Data Assimilation. Alan O Neill University of Reading, UK

Data Assimilation. Alan O Neill University of Reading, UK Data Assimilatio Ala O Neill Uiversity of Readig, UK he Kalma Filter Kalma Filter (expesive Use model equatios to propagate B forward i time. B B(t Aalysis step as i OI Evolutio of Covariace Matrices (

More information

Axis Aligned Ellipsoid

Axis Aligned Ellipsoid Machie Learig for Data Sciece CS 4786) Lecture 6,7 & 8: Ellipsoidal Clusterig, Gaussia Mixture Models ad Geeral Mixture Models The text i black outlies high level ideas. The text i blue provides simple

More information

Optimally Sparse SVMs

Optimally Sparse SVMs A. Proof of Lemma 3. We here prove a lower boud o the umber of support vectors to achieve geeralizatio bouds of the form which we cosider. Importatly, this result holds ot oly for liear classifiers, but

More information

INF Introduction to classifiction Anne Solberg Based on Chapter 2 ( ) in Duda and Hart: Pattern Classification

INF Introduction to classifiction Anne Solberg Based on Chapter 2 ( ) in Duda and Hart: Pattern Classification INF 4300 90 Itroductio to classifictio Ae Solberg ae@ifiuioo Based o Chapter -6 i Duda ad Hart: atter Classificatio 90 INF 4300 Madator proect Mai task: classificatio You must implemet a classificatio

More information

REGRESSION (Physics 1210 Notes, Partial Modified Appendix A)

REGRESSION (Physics 1210 Notes, Partial Modified Appendix A) REGRESSION (Physics 0 Notes, Partial Modified Appedix A) HOW TO PERFORM A LINEAR REGRESSION Cosider the followig data poits ad their graph (Table I ad Figure ): X Y 0 3 5 3 7 4 9 5 Table : Example Data

More information

Chapter Vectors

Chapter Vectors Chapter 4. Vectors fter readig this chapter you should be able to:. defie a vector. add ad subtract vectors. fid liear combiatios of vectors ad their relatioship to a set of equatios 4. explai what it

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

Teaching Mathematics Concepts via Computer Algebra Systems

Teaching Mathematics Concepts via Computer Algebra Systems Iteratioal Joural of Mathematics ad Statistics Ivetio (IJMSI) E-ISSN: 4767 P-ISSN: - 4759 Volume 4 Issue 7 September. 6 PP-- Teachig Mathematics Cocepts via Computer Algebra Systems Osama Ajami Rashaw,

More information

WHAT IS THE PROBABILITY FUNCTION FOR LARGE TSUNAMI WAVES? ABSTRACT

WHAT IS THE PROBABILITY FUNCTION FOR LARGE TSUNAMI WAVES? ABSTRACT WHAT IS THE PROBABILITY FUNCTION FOR LARGE TSUNAMI WAVES? Harold G. Loomis Hoolulu, HI ABSTRACT Most coastal locatios have few if ay records of tsuami wave heights obtaied over various time periods. Still

More information

Calculus 2 - D. Yuen Final Exam Review (Version 11/22/2017. Please report any possible typos.)

Calculus 2 - D. Yuen Final Exam Review (Version 11/22/2017. Please report any possible typos.) Calculus - D Yue Fial Eam Review (Versio //7 Please report ay possible typos) NOTE: The review otes are oly o topics ot covered o previous eams See previous review sheets for summary of previous topics

More information

Introduction to Machine Learning DIS10

Introduction to Machine Learning DIS10 CS 189 Fall 017 Itroductio to Machie Learig DIS10 1 Fu with Lagrage Multipliers (a) Miimize the fuctio such that f (x,y) = x + y x + y = 3. Solutio: The Lagragia is: L(x,y,λ) = x + y + λ(x + y 3) Takig

More information

Pattern Classification

Pattern Classification Patter Classificatio All materials i these slides were tae from Patter Classificatio (d ed) by R. O. Duda, P. E. Hart ad D. G. Stor, Joh Wiley & Sos, 000 with the permissio of the authors ad the publisher

More information

A widely used display of protein shapes is based on the coordinates of the alpha carbons - - C α

A widely used display of protein shapes is based on the coordinates of the alpha carbons - - C α Nice plottig of proteis: I A widely used display of protei shapes is based o the coordiates of the alpha carbos - - C α -s. The coordiates of the C α -s are coected by a cotiuous curve that roughly follows

More information

Castiel, Supernatural, Season 6, Episode 18

Castiel, Supernatural, Season 6, Episode 18 13 Differetial Equatios the aswer to your questio ca best be epressed as a series of partial differetial equatios... Castiel, Superatural, Seaso 6, Episode 18 A differetial equatio is a mathematical equatio

More information

R is a scalar defined as follows:

R is a scalar defined as follows: Math 8. Notes o Dot Product, Cross Product, Plaes, Area, ad Volumes This lecture focuses primarily o the dot product ad its may applicatios, especially i the measuremet of agles ad scalar projectio ad

More information

Vector Quantization: a Limiting Case of EM

Vector Quantization: a Limiting Case of EM . Itroductio & defiitios Assume that you are give a data set X = { x j }, j { 2,,, }, of d -dimesioal vectors. The vector quatizatio (VQ) problem requires that we fid a set of prototype vectors Z = { z

More information

Regression and generalization

Regression and generalization Regressio ad geeralizatio CE-717: Machie Learig Sharif Uiversity of Techology M. Soleymai Fall 2016 Curve fittig: probabilistic perspective Describig ucertaity over value of target variable as a probability

More information

Section 14. Simple linear regression.

Section 14. Simple linear regression. Sectio 14 Simple liear regressio. Let us look at the cigarette dataset from [1] (available to dowload from joural s website) ad []. The cigarette dataset cotais measuremets of tar, icotie, weight ad carbo

More information

Problem Set 4 Due Oct, 12

Problem Set 4 Due Oct, 12 EE226: Radom Processes i Systems Lecturer: Jea C. Walrad Problem Set 4 Due Oct, 12 Fall 06 GSI: Assae Gueye This problem set essetially reviews detectio theory ad hypothesis testig ad some basic otios

More information

Statistical Noise Models and Diagnostics

Statistical Noise Models and Diagnostics L. Yaroslavsky: Advaced Image Processig Lab: A Tutorial, EUSIPCO2 LECTURE 2 Statistical oise Models ad Diagostics 2. Statistical models of radom iterfereces: (i) Additive sigal idepedet oise model: r =

More information

The DOA Estimation of Multiple Signals based on Weighting MUSIC Algorithm

The DOA Estimation of Multiple Signals based on Weighting MUSIC Algorithm , pp.10-106 http://dx.doi.org/10.1457/astl.016.137.19 The DOA Estimatio of ultiple Sigals based o Weightig USIC Algorithm Chagga Shu a, Yumi Liu State Key Laboratory of IPOC, Beijig Uiversity of Posts

More information

Linear Regression Demystified

Linear Regression Demystified Liear Regressio Demystified Liear regressio is a importat subject i statistics. I elemetary statistics courses, formulae related to liear regressio are ofte stated without derivatio. This ote iteds to

More information

Learning Theory Reza Shadmehr. State estimation theory. 1. Kalman Filter 2. Estimation with signal dependent noise

Learning Theory Reza Shadmehr. State estimation theory. 1. Kalman Filter 2. Estimation with signal dependent noise 580.691 Learig heor Reza Shadmehr State estimatio theor 1. Kalma Filter. Estimatio ith sigal depedet oise A B Subject as istructed to pull o a kob that as fied o a rigid all. A) EMG recordigs from arm

More information

Mixtures of Gaussians and the EM Algorithm

Mixtures of Gaussians and the EM Algorithm Mixtures of Gaussias ad the EM Algorithm CSE 6363 Machie Learig Vassilis Athitsos Computer Sciece ad Egieerig Departmet Uiversity of Texas at Arligto 1 Gaussias A popular way to estimate probability desity

More information

Polynomial Functions and Their Graphs

Polynomial Functions and Their Graphs Polyomial Fuctios ad Their Graphs I this sectio we begi the study of fuctios defied by polyomial expressios. Polyomial ad ratioal fuctios are the most commo fuctios used to model data, ad are used extesively

More information

CS276A Practice Problem Set 1 Solutions

CS276A Practice Problem Set 1 Solutions CS76A Practice Problem Set Solutios Problem. (i) (ii) 8 (iii) 6 Compute the gamma-codes for the followig itegers: (i) (ii) 8 (iii) 6 Problem. For this problem, we will be dealig with a collectio of millio

More information

Standard Bayesian Approach to Quantized Measurements and Imprecise Likelihoods

Standard Bayesian Approach to Quantized Measurements and Imprecise Likelihoods Stadard Bayesia Approach to Quatized Measuremets ad Imprecise Likelihoods Lawrece D. Stoe Metro Ic. Resto, VA USA Stoe@metsci.com Abstract I this paper we show that the stadard defiitio of likelihood fuctio

More information

U8L1: Sec Equations of Lines in R 2

U8L1: Sec Equations of Lines in R 2 MCVU Thursda Ma, Review of Equatios of a Straight Lie (-D) U8L Sec. 8.9. Equatios of Lies i R Cosider the lie passig through A (-,) with slope, as show i the diagram below. I poit slope form, the equatio

More information

Research Article A New Second-Order Iteration Method for Solving Nonlinear Equations

Research Article A New Second-Order Iteration Method for Solving Nonlinear Equations Abstract ad Applied Aalysis Volume 2013, Article ID 487062, 4 pages http://dx.doi.org/10.1155/2013/487062 Research Article A New Secod-Order Iteratio Method for Solvig Noliear Equatios Shi Mi Kag, 1 Arif

More information

Signal Processing. Lecture 02: Discrete Time Signals and Systems. Ahmet Taha Koru, Ph. D. Yildiz Technical University.

Signal Processing. Lecture 02: Discrete Time Signals and Systems. Ahmet Taha Koru, Ph. D. Yildiz Technical University. Sigal Processig Lecture 02: Discrete Time Sigals ad Systems Ahmet Taha Koru, Ph. D. Yildiz Techical Uiversity 2017-2018 Fall ATK (YTU) Sigal Processig 2017-2018 Fall 1 / 51 Discrete Time Sigals Discrete

More information

Math 25 Solutions to practice problems

Math 25 Solutions to practice problems Math 5: Advaced Calculus UC Davis, Sprig 0 Math 5 Solutios to practice problems Questio For = 0,,, 3,... ad 0 k defie umbers C k C k =! k!( k)! (for k = 0 ad k = we defie C 0 = C = ). by = ( )... ( k +

More information

Distributional Similarity Models (cont.)

Distributional Similarity Models (cont.) Distributioal Similarity Models (cot.) Regia Barzilay EECS Departmet MIT October 19, 2004 Sematic Similarity Vector Space Model Similarity Measures cosie Euclidea distace... Clusterig k-meas hierarchical

More information

Cov(aX, cy ) Var(X) Var(Y ) It is completely invariant to affine transformations: for any a, b, c, d R, ρ(ax + b, cy + d) = a.s. X i. as n.

Cov(aX, cy ) Var(X) Var(Y ) It is completely invariant to affine transformations: for any a, b, c, d R, ρ(ax + b, cy + d) = a.s. X i. as n. CS 189 Itroductio to Machie Learig Sprig 218 Note 11 1 Caoical Correlatio Aalysis The Pearso Correlatio Coefficiet ρ(x, Y ) is a way to measure how liearly related (i other words, how well a liear model

More information

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j.

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j. Eigevalue-Eigevector Istructor: Nam Su Wag eigemcd Ay vector i real Euclidea space of dimesio ca be uiquely epressed as a liear combiatio of liearly idepedet vectors (ie, basis) g j, j,,, α g α g α g α

More information

6.867 Machine learning

6.867 Machine learning 6.867 Machie learig Mid-term exam October, ( poits) Your ame ad MIT ID: Problem We are iterested here i a particular -dimesioal liear regressio problem. The dataset correspodig to this problem has examples

More information

Lainiotis filter implementation. via Chandrasekhar type algorithm

Lainiotis filter implementation. via Chandrasekhar type algorithm Joural of Computatios & Modellig, vol.1, o.1, 2011, 115-130 ISSN: 1792-7625 prit, 1792-8850 olie Iteratioal Scietific Press, 2011 Laiiotis filter implemetatio via Chadrasehar type algorithm Nicholas Assimais

More information

Distributional Similarity Models (cont.)

Distributional Similarity Models (cont.) Sematic Similarity Vector Space Model Similarity Measures cosie Euclidea distace... Clusterig k-meas hierarchical Last Time EM Clusterig Soft versio of K-meas clusterig Iput: m dimesioal objects X = {

More information

CHAPTER I: Vector Spaces

CHAPTER I: Vector Spaces CHAPTER I: Vector Spaces Sectio 1: Itroductio ad Examples This first chapter is largely a review of topics you probably saw i your liear algebra course. So why cover it? (1) Not everyoe remembers everythig

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d Liear regressio Daiel Hsu (COMS 477) Maximum likelihood estimatio Oe of the simplest liear regressio models is the followig: (X, Y ),..., (X, Y ), (X, Y ) are iid radom pairs takig values i R d R, ad Y

More information

CS321. Numerical Analysis and Computing

CS321. Numerical Analysis and Computing CS Numerical Aalysis ad Computig Lecture Locatig Roots o Equatios Proessor Ju Zhag Departmet o Computer Sciece Uiversity o Ketucky Leigto KY 456-6 September 8 5 What is the Root May physical system ca

More information

ENGI 9420 Engineering Analysis Assignment 3 Solutions

ENGI 9420 Engineering Analysis Assignment 3 Solutions ENGI 9 Egieerig Aalysis Assigmet Solutios Fall [Series solutio of ODEs, matri algebra; umerical methods; Chapters, ad ]. Fid a power series solutio about =, as far as the term i 7, to the ordiary differetial

More information

Introduction to Signals and Systems, Part V: Lecture Summary

Introduction to Signals and Systems, Part V: Lecture Summary EEL33: Discrete-Time Sigals ad Systems Itroductio to Sigals ad Systems, Part V: Lecture Summary Itroductio to Sigals ad Systems, Part V: Lecture Summary So far we have oly looked at examples of o-recursive

More information

Pattern Classification

Pattern Classification Patter Classificatio All materials i these slides were tae from Patter Classificatio (d ed) by R. O. Duda, P. E. Hart ad D. G. Stor, Joh Wiley & Sos, 000 with the permissio of the authors ad the publisher

More information

P.3 Polynomials and Special products

P.3 Polynomials and Special products Precalc Fall 2016 Sectios P.3, 1.2, 1.3, P.4, 1.4, P.2 (radicals/ratioal expoets), 1.5, 1.6, 1.7, 1.8, 1.1, 2.1, 2.2 I Polyomial defiitio (p. 28) a x + a x +... + a x + a x 1 1 0 1 1 0 a x + a x +... +

More information

1 Review of Probability & Statistics

1 Review of Probability & Statistics 1 Review of Probability & Statistics a. I a group of 000 people, it has bee reported that there are: 61 smokers 670 over 5 960 people who imbibe (drik alcohol) 86 smokers who imbibe 90 imbibers over 5

More information

Section 1 of Unit 03 (Pure Mathematics 3) Algebra

Section 1 of Unit 03 (Pure Mathematics 3) Algebra Sectio 1 of Uit 0 (Pure Mathematics ) Algebra Recommeded Prior Kowledge Studets should have studied the algebraic techiques i Pure Mathematics 1. Cotet This Sectio should be studied early i the course

More information

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam 4 will cover.-., 0. ad 0.. Note that eve though. was tested i exam, questios from that sectios may also be o this exam. For practice problems o., refer to the last review. This

More information

Inversion of Earthquake Rupture Process:Theory and Applications

Inversion of Earthquake Rupture Process:Theory and Applications Iversio of Earthquake Rupture Process:Theory ad Applicatios Yu-tai CHEN 12 * Yog ZHANG 12 Li-sheg XU 2 1School of the Earth ad Space Scieces, Pekig Uiversity, Beijig 1871 2Istitute of Geophysics, Chia

More information

Dimensionality Reduction vs. Clustering

Dimensionality Reduction vs. Clustering Dimesioality Reductio vs. Clusterig Lecture 9: Cotiuous Latet Variable Models Sam Roweis Traiig such factor models (e.g. FA, PCA, ICA) is called dimesioality reductio. You ca thik of this as (o)liear regressio

More information

EE 6885 Statistical Pattern Recognition

EE 6885 Statistical Pattern Recognition EE 6885 Statistical Patter Recogitio Fall 5 Prof. Shih-Fu Chag http://www.ee.columbia.edu/~sfchag Lecture 6 (9/8/5 EE6887-Chag 6- Readig EM for Missig Features Textboo, DHS 3.9 Bayesia Parameter Estimatio

More information

Solution of Final Exam : / Machine Learning

Solution of Final Exam : / Machine Learning Solutio of Fial Exam : 10-701/15-781 Machie Learig Fall 2004 Dec. 12th 2004 Your Adrew ID i capital letters: Your full ame: There are 9 questios. Some of them are easy ad some are more difficult. So, if

More information

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018 CSE 353 Discrete Computatioal Structures Sprig 08 Sequeces, Mathematical Iductio, ad Recursio (Chapter 5, Epp) Note: some course slides adopted from publisher-provided material Overview May mathematical

More information

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f. Lecture 5 Let us give oe more example of MLE. Example 3. The uiform distributio U[0, ] o the iterval [0, ] has p.d.f. { 1 f(x =, 0 x, 0, otherwise The likelihood fuctio ϕ( = f(x i = 1 I(X 1,..., X [0,

More information