Elaborazione delle Immagini Informazione multimediale - Immagini. Raffaella Lanzarotti

Size: px
Start display at page:

Download "Elaborazione delle Immagini Informazione multimediale - Immagini. Raffaella Lanzarotti"

Transcription

1 Elaborazione delle Immagini Informazione multimediale - Immagini Raffaella Lanzarotti

2 OPTICAL FLOW Thanks to prof. Mubarak Shah,UCF 2

3 Video Video: sequence of frames (images) catch in the time Data: function of space (x,y) and time (t) 3

4 Motion field The motion field is the projection of the 3D movement in a scene on the image plane 4

5 Optical flow DEFINITION: the optical flow is the apparent movement of patterns of given brightness in the image GOAL: approximate the mo-on field by means of the op-cal flow, es-mated at each pixel (dense mo-on es-ma-on) NOTE: the optical flow does NOT coincide with the motion field 5

6 Optical flow ~= Motion field 1. Homogeneous objects generate zero optical flow. 2. Fixed sphere. Changing light source 6

7 OPTICAL FLOW f(x, y, t) f(x, y, t + 1) GOAL: Given two subsequent frames, estimate the apparent motion field between them ASSUMPTIONS: Brightness constancy: projection of the same point looks the same in every frame Small motion: points do not move very far Spatial coherence: points move like their neighbors 7 Steve Seitz

8 8

9 9

10 10

11 Representation: different colors according to the motion direction 11

12 12

13 Optical flow Brightness constancy assumption: f(x, y, t) =f(x + x, y + y, t + t) the point (x,y) moves of a quantity but it does not change appearance ( x, y) 13

14 Taylor s series Let f :[a, b]! R a function, and let x 0 2 (a, b). If exist f (1) (x 0 ),f (2) (x 0 ),...,f (n) (x 0 ), Taken h s.t. f is defined in [x 0 h, x 0 + h] f(x 0 + h) =f(x 0 )+ f (1) (x 0 ) 1! h + f (2) (x 0 ) 2! (h) f (n) (x 0 ) n! (h) n + R n+1 (h) 14

15 In compact form: Taylor s series f(x 0 + h) = P n i=0 f (i) (x 0 ) i! h i + R n+1 (h) Rn+1: residue of order n+1 x0: evaluation point 15

16 Optical flow Brightness constancy assumption: f(x, y, t) =f(x + x, y + y, t + t) Taylor series, with [h = ( )]: f(x + x, y + y, t + t) f(x, t 16

17 Optical flow Putting together the two equivalence Rewritten: t 0 f x x + f y y + f t t 0 And divided by : f x t x t + f y y t + f t 0 f x u + f y v + f t 0 17

18 f x u + f y v + f t =0 Interpretation f t f x v v = f x fy u f t f y (û, ˆv) p d u Equation of the line in the space (u,v) d = f t p f 2 x +f 2 y f t f y 18

19 The aperture problem Real motion 19

20 Aperture problem Perceived motion 20

21 Open problem Barberpole_illusion#/media/File:Barberpole-01.gif Barberpole_illusion#/media/ File:Barberpole_illusion_animated.gif 21

22 Lucas Kanade, 1981 Initially proposed as a technique for matching between stereo images Simple and intuitive Very effective Based on least square fit 22

23 Lucas Kanade, 1981 Based on the Brightness constancy assumption: f x u + f y v = f t Add another constraint: the Spatial coherence constraint: the motion is constant in small window (e.g. 3x3 or 5x5) 23

24 Lucas Kanade, 1981 Spatial coherence constraint: f x u + f y v = f x1 u + f y1 v = f t f t f x1. f x9 f y1. f y apple u v = f t1. f t f x9 u + f y9 v = f t9 Au = f t 24

25 Lucas Kanade, 1981 Au = f t A T Au = A T f t u =(A T A) 1 A T f t Solution: solve Least Squares problem

26 Condition for solvability 2 P f 2 xi 4 P fxi f yi P 3 fxi f yi 5 P f 2 yi apple u v = 2 4 P 3 fxi f ti 5 P fxi f ti A T A When is this solvable? A T A should be invertible A T A should not be too small ( 1, 2) eigenvalues should not be too small A T A should be well-conditioned 1/ 2 should not be too large, where 1 > 2 26

27 Condition for solvability 27

28 Edges gradients, and thus A T A, very large or very small large 1, small 2 28

29 Low-texture region gradients have small magnitude small 1, 2 29

30 High-texture region gradients (and thus A T A) are large large 1, 2 30

31 Procedurally 2 P apple f 2 u xi v = 4 P fxi f yi P 3 fxi f yi 5 P f 2 yi P 3 fxi f ti 5 P fyi f ti P P 2 f 2 P P f 2 xi f 2 yi ( P yi fxi f yi f xi f yi ) 2 apple u v = P fxi f yi P f 2 xi 3 54 P 3 fxi f ti 5 P fyi f ti 31

32 Procedurally 32

33 Recap Lucas- Kanade op-cal method to es-mate the mo-on field Assump-ons: brightness constancy between consecu-ve frames Spa-al coherence constraint: Fails when the displacement is large (typical opera-ng range is mo-on of 1 pixel) Solution: adopt multi-scale representations (pyramids) 33

34 Optical flow with rapid motion Fails in the areas with large motion/ variation 34

35 Solution: reduce the resolution Image pyramid 35

36 Pyramid 36

37 Optical flow Coarse-to-fine Progressive image downsampling 37

38 Gaussian Pyramid 38

39 Optical flow Coarse-to-fine compute LK Compute LK and refine Interpolation and doubling... 39

40 Pyramidal LK, Algorithm Compute LK at the highest level At level i take the OF at level i-1: (ui-1, vi-1) Bilinear interpolation to determine (ui *, vi * ) (ui *, vi * ) = 2 x (ui *, vi * ) Refine the OF computing ui, vi (flow correction) ui = ui * + ui vi = vi * + vi 40

41 Pyramidal Lucas Kanade 41

Lucas-Kanade Optical Flow. Computer Vision Carnegie Mellon University (Kris Kitani)

Lucas-Kanade Optical Flow. Computer Vision Carnegie Mellon University (Kris Kitani) Lucas-Kanade Optical Flow Computer Vision 16-385 Carnegie Mellon University (Kris Kitani) I x u + I y v + I t =0 I x = @I @x I y = @I u = dx v = dy I @y t = @I dt dt @t spatial derivative optical flow

More information

Video and Motion Analysis Computer Vision Carnegie Mellon University (Kris Kitani)

Video and Motion Analysis Computer Vision Carnegie Mellon University (Kris Kitani) Video and Motion Analysis 16-385 Computer Vision Carnegie Mellon University (Kris Kitani) Optical flow used for feature tracking on a drone Interpolated optical flow used for super slow-mo optical flow

More information

Optical flow. Subhransu Maji. CMPSCI 670: Computer Vision. October 20, 2016

Optical flow. Subhransu Maji. CMPSCI 670: Computer Vision. October 20, 2016 Optical flow Subhransu Maji CMPSC 670: Computer Vision October 20, 2016 Visual motion Man slides adapted from S. Seitz, R. Szeliski, M. Pollefes CMPSC 670 2 Motion and perceptual organization Sometimes,

More information

CS4495/6495 Introduction to Computer Vision. 6B-L1 Dense flow: Brightness constraint

CS4495/6495 Introduction to Computer Vision. 6B-L1 Dense flow: Brightness constraint CS4495/6495 Introduction to Computer Vision 6B-L1 Dense flow: Brightness constraint Motion estimation techniques Feature-based methods Direct, dense methods Motion estimation techniques Direct, dense methods

More information

Motion Estimation (I) Ce Liu Microsoft Research New England

Motion Estimation (I) Ce Liu Microsoft Research New England Motion Estimation (I) Ce Liu celiu@microsoft.com Microsoft Research New England We live in a moving world Perceiving, understanding and predicting motion is an important part of our daily lives Motion

More information

Introduction to motion correspondence

Introduction to motion correspondence Introduction to motion correspondence 1 IPAM - UCLA July 24, 2013 Iasonas Kokkinos Center for Visual Computing Ecole Centrale Paris / INRIA Saclay Why estimate visual motion? 2 Tracking Segmentation Structure

More information

Optical Flow, Motion Segmentation, Feature Tracking

Optical Flow, Motion Segmentation, Feature Tracking BIL 719 - Computer Vision May 21, 2014 Optical Flow, Motion Segmentation, Feature Tracking Aykut Erdem Dept. of Computer Engineering Hacettepe University Motion Optical Flow Motion Segmentation Feature

More information

Lecture 13: Tracking mo3on features op3cal flow

Lecture 13: Tracking mo3on features op3cal flow Lecture 13: Tracking mo3on features op3cal flow Professor Fei- Fei Li Stanford Vision Lab Lecture 14-1! What we will learn today? Introduc3on Op3cal flow Feature tracking Applica3ons Reading: [Szeliski]

More information

Motion estimation. Digital Visual Effects Yung-Yu Chuang. with slides by Michael Black and P. Anandan

Motion estimation. Digital Visual Effects Yung-Yu Chuang. with slides by Michael Black and P. Anandan Motion estimation Digital Visual Effects Yung-Yu Chuang with slides b Michael Black and P. Anandan Motion estimation Parametric motion image alignment Tracking Optical flow Parametric motion direct method

More information

Iterative Image Registration: Lucas & Kanade Revisited. Kentaro Toyama Vision Technology Group Microsoft Research

Iterative Image Registration: Lucas & Kanade Revisited. Kentaro Toyama Vision Technology Group Microsoft Research Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research Every writer creates his own precursors. His work modifies our conception of the past, as

More information

Motion Estimation (I)

Motion Estimation (I) Motion Estimation (I) Ce Liu celiu@microsoft.com Microsoft Research New England We live in a moving world Perceiving, understanding and predicting motion is an important part of our daily lives Motion

More information

Multigrid Acceleration of the Horn-Schunck Algorithm for the Optical Flow Problem

Multigrid Acceleration of the Horn-Schunck Algorithm for the Optical Flow Problem Multigrid Acceleration of the Horn-Schunck Algorithm for the Optical Flow Problem El Mostafa Kalmoun kalmoun@cs.fau.de Ulrich Ruede ruede@cs.fau.de Institute of Computer Science 10 Friedrich Alexander

More information

Image Alignment and Mosaicing

Image Alignment and Mosaicing Image Alignment and Mosaicing Image Alignment Applications Local alignment: Tracking Stereo Global alignment: Camera jitter elimination Image enhancement Panoramic mosaicing Image Enhancement Original

More information

Image Alignment and Mosaicing Feature Tracking and the Kalman Filter

Image Alignment and Mosaicing Feature Tracking and the Kalman Filter Image Alignment and Mosaicing Feature Tracking and the Kalman Filter Image Alignment Applications Local alignment: Tracking Stereo Global alignment: Camera jitter elimination Image enhancement Panoramic

More information

Lecture 8: Interest Point Detection. Saad J Bedros

Lecture 8: Interest Point Detection. Saad J Bedros #1 Lecture 8: Interest Point Detection Saad J Bedros sbedros@umn.edu Last Lecture : Edge Detection Preprocessing of image is desired to eliminate or at least minimize noise effects There is always tradeoff

More information

Methods in Computer Vision: Introduction to Optical Flow

Methods in Computer Vision: Introduction to Optical Flow Methods in Computer Vision: Introduction to Optical Flow Oren Freifeld Computer Science, Ben-Gurion University March 22 and March 26, 2017 Mar 22, 2017 1 / 81 A Preliminary Discussion Example and Flow

More information

Computer Vision I. Announcements

Computer Vision I. Announcements Announcements Motion II No class Wednesda (Happ Thanksgiving) HW4 will be due Frida 1/8 Comment on Non-maximal supression CSE5A Lecture 15 Shi-Tomasi Corner Detector Filter image with a Gaussian. Compute

More information

CSCI 250: Intro to Robotics. Spring Term 2017 Prof. Levy. Computer Vision: A Brief Survey

CSCI 250: Intro to Robotics. Spring Term 2017 Prof. Levy. Computer Vision: A Brief Survey CSCI 25: Intro to Robotics Spring Term 27 Prof. Levy Computer Vision: A Brief Survey What Is Computer Vision? Higher-order tasks Face recognition Object recognition (Deep Learning) What Is Computer Vision?

More information

Blobs & Scale Invariance

Blobs & Scale Invariance Blobs & Scale Invariance Prof. Didier Stricker Doz. Gabriele Bleser Computer Vision: Object and People Tracking With slides from Bebis, S. Lazebnik & S. Seitz, D. Lowe, A. Efros 1 Apertizer: some videos

More information

6.869 Advances in Computer Vision. Prof. Bill Freeman March 1, 2005

6.869 Advances in Computer Vision. Prof. Bill Freeman March 1, 2005 6.869 Advances in Computer Vision Prof. Bill Freeman March 1 2005 1 2 Local Features Matching points across images important for: object identification instance recognition object class recognition pose

More information

Templates, Image Pyramids, and Filter Banks

Templates, Image Pyramids, and Filter Banks Templates, Image Pyramids, and Filter Banks 09/9/ Computer Vision James Hays, Brown Slides: Hoiem and others Review. Match the spatial domain image to the Fourier magnitude image 2 3 4 5 B A C D E Slide:

More information

Computer Vision Motion

Computer Vision Motion Computer Vision Motion Professor Hager http://www.cs.jhu.edu/~hager 12/1/12 CS 461, Copyright G.D. Hager Outline From Stereo to Motion The motion field and optical flow (2D motion) Factorization methods

More information

Lecture 8: Interest Point Detection. Saad J Bedros

Lecture 8: Interest Point Detection. Saad J Bedros #1 Lecture 8: Interest Point Detection Saad J Bedros sbedros@umn.edu Review of Edge Detectors #2 Today s Lecture Interest Points Detection What do we mean with Interest Point Detection in an Image Goal:

More information

INTEREST POINTS AT DIFFERENT SCALES

INTEREST POINTS AT DIFFERENT SCALES INTEREST POINTS AT DIFFERENT SCALES Thank you for the slides. They come mostly from the following sources. Dan Huttenlocher Cornell U David Lowe U. of British Columbia Martial Hebert CMU Intuitively, junctions

More information

An Adaptive Confidence Measure for Optical Flows Based on Linear Subspace Projections

An Adaptive Confidence Measure for Optical Flows Based on Linear Subspace Projections An Adaptive Confidence Measure for Optical Flows Based on Linear Subspace Projections Claudia Kondermann, Daniel Kondermann, Bernd Jähne, Christoph Garbe Interdisciplinary Center for Scientific Computing

More information

Edges and Scale. Image Features. Detecting edges. Origin of Edges. Solution: smooth first. Effects of noise

Edges and Scale. Image Features. Detecting edges. Origin of Edges. Solution: smooth first. Effects of noise Edges and Scale Image Features From Sandlot Science Slides revised from S. Seitz, R. Szeliski, S. Lazebnik, etc. Origin of Edges surface normal discontinuity depth discontinuity surface color discontinuity

More information

EE Camera & Image Formation

EE Camera & Image Formation Electric Electronic Engineering Bogazici University February 21, 2018 Introduction Introduction Camera models Goal: To understand the image acquisition process. Function of the camera Similar to that of

More information

Feature detectors and descriptors. Fei-Fei Li

Feature detectors and descriptors. Fei-Fei Li Feature detectors and descriptors Fei-Fei Li Feature Detection e.g. DoG detected points (~300) coordinates, neighbourhoods Feature Description e.g. SIFT local descriptors (invariant) vectors database of

More information

CS 3710: Visual Recognition Describing Images with Features. Adriana Kovashka Department of Computer Science January 8, 2015

CS 3710: Visual Recognition Describing Images with Features. Adriana Kovashka Department of Computer Science January 8, 2015 CS 3710: Visual Recognition Describing Images with Features Adriana Kovashka Department of Computer Science January 8, 2015 Plan for Today Presentation assignments + schedule changes Image filtering Feature

More information

PDE: The Method of Characteristics Page 1

PDE: The Method of Characteristics Page 1 PDE: The Method of Characteristics Page y u x (x, y) + x u y (x, y) =, () u(, y) = cos y 2. Solution The partial differential equation given can be rewritten as follows: u(x, y) y, x =, (2) where = / x,

More information

Nonlinear Diffusion. 1 Introduction: Motivation for non-standard diffusion

Nonlinear Diffusion. 1 Introduction: Motivation for non-standard diffusion Nonlinear Diffusion These notes summarize the way I present this material, for my benefit. But everything in here is said in more detail, and better, in Weickert s paper. 1 Introduction: Motivation for

More information

Feature detectors and descriptors. Fei-Fei Li

Feature detectors and descriptors. Fei-Fei Li Feature detectors and descriptors Fei-Fei Li Feature Detection e.g. DoG detected points (~300) coordinates, neighbourhoods Feature Description e.g. SIFT local descriptors (invariant) vectors database of

More information

Image Filtering. Slides, adapted from. Steve Seitz and Rick Szeliski, U.Washington

Image Filtering. Slides, adapted from. Steve Seitz and Rick Szeliski, U.Washington Image Filtering Slides, adapted from Steve Seitz and Rick Szeliski, U.Washington The power of blur All is Vanity by Charles Allen Gillbert (1873-1929) Harmon LD & JuleszB (1973) The recognition of faces.

More information

The Frequency Domain : Computational Photography Alexei Efros, CMU, Fall Many slides borrowed from Steve Seitz

The Frequency Domain : Computational Photography Alexei Efros, CMU, Fall Many slides borrowed from Steve Seitz The Frequency Domain 15-463: Computational Photography Alexei Efros, CMU, Fall 2008 Somewhere in Cinque Terre, May 2005 Many slides borrowed from Steve Seitz Salvador Dali Gala Contemplating the Mediterranean

More information

Corners, Blobs & Descriptors. With slides from S. Lazebnik & S. Seitz, D. Lowe, A. Efros

Corners, Blobs & Descriptors. With slides from S. Lazebnik & S. Seitz, D. Lowe, A. Efros Corners, Blobs & Descriptors With slides from S. Lazebnik & S. Seitz, D. Lowe, A. Efros Motivation: Build a Panorama M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003 How do we build panorama?

More information

Dense Optical Flow Estimation from the Monogenic Curvature Tensor

Dense Optical Flow Estimation from the Monogenic Curvature Tensor Dense Optical Flow Estimation from the Monogenic Curvature Tensor Di Zang 1, Lennart Wietzke 1, Christian Schmaltz 2, and Gerald Sommer 1 1 Department of Computer Science, Christian-Albrechts-University

More information

Optic Flow Computation with High Accuracy

Optic Flow Computation with High Accuracy Cognitive Computer Vision Colloquium Prague, January 12 13, 2004 Optic Flow Computation with High ccuracy Joachim Weickert Saarland University Saarbrücken, Germany joint work with Thomas Brox ndrés Bruhn

More information

Determining Constant Optical Flow

Determining Constant Optical Flow Determining Constant Optical Flow Berthold K.P. Horn Copyright 003 The original optical flow algorithm [1] dealt with a flow field that could vary from place to place in the image, as would typically occur

More information

2.3 Variational form of boundary value problems

2.3 Variational form of boundary value problems 2.3. VARIATIONAL FORM OF BOUNDARY VALUE PROBLEMS 21 2.3 Variational form of boundary value problems Let X be a separable Hilbert space with an inner product (, ) and norm. We identify X with its dual X.

More information

Digital Image Processing

Digital Image Processing Digital Image Processing, 2nd ed. Digital Image Processing Chapter 7 Wavelets and Multiresolution Processing Dr. Kai Shuang Department of Electronic Engineering China University of Petroleum shuangkai@cup.edu.cn

More information

Camera calibration. Outline. Pinhole camera. Camera projection models. Nonlinear least square methods A camera calibration tool

Camera calibration. Outline. Pinhole camera. Camera projection models. Nonlinear least square methods A camera calibration tool Outline Camera calibration Camera projection models Camera calibration i Nonlinear least square methods A camera calibration tool Applications Digital Visual Effects Yung-Yu Chuang with slides b Richard

More information

Asaf Bar Zvi Adi Hayat. Semantic Segmentation

Asaf Bar Zvi Adi Hayat. Semantic Segmentation Asaf Bar Zvi Adi Hayat Semantic Segmentation Today s Topics Fully Convolutional Networks (FCN) (CVPR 2015) Conditional Random Fields as Recurrent Neural Networks (ICCV 2015) Gaussian Conditional random

More information

Learning about State. Geoff Gordon Machine Learning Department Carnegie Mellon University

Learning about State. Geoff Gordon Machine Learning Department Carnegie Mellon University Learning about State Geoff Gordon Machine Learning Department Carnegie Mellon University joint work with Byron Boots, Sajid Siddiqi, Le Song, Alex Smola What s out there?...... ot-2 ot-1 ot ot+1 ot+2 2

More information

Feature Tracking. 2/27/12 ECEn 631

Feature Tracking. 2/27/12 ECEn 631 Corner Extraction Feature Tracking Mostly for multi-frame applications Object Tracking Motion detection Image matching Image mosaicing 3D modeling Object recognition Homography estimation... Global Features

More information

Global parametric image alignment via high-order approximation

Global parametric image alignment via high-order approximation Global parametric image alignment via high-order approximation Y. Keller, A. Averbuch 2 Electrical & Computer Engineering Department, Ben-Gurion University of the Negev. 2 School of Computer Science, Tel

More information

Lecture 12. Local Feature Detection. Matching with Invariant Features. Why extract features? Why extract features? Why extract features?

Lecture 12. Local Feature Detection. Matching with Invariant Features. Why extract features? Why extract features? Why extract features? Lecture 1 Why extract eatures? Motivation: panorama stitching We have two images how do we combine them? Local Feature Detection Guest lecturer: Alex Berg Reading: Harris and Stephens David Lowe IJCV We

More information

ES-2 Lecture: More Least-squares Fitting. Spring 2017

ES-2 Lecture: More Least-squares Fitting. Spring 2017 ES-2 Lecture: More Least-squares Fitting Spring 2017 Outline Quick review of least-squares line fitting (also called `linear regression ) How can we find the best-fit line? (Brute-force method is not efficient)

More information

Do We Really Have to Consider Covariance Matrices for Image Feature Points?

Do We Really Have to Consider Covariance Matrices for Image Feature Points? Electronics and Communications in Japan, Part 3, Vol. 86, No. 1, 2003 Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. J85-A, No. 2, February 2002, pp. 231 239 Do We Really Have to Consider Covariance

More information

Edge Detection. Introduction to Computer Vision. Useful Mathematics Funcs. The bad news

Edge Detection. Introduction to Computer Vision. Useful Mathematics Funcs. The bad news Edge Detection Introduction to Computer Vision CS / ECE 8B Thursday, April, 004 Edge detection (HO #5) Edge detection is a local area operator that seeks to find significant, meaningful changes in image

More information

Introduction to gradient descent

Introduction to gradient descent 6-1: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction to gradient descent Derivation and intuitions Hessian 6-2: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction Our

More information

Edge Detection in Computer Vision Systems

Edge Detection in Computer Vision Systems 1 CS332 Visual Processing in Computer and Biological Vision Systems Edge Detection in Computer Vision Systems This handout summarizes much of the material on the detection and description of intensity

More information

TRACKING and DETECTION in COMPUTER VISION

TRACKING and DETECTION in COMPUTER VISION Technischen Universität München Winter Semester 2013/2014 TRACKING and DETECTION in COMPUTER VISION Template tracking methods Slobodan Ilić Template based-tracking Energy-based methods The Lucas-Kanade(LK)

More information

Petar Maymounkov Problem Set 1 MIT with Prof. Jonathan Kelner, Fall 07

Petar Maymounkov Problem Set 1 MIT with Prof. Jonathan Kelner, Fall 07 Petar Maymounkov Problem Set 1 MIT 18.409 with Prof. Jonathan Kelner, Fall 07 Problem 1.2. Part a): Let u 1,..., u n and v 1,..., v n be the eigenvalues of A and B respectively. Since A B is positive semi-definite,

More information

The Frequency Domain. Many slides borrowed from Steve Seitz

The Frequency Domain. Many slides borrowed from Steve Seitz The Frequency Domain Many slides borrowed from Steve Seitz Somewhere in Cinque Terre, May 2005 15-463: Computational Photography Alexei Efros, CMU, Spring 2010 Salvador Dali Gala Contemplating the Mediterranean

More information

Image Analysis. Feature extraction: corners and blobs

Image Analysis. Feature extraction: corners and blobs Image Analysis Feature extraction: corners and blobs Christophoros Nikou cnikou@cs.uoi.gr Images taken from: Computer Vision course by Svetlana Lazebnik, University of North Carolina at Chapel Hill (http://www.cs.unc.edu/~lazebnik/spring10/).

More information

1 Overview. 2 A Characterization of Convex Functions. 2.1 First-order Taylor approximation. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 A Characterization of Convex Functions. 2.1 First-order Taylor approximation. AM 221: Advanced Optimization Spring 2016 AM 221: Advanced Optimization Spring 2016 Prof. Yaron Singer Lecture 8 February 22nd 1 Overview In the previous lecture we saw characterizations of optimality in linear optimization, and we reviewed the

More information

Newton's forward interpolation formula

Newton's forward interpolation formula Newton's Interpolation Formulae Interpolation is the process of approximating a given function, whose values are known at N + 1 tabular points, by a suitable polynomial, P N (x) of degree N which takes

More information

Advances in Computer Vision. Prof. Bill Freeman. Image and shape descriptors. Readings: Mikolajczyk and Schmid; Belongie et al.

Advances in Computer Vision. Prof. Bill Freeman. Image and shape descriptors. Readings: Mikolajczyk and Schmid; Belongie et al. 6.869 Advances in Computer Vision Prof. Bill Freeman March 3, 2005 Image and shape descriptors Affine invariant features Comparison of feature descriptors Shape context Readings: Mikolajczyk and Schmid;

More information

PIV Basics: Correlation

PIV Basics: Correlation PIV Basics: Correlation Ken Kiger (UMD) SEDITRANS summer school on Measurement techniques for turbulent open-channel flows Lisbon, Portugal 2015 With some slides contributed by Christian Poelma and Jerry

More information

CSCI567 Machine Learning (Fall 2014)

CSCI567 Machine Learning (Fall 2014) CSCI567 Machine Learning (Fall 24) Drs. Sha & Liu {feisha,yanliu.cs}@usc.edu October 2, 24 Drs. Sha & Liu ({feisha,yanliu.cs}@usc.edu) CSCI567 Machine Learning (Fall 24) October 2, 24 / 24 Outline Review

More information

Edge Detection PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

Edge Detection PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005 Edge Detection PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005 Gradients and edges Points of sharp change in an image are interesting: change in reflectance change in object change

More information

CS 556: Computer Vision. Lecture 21

CS 556: Computer Vision. Lecture 21 CS 556: Computer Vision Lecture 21 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu 1 Meanshift 2 Meanshift Clustering Assumption: There is an underlying pdf governing data properties in R Clustering

More information

Review for Exam 1. Erik G. Learned-Miller Department of Computer Science University of Massachusetts, Amherst Amherst, MA

Review for Exam 1. Erik G. Learned-Miller Department of Computer Science University of Massachusetts, Amherst Amherst, MA Review for Exam Erik G. Learned-Miller Department of Computer Science University of Massachusetts, Amherst Amherst, MA 0003 March 26, 204 Abstract Here are some things you need to know for the in-class

More information

Frequency Filtering CSC 767

Frequency Filtering CSC 767 Frequency Filtering CSC 767 Outline Fourier transform and frequency domain Frequency view of filtering Hybrid images Sampling Slide: Hoiem Why does the Gaussian give a nice smooth image, but the square

More information

Optical Flow, KLT Feature Tracker.

Optical Flow, KLT Feature Tracker. Optical Flow, KL Feature racker E-mail: hogijung@hanang.ac.kr Motion in Computer Vision Motion Structure rom motion Detection/segmentation with direction [1] E-mail: hogijung@hanang.ac.kr Motion Field.s..

More information

A Factorization Method for 3D Multi-body Motion Estimation and Segmentation

A Factorization Method for 3D Multi-body Motion Estimation and Segmentation 1 A Factorization Method for 3D Multi-body Motion Estimation and Segmentation René Vidal Department of EECS University of California Berkeley CA 94710 rvidal@eecs.berkeley.edu Stefano Soatto Dept. of Computer

More information

A STUDY OF EMBEDDED GRADIENT DOMAIN TONE MAPPING OPERATORS FOR HIGH DYNAMIC RANGE IMAGES. A Thesis. Presented to

A STUDY OF EMBEDDED GRADIENT DOMAIN TONE MAPPING OPERATORS FOR HIGH DYNAMIC RANGE IMAGES. A Thesis. Presented to A STUDY OF EMBEDDED GRADIENT DOMAIN TONE MAPPING OPERATORS FOR HIGH DYNAMIC RANGE IMAGES A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements

More information

SYDE 575: Introduction to Image Processing. Image Compression Part 2: Variable-rate compression

SYDE 575: Introduction to Image Processing. Image Compression Part 2: Variable-rate compression SYDE 575: Introduction to Image Processing Image Compression Part 2: Variable-rate compression Variable-rate Compression: Transform-based compression As mentioned earlier, we wish to transform image data

More information

Generic a-posteriori uncertainty quantification for PIV vector fields by correlation statistics

Generic a-posteriori uncertainty quantification for PIV vector fields by correlation statistics Generic a-posteriori uncertainty quantification for PIV vector fields by correlation statistics Bernhard Wieneke LaVision GmbH, Göttingen, Germany bwieneke@lavision.de Abstract The uncertainty of a PIV

More information

Wavelets and Multiresolution Processing

Wavelets and Multiresolution Processing Wavelets and Multiresolution Processing Wavelets Fourier transform has it basis functions in sinusoids Wavelets based on small waves of varying frequency and limited duration In addition to frequency,

More information

Announcements. Tracking. Comptuer Vision I. The Motion Field. = ω. Pure Translation. Motion Field Equation. Rigid Motion: General Case

Announcements. Tracking. Comptuer Vision I. The Motion Field. = ω. Pure Translation. Motion Field Equation. Rigid Motion: General Case Announcements Tracking Computer Vision I CSE5A Lecture 17 HW 3 due toda HW 4 will be on web site tomorrow: Face recognition using 3 techniques Toda: Tracking Reading: Sections 17.1-17.3 The Motion Field

More information

Efficient & Robust LK for Mobile Vision

Efficient & Robust LK for Mobile Vision Efficient & Robust LK for Mobile Vision Instructor - Simon Lucey 16-623 - Designing Comuter Vision As Direct Method (ours) Indirect Method (ORB+RANSAC) H. Alismail, B. Browning, S. Lucey Bit-Planes: Dense

More information

Digital Matting. Outline. Introduction to Digital Matting. Introduction to Digital Matting. Compositing equation: C = α * F + (1- α) * B

Digital Matting. Outline. Introduction to Digital Matting. Introduction to Digital Matting. Compositing equation: C = α * F + (1- α) * B Digital Matting Outline. Introduction to Digital Matting. Bayesian Matting 3. Poisson Matting 4. A Closed Form Solution to Matting Presenting: Alon Gamliel,, Tel-Aviv University, May 006 Introduction to

More information

What is Motion? As Visual Input: Change in the spatial distribution of light on the sensors.

What is Motion? As Visual Input: Change in the spatial distribution of light on the sensors. What is Motion? As Visual Input: Change in the spatial distribution of light on the sensors. Minimally, di(x,y,t)/dt 0 As Perception: Inference about causes of intensity change, e.g. I(x,y,t) v OBJ (x,y,z,t)

More information

Mean-Shift Tracker Computer Vision (Kris Kitani) Carnegie Mellon University

Mean-Shift Tracker Computer Vision (Kris Kitani) Carnegie Mellon University Mean-Shift Tracker 16-385 Computer Vision (Kris Kitani) Carnegie Mellon University Mean Shift Algorithm A mode seeking algorithm Fukunaga & Hostetler (1975) Mean Shift Algorithm A mode seeking algorithm

More information

Deformation and Viewpoint Invariant Color Histograms

Deformation and Viewpoint Invariant Color Histograms 1 Deformation and Viewpoint Invariant Histograms Justin Domke and Yiannis Aloimonos Computer Vision Laboratory, Department of Computer Science University of Maryland College Park, MD 274, USA domke@cs.umd.edu,

More information

Medical Image Analysis

Medical Image Analysis Medical Image Analysis CS 593 / 791 Computer Science and Electrical Engineering Dept. West Virginia University 23rd January 2006 Outline 1 Recap 2 Edge Enhancement 3 Experimental Results 4 The rest of

More information

Math 2J Lecture 16-11/02/12

Math 2J Lecture 16-11/02/12 Math 2J Lecture 16-11/02/12 William Holmes Markov Chain Recap The population of a town is 100000. Each person is either independent, democrat, or republican. In any given year, each person can choose to

More information

The recovery of motion information from visual input is an important task for both natural

The recovery of motion information from visual input is an important task for both natural MIT Media Laboratory Vision and Modeling Technical Report 65. Computing Optical Flow Distributions Using Spatio-temporal Filters Eero P. Simoncelli y and Edward H. Adelson z Vision and Modeling Group,

More information

Feature extraction: Corners and blobs

Feature extraction: Corners and blobs Feature extraction: Corners and blobs Review: Linear filtering and edge detection Name two different kinds of image noise Name a non-linear smoothing filter What advantages does median filtering have over

More information

Reac%ve power pricing strategy

Reac%ve power pricing strategy Department of Informa-on Engineering University of Padova, ITALY Reac%ve power pricing strategy Giulia Maso, Mar-no Minella, Anna Polidoro Smart Grids Outline Model Reac-ve power compensa-on Pricing Tools

More information

T H E S I S. Computer Engineering May Smoothing of Matrix-Valued Data. Thomas Brox

T H E S I S. Computer Engineering May Smoothing of Matrix-Valued Data. Thomas Brox D I P L O M A Computer Engineering May 2002 T H E S I S Smoothing of Matrix-Valued Data Thomas Brox Computer Vision, Graphics, and Pattern Recognition Group Department of Mathematics and Computer Science

More information

Phase-Correlation Motion Estimation Yi Liang

Phase-Correlation Motion Estimation Yi Liang EE 392J Final Project Abstract Phase-Correlation Motion Estimation Yi Liang yiliang@stanford.edu Phase-correlation motion estimation is studied and implemented in this work, with its performance, efficiency

More information

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis Lecture 7: Matrix completion Yuejie Chi The Ohio State University Page 1 Reference Guaranteed Minimum-Rank Solutions of Linear

More information

Performance of Optical Flow Techniques. Abstract. While dierent optical ow techniques continue to appear, there has been a

Performance of Optical Flow Techniques. Abstract. While dierent optical ow techniques continue to appear, there has been a 1 Performance of Optical Flow Techniques J.L. Barron 1, D.J. Fleet 2 and S.S. Beauchemin 1 1 Dept. of Computer Science University of Western Ontario London, Ontario, N6A 5B7 2 Dept. of Computing Science

More information

Kasetsart University Workshop. Multigrid methods: An introduction

Kasetsart University Workshop. Multigrid methods: An introduction Kasetsart University Workshop Multigrid methods: An introduction Dr. Anand Pardhanani Mathematics Department Earlham College Richmond, Indiana USA pardhan@earlham.edu A copy of these slides is available

More information

Markov random fields and the optical flow

Markov random fields and the optical flow Markov random fields and the optical flow Felix Opitz felix.opitz@cassidian.com Abstract: The optical flow can be viewed as the assignment problem between the pixels of consecutive video frames. The problem

More information

Recap: edge detection. Source: D. Lowe, L. Fei-Fei

Recap: edge detection. Source: D. Lowe, L. Fei-Fei Recap: edge detection Source: D. Lowe, L. Fei-Fei Canny edge detector 1. Filter image with x, y derivatives of Gaussian 2. Find magnitude and orientation of gradient 3. Non-maximum suppression: Thin multi-pixel

More information

Optimisation on Manifolds

Optimisation on Manifolds Optimisation on Manifolds K. Hüper MPI Tübingen & Univ. Würzburg K. Hüper (MPI Tübingen & Univ. Würzburg) Applications in Computer Vision Grenoble 18/9/08 1 / 29 Contents 2 Examples Essential matrix estimation

More information

Filtering and Edge Detection

Filtering and Edge Detection Filtering and Edge Detection Local Neighborhoods Hard to tell anything from a single pixel Example: you see a reddish pixel. Is this the object s color? Illumination? Noise? The next step in order of complexity

More information

SIMULATION OF THE RESITIVE FORCES ACTING ON THE BUCKET OF WHEEL LOADER BY USE OF DEM

SIMULATION OF THE RESITIVE FORCES ACTING ON THE BUCKET OF WHEEL LOADER BY USE OF DEM SIMULATION OF THE RESITIVE FORCES ACTING ON THE BUCKET OF WHEEL LOADER BY USE OF DEM Hiroshi TAKAHASHI Department of Geoscience and Technology Graduate School of Engineering Tohoku University Sendai 980-8579,

More information

Differentiable Functions

Differentiable Functions Differentiable Functions Let S R n be open and let f : R n R. We recall that, for x o = (x o 1, x o,, x o n S the partial derivative of f at the point x o with respect to the component x j is defined as

More information

Image Segmentation: Definition Importance. Digital Image Processing, 2nd ed. Chapter 10 Image Segmentation.

Image Segmentation: Definition Importance. Digital Image Processing, 2nd ed. Chapter 10 Image Segmentation. : Definition Importance Detection of Discontinuities: 9 R = wi z i= 1 i Point Detection: 1. A Mask 2. Thresholding R T Line Detection: A Suitable Mask in desired direction Thresholding Line i : R R, j

More information

An Axiomatic Approach to Corner Detection

An Axiomatic Approach to Corner Detection An Axiomatic Approach to Corner Detection C S Kenney M Zuliani B S Manjunath Vision Research Lab Department of Electrical and Computer Engineering University of California, Santa Barbara Abstract This

More information

Visual Object Recognition

Visual Object Recognition Visual Object Recognition Lecture 2: Image Formation Per-Erik Forssén, docent Computer Vision Laboratory Department of Electrical Engineering Linköping University Lecture 2: Image Formation Pin-hole, and

More information

Wavelet Decomposition in Laplacian Pyramid for Image Fusion

Wavelet Decomposition in Laplacian Pyramid for Image Fusion International Journal of Signal Processing Systems Vol. 4, No., February 06 Wavelet Decomposition in Laplacian Pyramid for Image Fusion I. S. Wahyuni Laboratory Lei, University of Burgundy, Dijon, France

More information

On Compression Encrypted Data part 2. Prof. Ja-Ling Wu The Graduate Institute of Networking and Multimedia National Taiwan University

On Compression Encrypted Data part 2. Prof. Ja-Ling Wu The Graduate Institute of Networking and Multimedia National Taiwan University On Compression Encrypted Data part 2 Prof. Ja-Ling Wu The Graduate Institute of Networking and Multimedia National Taiwan University 1 Brief Summary of Information-theoretic Prescription At a functional

More information

Differential Motion Analysis (II)

Differential Motion Analysis (II) Differential Motion Analysis (II) Ying Wu Electrical Engineering and Computer Science Northwestern University, Evanston, IL 60208 yingwu@northwestern.edu http://www.eecs.northwestern.edu/~yingwu 1/30 Outline

More information

SCALE-SPACE - Theory and Applications

SCALE-SPACE - Theory and Applications SCALE-SPACE - Theory and Applications Scale is embedded in the task: do you want only coins or TREASURE? SCALE-SPACE Theory and Applications - Scale-space theory is a framework of multiscale image/signal

More information