ELEG 305: Digital Signal Processing

Size: px
Start display at page:

Download "ELEG 305: Digital Signal Processing"

Transcription

1 ELEG 305: Digital Signal Processing Lecture 1: Course Overview; Discrete-Time Signals & Systems Kenneth E. Barner Department of Electrical and Computer Engineering University of Delaware Fall 2008 K. E. Barner (Univ. of Delaware) ELEG 305: Digital Signal Processing Fall / 28 Outline 1 Course Information 2 Lecture Objectives 3 Discrete-Time Signals and Systems Discrete-Time Signals Discrete-Time Systems Analysis of DT LTI Systems Implementation of Discrete-Time Systems K. E. Barner (Univ. of Delaware) ELEG 305: Digital Signal Processing Fall / 28

2 Course Information Course Information Course Info. All information is on My courses (Web CT); Syllabus; TA information; Homework assignments; Prior homework solutions; Grades Grading (2) exams (40%), final (30%), homework (25%), unannounced quizzes (5%) Homework Due Wednesdays; Assignments turned in at 310 Evans (by 5 p.m.); Engineering paper mandatory; no late assignments accepted Objective Successful students will be proficient at characterizing, analyzing, and manipulating discrete-time signals and systems K. E. Barner (Univ. of Delaware) ELEG 305: Digital Signal Processing Fall / 28 Lecture Objectives Lecture Objectives Objective Define and review basic discrete-time signal and system notation and properties; Analysis of such systems (impulse representations of signals, LTI systems, causality, stability); Difference equations Reading Chapter 1 (not covered in class) and Chapter 2 ( ); Next lecture, Chapter 3 K. E. Barner (Univ. of Delaware) ELEG 305: Digital Signal Processing Fall / 28

3 Discrete-Time Signals Elementary Discrete-Time Signals Definition (unit sample sequence) { 1, for n = 0 δ(n) = 0, for n 0 Definition (unit step signal) { 1, for n 0 u(n) = 0, for n < 0 Other important signals: unit ramp signal, u r (n) =nu(n), and exponential signal, x(n) =a n K. E. Barner (Univ. of Delaware) ELEG 305: Digital Signal Processing Fall / 28 Discrete-Time Signals and Systems Discrete-Time Signals Classification of Signals Definitions Let x(n) R, n = 0, ±1, ±2,..., be a discrete signal signal energy E = x(n) 2 n= signal power P = 1 N lim x(n) 2 N 2N + 1 n= N 0 < E < Energy Signal 0 < P < Power Signal Other signal classifications: Periodic vs. aperiodic; symmetric (even), x( n) =x(n), and antisymmetric (odd), x( n) = x(n) K. E. Barner (Univ. of Delaware) ELEG 305: Digital Signal Processing Fall / 28

4 Discrete Time Systems Discrete-Time Systems System input and output x(n) T y(n) x(n) T y(n) T : x(n) y(n) or x(n) T y(n) K. E. Barner (Univ. of Delaware) ELEG 305: Digital Signal Processing Fall / 28 Discrete-Time Signals and Systems Discrete-Time Systems Block Diagram Representations x1(n) Adder + y(n) = x1(n) + x2(n) x2(n) Scaler x(n) a y(n) = a x(n) x1(n) Multiplier y(n) = x1(n) x2(n) x2(n) x(n) Delay z -k y(n) = x(n-k) K. E. Barner (Univ. of Delaware) ELEG 305: Digital Signal Processing Fall / 28

5 Discrete-Time Systems Example (I) x(n) T y(n) y(n) = 1 y(n 1)+x(n) x(n 1) 2 K. E. Barner (Univ. of Delaware) ELEG 305: Digital Signal Processing Fall / 28 Example (II) Discrete-Time Signals and Systems Discrete-Time Systems x(n) T y(n) y(n) = a 1 y(n 1) a 2 y(n 2)+b 0 x(n) +b 1 x(n 1)+b 2 x(n 2)+b 3 x(n 3) 2 3 = a i y(n i)+ b i x(n i) i=1 i=0 K. E. Barner (Univ. of Delaware) ELEG 305: Digital Signal Processing Fall / 28

6 Discrete-Time Systems Classification of Discrete-Time Systems Definition (Static) T is static, or memoryless, if y(n) depends only on x(n), i.e., no future/ past samples. Other cases are dynamic systems. If y(n) depends only on x(n k), k = 0, 1,...,N, the system has memory of duration N. Definition (Time Invariant) T is time invariant iff Definition (Linearity) T is linear iff x(n) T y(n) x(n k) T y(n k) T [a 1 x 1 (n)+a 2 x 2 (n)] = a 1 T [x 1 (n)] + a 2 T [x 2 (n)] for arbitrary a 1, x 1, a 2, x 2 K. E. Barner (Univ. of Delaware) ELEG 305: Digital Signal Processing Fall / 28 Discrete-Time Signals and Systems Discrete-Time Systems Linear systems satisfy the superposition principle, which has two components: Scaling Property T [ax(n)] = at [x(n)] Additive Property T [x 1 (n)+x 2 (n)] = T [x 1 (n)] + T [x 2 (n)] Taken further x(n) = a k x k (n) T y(n) = a k y k (n) where y k (n) =T [x k (n)] K. E. Barner (Univ. of Delaware) ELEG 305: Digital Signal Processing Fall / 28

7 Discrete-Time Systems Definition (Causal) Fiscausal if y(n) =F[x(n), x(n 1), x(n 2),...] The output depends on present and past inputs. y(n) = 1 [x(n)+x(n 1)+x(n 2)] 3 CAUSAL? y(n) = 1 [x(n + 1)+x(n)+x(n 1)] 3 CAUSAL? Definition (Bounded Input Bounded Output) A system is BIBO iff x(n) M 1 < T [x(n)] M 2 < n and bounded x(n) K. E. Barner (Univ. of Delaware) ELEG 305: Digital Signal Processing Fall / 28 Discrete-Time Signals and Systems Analysis of DT LTI Systems Analysis of DT LTI Systems Any DT sequence can be written as a weighted sum of impulses. x(n) = k x(k)δ(n k) δ(n k) = { 1, for n = k 0, for n k Example (III) x(n) = {3, 5, 1, 7} x(n) = 3δ(n + 1)+5δ(n) δ(n 1)+7δ(n 2) K. E. Barner (Univ. of Delaware) ELEG 305: Digital Signal Processing Fall / 28

8 For T Linear Time Invariant (LTI), Analysis of DT LTI Systems h(n) T [δ(n)] h(n k) =T [δ(n k)] Hence, T x(n) y(n) y(n) = T [x(n)] [ ] = T x(k)δ(n k) = k k T [x(k)δ(n k)] [Linearity] = k x(k)h(n k) = x(n) h(n) [Convolution] Note: T [x(k)δ(n k)] = x(k)t [δ(n k)] as x(k) is not a funtion of n. K. E. Barner (Univ. of Delaware) ELEG 305: Digital Signal Processing Fall / 28 Discrete-Time Signals and Systems Analysis of DT LTI Systems Convolution Steps Letting n = n 0, y(n 0 )= k x(k)h(n 0 k) Folding Fold h(k) about k = 0 to obtain a h( k) Shifting Shift h( k) by n 0 to the right (left) if n 0 is positive (negative), to obtain h(n 0 k) Multiplication Multiply x(k) by h(n 0 k) to obtain the product sequence v n0 (k) =x(k)h(n 0 k) Summation Sum the terms in the product sequence v n0 (k) =to obtain the value of the output at time n = n 0 K. E. Barner (Univ. of Delaware) ELEG 305: Digital Signal Processing Fall / 28

9 Analysis of DT LTI Systems K. E. Barner (Univ. of Delaware) ELEG 305: Digital Signal Processing Fall / 28 Discrete-Time Signals and Systems Analysis of DT LTI Systems K. E. Barner (Univ. of Delaware) ELEG 305: Digital Signal Processing Fall / 28

10 Convolution Properties Analysis of DT LTI Systems Shifting x(n) δ(n k) =x(n k) Communative x(n) h(n) =h(n) x(n) Associative [x(n) h 1 (n)] h 2 (n) =x(n) [h 1 (n) h 2 (n)] Distributive x(n) [h 1 (n)+h 2 (n)] = x(n) h 1 (n)+x(n) h 2 (n) K. E. Barner (Univ. of Delaware) ELEG 305: Digital Signal Processing Fall / 28 Discrete-Time Signals and Systems Analysis of DT LTI Systems Causal LTI Systems y(n) = k h(k)x(n k) 1 = h(k)x(n k)+ h(k)x(n k) k= Causality 1 k= h(k)x(n k) =0 [not a function of past input samples] h(k) = 0, for k < 0. y(n) = h(k)x(n k) = n x(m)h(n m) [m = n k] K. E. Barner (Univ. of Delaware) ELEG 305: Digital Signal Processing Fall / 28

11 Analysis of DT LTI Systems Theorem (LTI System Stability) A LTI system is BIBO stable if it s impulse response is absolutely summable, S= k h(k) <. Proof. Let x(n) M x < and y(n) = k h(k)x(n k). y(n) = k h(k)x(n k) h(k) x(n k) }{{} k Mx M x h(k) M x S M y k Note: The condition is sufficient and can be shown to be necessary. K. E. Barner (Univ. of Delaware) ELEG 305: Digital Signal Processing Fall / 28 Discrete-Time Signals and Systems Analysis of DT LTI Systems Impulse Duration (Causal Systems) IIR Infinite Impulse Response y(n) = h(k)x(n k) FIR Finite Impulse Response h(n) = 0 for n < 0 and n M y(n) = M h(k)x(n k) K. E. Barner (Univ. of Delaware) ELEG 305: Digital Signal Processing Fall / 28

12 Implementation of Discrete-Time Systems Question: How can these systems be efficiently implemented? Suppose 1 n y(n) = x(k) n + 1 y(n 1) = 1 n 1 x(k) n n (n + 1)y(n) = x(k) = n 1 x(k)+x(n) [running average] = ny(n 1)+x(n) y(n) = n 1 y(n 1)+ n + 1 n + 1 x(n) K. E. Barner (Univ. of Delaware) ELEG 305: Digital Signal Processing Fall / 28 Discrete-Time Signals and Systems Implementation of Discrete-Time Systems Result: The system can be implemented Recursively y(n) = F[y(n 1),...,y(n N), x(n),...,x(n M)] Nonrecursively Question: Which is more efficient? y(n) = F[x(n),...,x(n M)] K. E. Barner (Univ. of Delaware) ELEG 305: Digital Signal Processing Fall / 28

13 Implementation of Discrete-Time Systems Direct Form I realization Let T be LTI and described by a constant coefficient difference equation y(n) = N M a k y(n k)+ b k x(n k) k=1 Let N = M = 1, y(n) = a 1 y(n 1)+b 0 x(n)+b 1 x(n 1) K. E. Barner (Univ. of Delaware) ELEG 305: Digital Signal Processing Fall / 28 Discrete-Time Signals and Systems Implementation of Discrete-Time Systems Direct Form II realization Direct Form I By linearity; combining delays Direct Form II K. E. Barner (Univ. of Delaware) ELEG 305: Digital Signal Processing Fall / 28

14 Implementation of Discrete-Time Systems In the general case, N M y(n) = a k y(n k)+ b k x(n k) k=1 K. E. Barner (Univ. of Delaware) ELEG 305: Digital Signal Processing Fall / 28 Lecture Summary Lecture Summary DT Systems input output descriptions, block diagram representations, classification of systems (linear, time invariant, static, etc.) Analysis of DT LTI Systems resolving signals as impulses, convolution, convolution properties, causal systems, BIBO stability, finite and infinite impulse responses Implementation of DT Systems recursive and nonrecursive systems, difference equations, Direct Form I and II Next Lecture z Transforms K. E. Barner (Univ. of Delaware) ELEG 305: Digital Signal Processing Fall / 28

Digital Signal Processing Lecture 4

Digital Signal Processing Lecture 4 Remote Sensing Laboratory Dept. of Information Engineering and Computer Science University of Trento Via Sommarive, 14, I-38123 Povo, Trento, Italy Digital Signal Processing Lecture 4 Begüm Demir E-mail:

More information

Digital Signal Processing Lecture 3 - Discrete-Time Systems

Digital Signal Processing Lecture 3 - Discrete-Time Systems Digital Signal Processing - Discrete-Time Systems Electrical Engineering and Computer Science University of Tennessee, Knoxville August 25, 2015 Overview 1 2 3 4 5 6 7 8 Introduction Three components of

More information

DIGITAL SIGNAL PROCESSING UNIT 1 SIGNALS AND SYSTEMS 1. What is a continuous and discrete time signal? Continuous time signal: A signal x(t) is said to be continuous if it is defined for all time t. Continuous

More information

Lecture 2 Discrete-Time LTI Systems: Introduction

Lecture 2 Discrete-Time LTI Systems: Introduction Lecture 2 Discrete-Time LTI Systems: Introduction Outline 2.1 Classification of Systems.............................. 1 2.1.1 Memoryless................................. 1 2.1.2 Causal....................................

More information

ECE 308 Discrete-Time Signals and Systems

ECE 308 Discrete-Time Signals and Systems ECE 38-6 ECE 38 Discrete-Time Signals and Systems Z. Aliyazicioglu Electrical and Computer Engineering Department Cal Poly Pomona ECE 38-6 1 Intoduction Two basic methods for analyzing the response of

More information

Chap 2. Discrete-Time Signals and Systems

Chap 2. Discrete-Time Signals and Systems Digital Signal Processing Chap 2. Discrete-Time Signals and Systems Chang-Su Kim Discrete-Time Signals CT Signal DT Signal Representation 0 4 1 1 1 2 3 Functional representation 1, n 1,3 x[ n] 4, n 2 0,

More information

Digital Signal Processing

Digital Signal Processing Digital Signal Processing Discrete-Time Signals and Systems (2) Moslem Amiri, Václav Přenosil Embedded Systems Laboratory Faculty of Informatics, Masaryk University Brno, Czech Republic amiri@mail.muni.cz

More information

Properties of LTI Systems

Properties of LTI Systems Properties of LTI Systems Properties of Continuous Time LTI Systems Systems with or without memory: A system is memory less if its output at any time depends only on the value of the input at that same

More information

Digital Signal Processing Lecture 5

Digital Signal Processing Lecture 5 Remote Sensing Laboratory Dept. of Information Engineering and Computer Science University of Trento Via Sommarive, 14, I-38123 Povo, Trento, Italy Digital Signal Processing Lecture 5 Begüm Demir E-mail:

More information

Analog vs. discrete signals

Analog vs. discrete signals Analog vs. discrete signals Continuous-time signals are also known as analog signals because their amplitude is analogous (i.e., proportional) to the physical quantity they represent. Discrete-time signals

More information

UNIT 1. SIGNALS AND SYSTEM

UNIT 1. SIGNALS AND SYSTEM Page no: 1 UNIT 1. SIGNALS AND SYSTEM INTRODUCTION A SIGNAL is defined as any physical quantity that changes with time, distance, speed, position, pressure, temperature or some other quantity. A SIGNAL

More information

信號與系統 Signals and Systems

信號與系統 Signals and Systems Spring 2015 信號與系統 Signals and Systems Chapter SS-2 Linear Time-Invariant Systems Feng-Li Lian NTU-EE Feb15 Jun15 Figures and images used in these lecture notes are adopted from Signals & Systems by Alan

More information

considered to be the elements of a column vector as follows 1.2 Discrete-time signals

considered to be the elements of a column vector as follows 1.2 Discrete-time signals Chapter 1 Signals and Systems 1.1 Introduction In this chapter we begin our study of digital signal processing by developing the notion of a discretetime signal and a discrete-time system. We will concentrate

More information

ELEG 305: Digital Signal Processing

ELEG 305: Digital Signal Processing ELEG 305: Digital Signal Processing Lecture 18: Applications of FFT Algorithms & Linear Filtering DFT Computation; Implementation of Discrete Time Systems Kenneth E. Barner Department of Electrical and

More information

Examples. 2-input, 1-output discrete-time systems: 1-input, 1-output discrete-time systems:

Examples. 2-input, 1-output discrete-time systems: 1-input, 1-output discrete-time systems: Discrete-Time s - I Time-Domain Representation CHAPTER 4 These lecture slides are based on "Digital Signal Processing: A Computer-Based Approach, 4th ed." textbook by S.K. Mitra and its instructor materials.

More information

Lecture 19 IIR Filters

Lecture 19 IIR Filters Lecture 19 IIR Filters Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/5/10 1 General IIR Difference Equation IIR system: infinite-impulse response system The most general class

More information

信號與系統 Signals and Systems

信號與系統 Signals and Systems Spring 2010 信號與系統 Signals and Systems Chapter SS-2 Linear Time-Invariant Systems Feng-Li Lian NTU-EE Feb10 Jun10 Figures and images used in these lecture notes are adopted from Signals & Systems by Alan

More information

LECTURE NOTES DIGITAL SIGNAL PROCESSING III B.TECH II SEMESTER (JNTUK R 13)

LECTURE NOTES DIGITAL SIGNAL PROCESSING III B.TECH II SEMESTER (JNTUK R 13) LECTURE NOTES ON DIGITAL SIGNAL PROCESSING III B.TECH II SEMESTER (JNTUK R 13) FACULTY : B.V.S.RENUKA DEVI (Asst.Prof) / Dr. K. SRINIVASA RAO (Assoc. Prof) DEPARTMENT OF ELECTRONICS AND COMMUNICATIONS

More information

EEL3135: Homework #4

EEL3135: Homework #4 EEL335: Homework #4 Problem : For each of the systems below, determine whether or not the system is () linear, () time-invariant, and (3) causal: (a) (b) (c) xn [ ] cos( 04πn) (d) xn [ ] xn [ ] xn [ 5]

More information

ELEG 305: Digital Signal Processing

ELEG 305: Digital Signal Processing ELEG 305: Digital Signal Processing Lecture 4: Inverse z Transforms & z Domain Analysis Kenneth E. Barner Department of Electrical and Computer Engineering University of Delaware Fall 008 K. E. Barner

More information

2. CONVOLUTION. Convolution sum. Response of d.t. LTI systems at a certain input signal

2. CONVOLUTION. Convolution sum. Response of d.t. LTI systems at a certain input signal 2. CONVOLUTION Convolution sum. Response of d.t. LTI systems at a certain input signal Any signal multiplied by the unit impulse = the unit impulse weighted by the value of the signal in 0: xn [ ] δ [

More information

ELEG 305: Digital Signal Processing

ELEG 305: Digital Signal Processing ELEG 305: Digital Signal Processing Lecture 19: Lattice Filters Kenneth E. Barner Department of Electrical and Computer Engineering University of Delaware Fall 2008 K. E. Barner (Univ. of Delaware) ELEG

More information

III. Time Domain Analysis of systems

III. Time Domain Analysis of systems 1 III. Time Domain Analysis of systems Here, we adapt properties of continuous time systems to discrete time systems Section 2.2-2.5, pp 17-39 System Notation y(n) = T[ x(n) ] A. Types of Systems Memoryless

More information

VU Signal and Image Processing

VU Signal and Image Processing 052600 VU Signal and Image Processing Torsten Möller + Hrvoje Bogunović + Raphael Sahann torsten.moeller@univie.ac.at hrvoje.bogunovic@meduniwien.ac.at raphael.sahann@univie.ac.at vda.cs.univie.ac.at/teaching/sip/18s/

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing EE123 Digital Signal Processing Lecture 2 Discrete Time Systems Today Last time: Administration Overview Announcement: HW1 will be out today Lab 0 out webcast out Today: Ch. 2 - Discrete-Time Signals and

More information

Z-Transform. x (n) Sampler

Z-Transform. x (n) Sampler Chapter Two A- Discrete Time Signals: The discrete time signal x(n) is obtained by taking samples of the analog signal xa (t) every Ts seconds as shown in Figure below. Analog signal Discrete time signal

More information

ENT 315 Medical Signal Processing CHAPTER 2 DISCRETE FOURIER TRANSFORM. Dr. Lim Chee Chin

ENT 315 Medical Signal Processing CHAPTER 2 DISCRETE FOURIER TRANSFORM. Dr. Lim Chee Chin ENT 315 Medical Signal Processing CHAPTER 2 DISCRETE FOURIER TRANSFORM Dr. Lim Chee Chin Outline Introduction Discrete Fourier Series Properties of Discrete Fourier Series Time domain aliasing due to frequency

More information

Lecture 11 FIR Filters

Lecture 11 FIR Filters Lecture 11 FIR Filters Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/4/12 1 The Unit Impulse Sequence Any sequence can be represented in this way. The equation is true if k ranges

More information

Discrete Time Signals and Systems Time-frequency Analysis. Gloria Menegaz

Discrete Time Signals and Systems Time-frequency Analysis. Gloria Menegaz Discrete Time Signals and Systems Time-frequency Analysis Gloria Menegaz Time-frequency Analysis Fourier transform (1D and 2D) Reference textbook: Discrete time signal processing, A.W. Oppenheim and R.W.

More information

Digital Signal Processing Module 1 Analysis of Discrete time Linear Time - Invariant Systems

Digital Signal Processing Module 1 Analysis of Discrete time Linear Time - Invariant Systems Digital Signal Processing Module 1 Analysis of Discrete time Linear Time - Invariant Systems Objective: 1. To understand the representation of Discrete time signals 2. To analyze the causality and stability

More information

The Convolution Sum for Discrete-Time LTI Systems

The Convolution Sum for Discrete-Time LTI Systems The Convolution Sum for Discrete-Time LTI Systems Andrew W. H. House 01 June 004 1 The Basics of the Convolution Sum Consider a DT LTI system, L. x(n) L y(n) DT convolution is based on an earlier result

More information

NAME: 23 February 2017 EE301 Signals and Systems Exam 1 Cover Sheet

NAME: 23 February 2017 EE301 Signals and Systems Exam 1 Cover Sheet NAME: 23 February 2017 EE301 Signals and Systems Exam 1 Cover Sheet Test Duration: 75 minutes Coverage: Chaps 1,2 Open Book but Closed Notes One 85 in x 11 in crib sheet Calculators NOT allowed DO NOT

More information

Discrete-Time Signals & Systems

Discrete-Time Signals & Systems Chapter 2 Discrete-Time Signals & Systems 清大電機系林嘉文 cwlin@ee.nthu.edu.tw 03-5731152 Original PowerPoint slides prepared by S. K. Mitra 2-1-1 Discrete-Time Signals: Time-Domain Representation (1/10) Signals

More information

QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE)

QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE) QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE) 1. For the signal shown in Fig. 1, find x(2t + 3). i. Fig. 1 2. What is the classification of the systems? 3. What are the Dirichlet s conditions of Fourier

More information

University Question Paper Solution

University Question Paper Solution Unit 1: Introduction University Question Paper Solution 1. Determine whether the following systems are: i) Memoryless, ii) Stable iii) Causal iv) Linear and v) Time-invariant. i) y(n)= nx(n) ii) y(t)=

More information

Solutions of Chapter 3 Part 1/2

Solutions of Chapter 3 Part 1/2 Page 1 of 7 Solutions of Chapter 3 Part 1/ Problem 3.1-1 Find the energy of the signals depicted in Figs.P3.1-1. Figure 1: Fig3.1-1 (a) E x n x[n] 1 + + 3 + + 1 19 (b) E x n x[n] 1 + + 3 + + 1 19 (c) E

More information

Review of Discrete-Time System

Review of Discrete-Time System Review of Discrete-Time System Electrical & Computer Engineering University of Maryland, College Park Acknowledgment: ENEE630 slides were based on class notes developed by Profs. K.J. Ray Liu and Min Wu.

More information

Chapter 3. Discrete-Time Systems

Chapter 3. Discrete-Time Systems Chapter 3 Discrete-Time Systems A discrete-time system can be thought of as a transformation or operator that maps an input sequence {x[n]} to an output sequence {y[n]} {x[n]} T(. ) {y[n]} By placing various

More information

Let H(z) = P(z)/Q(z) be the system function of a rational form. Let us represent both P(z) and Q(z) as polynomials of z (not z -1 )

Let H(z) = P(z)/Q(z) be the system function of a rational form. Let us represent both P(z) and Q(z) as polynomials of z (not z -1 ) Review: Poles and Zeros of Fractional Form Let H() = P()/Q() be the system function of a rational form. Let us represent both P() and Q() as polynomials of (not - ) Then Poles: the roots of Q()=0 Zeros:

More information

Signals & Systems Handout #4

Signals & Systems Handout #4 Signals & Systems Handout #4 H-4. Elementary Discrete-Domain Functions (Sequences): Discrete-domain functions are defined for n Z. H-4.. Sequence Notation: We use the following notation to indicate the

More information

EE361: Signals and System II

EE361: Signals and System II Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE361: Signals and System II Introduction http://www.ee.unlv.edu/~b1morris/ee361/ 2 Class Website http://www.ee.unlv.edu/~b1morris/ee361/ This

More information

Introduction to DSP Time Domain Representation of Signals and Systems

Introduction to DSP Time Domain Representation of Signals and Systems Introduction to DSP Time Domain Representation of Signals and Systems Dr. Waleed Al-Hanafy waleed alhanafy@yahoo.com Faculty of Electronic Engineering, Menoufia Univ., Egypt Digital Signal Processing (ECE407)

More information

Chapter 7: The z-transform

Chapter 7: The z-transform Chapter 7: The -Transform ECE352 1 The -Transform - definition Continuous-time systems: e st H(s) y(t) = e st H(s) e st is an eigenfunction of the LTI system h(t), and H(s) is the corresponding eigenvalue.

More information

LECTURE NOTES DIGITAL SIGNAL PROCESSING III B.TECH II SEMESTER (JNTUK R 13)

LECTURE NOTES DIGITAL SIGNAL PROCESSING III B.TECH II SEMESTER (JNTUK R 13) LECTURE NOTES ON DIGITAL SIGNAL PROCESSING III B.TECH II SEMESTER (JNTUK R 13) FACULTY : B.V.S.RENUKA DEVI (Asst.Prof) / Dr. K. SRINIVASA RAO (Assoc. Prof) DEPARTMENT OF ELECTRONICS AND COMMUNICATIONS

More information

ECE 301 Division 1 Exam 1 Solutions, 10/6/2011, 8-9:45pm in ME 1061.

ECE 301 Division 1 Exam 1 Solutions, 10/6/2011, 8-9:45pm in ME 1061. ECE 301 Division 1 Exam 1 Solutions, 10/6/011, 8-9:45pm in ME 1061. Your ID will be checked during the exam. Please bring a No. pencil to fill out the answer sheet. This is a closed-book exam. No calculators

More information

Chapter 2 Time-Domain Representations of LTI Systems

Chapter 2 Time-Domain Representations of LTI Systems Chapter 2 Time-Domain Representations of LTI Systems 1 Introduction Impulse responses of LTI systems Linear constant-coefficients differential or difference equations of LTI systems Block diagram representations

More information

Cosc 3451 Signals and Systems. What is a system? Systems Terminology and Properties of Systems

Cosc 3451 Signals and Systems. What is a system? Systems Terminology and Properties of Systems Cosc 3451 Signals and Systems Systems Terminology and Properties of Systems What is a system? an entity that manipulates one or more signals to yield new signals (often to accomplish a function) can be

More information

EC Signals and Systems

EC Signals and Systems UNIT I CLASSIFICATION OF SIGNALS AND SYSTEMS Continuous time signals (CT signals), discrete time signals (DT signals) Step, Ramp, Pulse, Impulse, Exponential 1. Define Unit Impulse Signal [M/J 1], [M/J

More information

UNIT-II Z-TRANSFORM. This expression is also called a one sided z-transform. This non causal sequence produces positive powers of z in X (z).

UNIT-II Z-TRANSFORM. This expression is also called a one sided z-transform. This non causal sequence produces positive powers of z in X (z). Page no: 1 UNIT-II Z-TRANSFORM The Z-Transform The direct -transform, properties of the -transform, rational -transforms, inversion of the transform, analysis of linear time-invariant systems in the -

More information

New Mexico State University Klipsch School of Electrical Engineering. EE312 - Signals and Systems I Spring 2018 Exam #1

New Mexico State University Klipsch School of Electrical Engineering. EE312 - Signals and Systems I Spring 2018 Exam #1 New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Spring 2018 Exam #1 Name: Prob. 1 Prob. 2 Prob. 3 Prob. 4 Total / 30 points / 20 points / 25 points /

More information

ELEN E4810: Digital Signal Processing Topic 2: Time domain

ELEN E4810: Digital Signal Processing Topic 2: Time domain ELEN E4810: Digital Signal Processing Topic 2: Time domain 1. Discrete-time systems 2. Convolution 3. Linear Constant-Coefficient Difference Equations (LCCDEs) 4. Correlation 1 1. Discrete-time systems

More information

ELEG 305: Digital Signal Processing

ELEG 305: Digital Signal Processing ELEG 5: Digital Signal Processing Lecture 6: The Fast Fourier Transform; Radix Decimatation in Time Kenneth E. Barner Department of Electrical and Computer Engineering University of Delaware Fall 8 K.

More information

5. Time-Domain Analysis of Discrete-Time Signals and Systems

5. Time-Domain Analysis of Discrete-Time Signals and Systems 5. Time-Domain Analysis of Discrete-Time Signals and Systems 5.1. Impulse Sequence (1.4.1) 5.2. Convolution Sum (2.1) 5.3. Discrete-Time Impulse Response (2.1) 5.4. Classification of a Linear Time-Invariant

More information

Digital Signal Processing Lecture 10 - Discrete Fourier Transform

Digital Signal Processing Lecture 10 - Discrete Fourier Transform Digital Signal Processing - Discrete Fourier Transform Electrical Engineering and Computer Science University of Tennessee, Knoxville November 12, 2015 Overview 1 2 3 4 Review - 1 Introduction Discrete-time

More information

6.02 Fall 2012 Lecture #10

6.02 Fall 2012 Lecture #10 6.02 Fall 2012 Lecture #10 Linear time-invariant (LTI) models Convolution 6.02 Fall 2012 Lecture 10, Slide #1 Modeling Channel Behavior codeword bits in generate x[n] 1001110101 digitized modulate DAC

More information

Universiti Malaysia Perlis EKT430: DIGITAL SIGNAL PROCESSING LAB ASSIGNMENT 3: DISCRETE TIME SYSTEM IN TIME DOMAIN

Universiti Malaysia Perlis EKT430: DIGITAL SIGNAL PROCESSING LAB ASSIGNMENT 3: DISCRETE TIME SYSTEM IN TIME DOMAIN Universiti Malaysia Perlis EKT430: DIGITAL SIGNAL PROCESSING LAB ASSIGNMENT 3: DISCRETE TIME SYSTEM IN TIME DOMAIN Pusat Pengajian Kejuruteraan Komputer Dan Perhubungan Universiti Malaysia Perlis Discrete-Time

More information

Module 3. Convolution. Aim

Module 3. Convolution. Aim Module Convolution Digital Signal Processing. Slide 4. Aim How to perform convolution in real-time systems efficiently? Is convolution in time domain equivalent to multiplication of the transformed sequence?

More information

ECE-S Introduction to Digital Signal Processing Lecture 4 Part A The Z-Transform and LTI Systems

ECE-S Introduction to Digital Signal Processing Lecture 4 Part A The Z-Transform and LTI Systems ECE-S352-70 Introduction to Digital Signal Processing Lecture 4 Part A The Z-Transform and LTI Systems Transform techniques are an important tool in the analysis of signals and linear time invariant (LTI)

More information

New Mexico State University Klipsch School of Electrical Engineering. EE312 - Signals and Systems I Fall 2017 Exam #1

New Mexico State University Klipsch School of Electrical Engineering. EE312 - Signals and Systems I Fall 2017 Exam #1 New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Fall 2017 Exam #1 Name: Prob. 1 Prob. 2 Prob. 3 Prob. 4 Total / 30 points / 20 points / 25 points / 25

More information

Digital Filters Ying Sun

Digital Filters Ying Sun Digital Filters Ying Sun Digital filters Finite impulse response (FIR filter: h[n] has a finite numbers of terms. Infinite impulse response (IIR filter: h[n] has infinite numbers of terms. Causal filter:

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing EE123 Digital Signal Processing Lecture 2A D.T Systems D. T. Fourier Transform A couple of things Read Ch 2 2.0-2.9 It s OK to use 2nd edition My office hours: posted on-line W 4-5pm Cory 506 ham radio

More information

DIGITAL SIGNAL PROCESSING LECTURE 1

DIGITAL SIGNAL PROCESSING LECTURE 1 DIGITAL SIGNAL PROCESSING LECTURE 1 Fall 2010 2K8-5 th Semester Tahir Muhammad tmuhammad_07@yahoo.com Content and Figures are from Discrete-Time Signal Processing, 2e by Oppenheim, Shafer, and Buck, 1999-2000

More information

Discrete-time signals and systems

Discrete-time signals and systems Discrete-time signals and systems 1 DISCRETE-TIME DYNAMICAL SYSTEMS x(t) G y(t) Linear system: Output y(n) is a linear function of the inputs sequence: y(n) = k= h(k)x(n k) h(k): impulse response of the

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 6: January 30, 2018 Inverse z-transform Lecture Outline! z-transform " Tie up loose ends " Regions of convergence properties! Inverse z-transform " Inspection " Partial

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 6: January 31, 2017 Inverse z-transform Lecture Outline! z-transform " Tie up loose ends " Regions of convergence properties! Inverse z-transform " Inspection " Partial

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing EE123 Digital Signal Processing Discrete Time Fourier Transform M. Lustig, EECS UC Berkeley A couple of things Read Ch 2 2.0-2.9 It s OK to use 2nd edition Class webcast in bcourses.berkeley.edu or linked

More information

Professor Fearing EECS120/Problem Set 2 v 1.01 Fall 2016 Due at 4 pm, Fri. Sep. 9 in HW box under stairs (1st floor Cory) Reading: O&W Ch 1, Ch2.

Professor Fearing EECS120/Problem Set 2 v 1.01 Fall 2016 Due at 4 pm, Fri. Sep. 9 in HW box under stairs (1st floor Cory) Reading: O&W Ch 1, Ch2. Professor Fearing EECS120/Problem Set 2 v 1.01 Fall 20 Due at 4 pm, Fri. Sep. 9 in HW box under stairs (1st floor Cory) Reading: O&W Ch 1, Ch2. Note: Π(t) = u(t + 1) u(t 1 ), and r(t) = tu(t) where u(t)

More information

Digital Signal Processing, Homework 1, Spring 2013, Prof. C.D. Chung

Digital Signal Processing, Homework 1, Spring 2013, Prof. C.D. Chung Digital Signal Processing, Homework, Spring 203, Prof. C.D. Chung. (0.5%) Page 99, Problem 2.2 (a) The impulse response h [n] of an LTI system is known to be zero, except in the interval N 0 n N. The input

More information

Discrete-Time Systems

Discrete-Time Systems FIR Filters With this chapter we turn to systems as opposed to signals. The systems discussed in this chapter are finite impulse response (FIR) digital filters. The term digital filter arises because these

More information

Z-Transform. The Z-transform is the Discrete-Time counterpart of the Laplace Transform. Laplace : G(s) = g(t)e st dt. Z : G(z) =

Z-Transform. The Z-transform is the Discrete-Time counterpart of the Laplace Transform. Laplace : G(s) = g(t)e st dt. Z : G(z) = Z-Transform The Z-transform is the Discrete-Time counterpart of the Laplace Transform. Laplace : G(s) = Z : G(z) = It is Used in Digital Signal Processing n= g(t)e st dt g[n]z n Used to Define Frequency

More information

Ch 2: Linear Time-Invariant System

Ch 2: Linear Time-Invariant System Ch 2: Linear Time-Invariant System A system is said to be Linear Time-Invariant (LTI) if it possesses the basic system properties of linearity and time-invariance. Consider a system with an output signal

More information

Digital Signal Processing BEC505 Chapter 1: Introduction What is a Signal? Signals: The Mathematical Way What is Signal processing?

Digital Signal Processing BEC505 Chapter 1: Introduction What is a Signal? Signals: The Mathematical Way What is Signal processing? Digital Signal Processing BEC505 Chapter 1: Introduction What is a Signal? Anything which carries information is a signal. e.g. human voice, chirping of birds, smoke signals, gestures (sign language),

More information

Lecture 18: Stability

Lecture 18: Stability Lecture 18: Stability ECE 401: Signal and Image Analysis University of Illinois 4/18/2017 1 Stability 2 Impulse Response 3 Z Transform Outline 1 Stability 2 Impulse Response 3 Z Transform BIBO Stability

More information

Digital Filter Structures. Basic IIR Digital Filter Structures. of an LTI digital filter is given by the convolution sum or, by the linear constant

Digital Filter Structures. Basic IIR Digital Filter Structures. of an LTI digital filter is given by the convolution sum or, by the linear constant Digital Filter Chapter 8 Digital Filter Block Diagram Representation Equivalent Basic FIR Digital Filter Basic IIR Digital Filter. Block Diagram Representation In the time domain, the input-output relations

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC2314- DIGITAL SIGNAL PROCESSING UNIT I INTRODUCTION PART A

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC2314- DIGITAL SIGNAL PROCESSING UNIT I INTRODUCTION PART A DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC2314- DIGITAL SIGNAL PROCESSING UNIT I INTRODUCTION PART A Classification of systems : Continuous and Discrete

More information

Linear Convolution Using FFT

Linear Convolution Using FFT Linear Convolution Using FFT Another useful property is that we can perform circular convolution and see how many points remain the same as those of linear convolution. When P < L and an L-point circular

More information

Discrete-Time Signals and Systems. The z-transform and Its Application. The Direct z-transform. Region of Convergence. Reference: Sections

Discrete-Time Signals and Systems. The z-transform and Its Application. The Direct z-transform. Region of Convergence. Reference: Sections Discrete-Time Signals and Systems The z-transform and Its Application Dr. Deepa Kundur University of Toronto Reference: Sections 3. - 3.4 of John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing:

More information

DSP Laboratory (EELE 4110) Lab#3 Discrete Time Signals

DSP Laboratory (EELE 4110) Lab#3 Discrete Time Signals Islamic University of Gaza Faculty of Engineering Electrical Engineering Department Spring- ENG.MOHAMMED ELASMER DSP Laboratory (EELE 4) Lab#3 Discrete Time Signals DISCRETE-TIME SIGNALS Signals are broadly

More information

ELEG 305: Digital Signal Processing

ELEG 305: Digital Signal Processing ELEG 305: Digital Signal Processing Lecture : Design of Digital IIR Filters (Part I) Kenneth E. Barner Department of Electrical and Computer Engineering University of Delaware Fall 008 K. E. Barner (Univ.

More information

Review of Fundamentals of Digital Signal Processing

Review of Fundamentals of Digital Signal Processing Chapter 2 Review of Fundamentals of Digital Signal Processing 2.1 (a) This system is not linear (the constant term makes it non linear) but is shift-invariant (b) This system is linear but not shift-invariant

More information

MAHALAKSHMI ENGINEERING COLLEGE-TRICHY

MAHALAKSHMI ENGINEERING COLLEGE-TRICHY DIGITAL SIGNAL PROCESSING UNIT-I PART-A DEPT. / SEM.: CSE/VII. Define a causal system? AUC APR 09 The causal system generates the output depending upon present and past inputs only. A causal system is

More information

Frequency-Domain C/S of LTI Systems

Frequency-Domain C/S of LTI Systems Frequency-Domain C/S of LTI Systems x(n) LTI y(n) LTI: Linear Time-Invariant system h(n), the impulse response of an LTI systems describes the time domain c/s. H(ω), the frequency response describes the

More information

Spring 2014 ECEN Signals and Systems

Spring 2014 ECEN Signals and Systems Spring 2014 ECEN 314-300 Signals and Systems Instructor: Jim Ji E-mail: jimji@tamu.edu Office Hours: Monday: 12-1:00 PM, Room 309E WEB WeChat ID: jimxiuquanji TA: Tao Yang, tao.yang.tamu@gmail.com TA Office

More information

Discrete-Time Fourier Transform (DTFT)

Discrete-Time Fourier Transform (DTFT) Discrete-Time Fourier Transform (DTFT) 1 Preliminaries Definition: The Discrete-Time Fourier Transform (DTFT) of a signal x[n] is defined to be X(e jω ) x[n]e jωn. (1) In other words, the DTFT of x[n]

More information

Rui Wang, Assistant professor Dept. of Information and Communication Tongji University.

Rui Wang, Assistant professor Dept. of Information and Communication Tongji University. Linear Time Invariant (LTI) Systems Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Outline Discrete-time LTI system: The convolution

More information

EC6303 SIGNALS AND SYSTEMS

EC6303 SIGNALS AND SYSTEMS EC 6303-SIGNALS & SYSTEMS UNIT I CLASSIFICATION OF SIGNALS AND SYSTEMS 1. Define Signal. Signal is a physical quantity that varies with respect to time, space or a n y other independent variable.(or) It

More information

EE 210. Signals and Systems Solutions of homework 2

EE 210. Signals and Systems Solutions of homework 2 EE 2. Signals and Systems Solutions of homework 2 Spring 2 Exercise Due Date Week of 22 nd Feb. Problems Q Compute and sketch the output y[n] of each discrete-time LTI system below with impulse response

More information

Implementation of Discrete-Time Systems

Implementation of Discrete-Time Systems EEE443 Digital Signal Processing Implementation of Discrete-Time Systems Dr. Shahrel A. Suandi PPKEE, Engineering Campus, USM Introduction A linear-time invariant system (LTI) is described by linear constant

More information

Classification of Discrete-Time Systems. System Properties. Terminology: Implication. Terminology: Equivalence

Classification of Discrete-Time Systems. System Properties. Terminology: Implication. Terminology: Equivalence Classification of Discrete-Time Systems Professor Deepa Kundur University of Toronto Why is this so important? mathematical techniques developed to analyze systems are often contingent upon the general

More information

NAME: 20 February 2014 EE301 Signals and Systems Exam 1 Cover Sheet

NAME: 20 February 2014 EE301 Signals and Systems Exam 1 Cover Sheet NAME: February 4 EE Signals and Systems Exam Cover Sheet Test Duration: 75 minutes. Coverage: Chaps., Open Book but Closed Notes. One 8.5 in. x in. crib sheet Calculators NOT allowed. This test contains

More information

Theory and Problems of Signals and Systems

Theory and Problems of Signals and Systems SCHAUM'S OUTLINES OF Theory and Problems of Signals and Systems HWEI P. HSU is Professor of Electrical Engineering at Fairleigh Dickinson University. He received his B.S. from National Taiwan University

More information

ECE503: Digital Signal Processing Lecture 6

ECE503: Digital Signal Processing Lecture 6 ECE503: Digital Signal Processing Lecture 6 D. Richard Brown III WPI 20-February-2012 WPI D. Richard Brown III 20-February-2012 1 / 28 Lecture 6 Topics 1. Filter structures overview 2. FIR filter structures

More information

SIGNALS AND SYSTEMS. Unit IV. Analysis of DT signals

SIGNALS AND SYSTEMS. Unit IV. Analysis of DT signals SIGNALS AND SYSTEMS Unit IV Analysis of DT signals Contents: 4.1 Discrete Time Fourier Transform 4.2 Discrete Fourier Transform 4.3 Z Transform 4.4 Properties of Z Transform 4.5 Relationship between Z

More information

Lecture 7 - IIR Filters

Lecture 7 - IIR Filters Lecture 7 - IIR Filters James Barnes (James.Barnes@colostate.edu) Spring 204 Colorado State University Dept of Electrical and Computer Engineering ECE423 / 2 Outline. IIR Filter Representations Difference

More information

y[n] = = h[k]x[n k] h[k]z n k k= 0 h[k]z k ) = H(z)z n h[k]z h (7.1)

y[n] = = h[k]x[n k] h[k]z n k k= 0 h[k]z k ) = H(z)z n h[k]z h (7.1) 7. The Z-transform 7. Definition of the Z-transform We saw earlier that complex exponential of the from {e jwn } is an eigen function of for a LTI System. We can generalize this for signals of the form

More information

6.02 Fall 2012 Lecture #11

6.02 Fall 2012 Lecture #11 6.02 Fall 2012 Lecture #11 Eye diagrams Alternative ways to look at convolution 6.02 Fall 2012 Lecture 11, Slide #1 Eye Diagrams 000 100 010 110 001 101 011 111 Eye diagrams make it easy to find These

More information

The Z transform (2) 1

The Z transform (2) 1 The Z transform (2) 1 Today Properties of the region of convergence (3.2) Read examples 3.7, 3.8 Announcements: ELEC 310 FINAL EXAM: April 14 2010, 14:00 pm ECS 123 Assignment 2 due tomorrow by 4:00 pm

More information

ECSE 512 Digital Signal Processing I Fall 2010 FINAL EXAMINATION

ECSE 512 Digital Signal Processing I Fall 2010 FINAL EXAMINATION FINAL EXAMINATION 9:00 am 12:00 pm, December 20, 2010 Duration: 180 minutes Examiner: Prof. M. Vu Assoc. Examiner: Prof. B. Champagne There are 6 questions for a total of 120 points. This is a closed book

More information

Z - Transform. It offers the techniques for digital filter design and frequency analysis of digital signals.

Z - Transform. It offers the techniques for digital filter design and frequency analysis of digital signals. Z - Transform The z-transform is a very important tool in describing and analyzing digital systems. It offers the techniques for digital filter design and frequency analysis of digital signals. Definition

More information

8. z-domain Analysis of Discrete-Time Signals and Systems

8. z-domain Analysis of Discrete-Time Signals and Systems 8. z-domain Analysis of Discrete-Time Signals and Systems 8.. Definition of z-transform (0.0-0.3) 8.2. Properties of z-transform (0.5) 8.3. System Function (0.7) 8.4. Classification of a Linear Time-Invariant

More information