Maxima and Minima of Functions

Size: px
Start display at page:

Download "Maxima and Minima of Functions"

Transcription

1 Maxima and Minima of Functions Outline of Section 4.2 of Sullivan and Miranda Calculus Sean Ellermeyer Kennesaw State University October 21, 2015 Sean Ellermeyer (Kennesaw State University) Maxima and Minima of Functions October 21, / 13

2 Absolute Extrema Let f be a function whose domain includes some interval I. If there exists some value c in I such that f (c) f (x) for all x in I, then we say that f (c) is the absolute maximum value of f on I and we say that f assumes its absolute maximum value at x = c. Likewise, if there exists some value c in I such that f (c) f (x) for all x in I, then we say that f (c) is the absolute minimum value of f on I and we say that f assumes its absolute minimum value at x = c. Sean Ellermeyer (Kennesaw State University) Maxima and Minima of Functions October 21, / 13

3 Example 1 1) Find the absolute maximum value of the function f (x) = 2x + 4 on the interval I = [ 2, 3]. Also find all points in I at which this absolute maximum value is assumed. 2) Find the absolute minimum value of the function f (x) = 2x + 4 on the interval I = [ 2, 3]. Also find all points in I at which this absolute minimum value is assumed. (Calculus is not needed in order to answer these questions.) Sean Ellermeyer (Kennesaw State University) Maxima and Minima of Functions October 21, / 13

4 Example 2 1) Find the absolute maximum value of the function f (x) = cos (x) on the interval I = [0, 4π]. Also find all points in I at which this absolute maximum value is assumed. 2) Find the absolute minimum value of the function f (x) = cos (x) on the interval I = [0, 4π]. Also find all points in I at which this absolute minimum value is assumed. (Calculus is not needed in order to answer these questions.) Sean Ellermeyer (Kennesaw State University) Maxima and Minima of Functions October 21, / 13

5 Local (Relative) Extrema Let f be a function whose domain includes some interval I. If there exists some open interval J such that J is contained in I and there exist some value c in J such that f (c) f (x) for all x in J, then we say that f (c) is a local (or relative) maximum value of f on I and we say that f assumes this local maximum value at x = c. Likewise, if there exists some open interval J such that J is contained in I and there exist some value c in J such that f (c) f (x) for all x in J, then we say that f (c) is a local (or relative) minimum value of f on I and we say that f assumes this local minimum value at x = c. Sean Ellermeyer (Kennesaw State University) Maxima and Minima of Functions October 21, / 13

6 Example 3 1) Find any local maximum or minimum values of f (x) = 2x + 4 (and where these values are assumed) on the interval I = [ 2, 3]. 2) Find any local maximum or minimum values of f (x) = cos (x) (and where these values are assumed) on the interval I = [0, 2π] Sean Ellermeyer (Kennesaw State University) Maxima and Minima of Functions October 21, / 13

7 The Extreme Value Theorem If the function f is continuous on the closed interval [a, b], then f has both an absolute maximum and an absolute minimum value on [a, b]. Sean Ellermeyer (Kennesaw State University) Maxima and Minima of Functions October 21, / 13

8 Condition That Must be Satisfied for Local Extrema If the function f has a local extremum (maximum or minimum) that is assumed at the point x = c, then either f (c) = 0 or f is not differentiable at c. A number c at which either f (c) = 0 or f is not differentiable at c is called a critical number (or critical point) of f. Thus local extrema can only occur at critical points. Sean Ellermeyer (Kennesaw State University) Maxima and Minima of Functions October 21, / 13

9 Example 4 1) Find all of the critical points of the function f (x) = 2x ) Find all of the critical points of the function f (x) = x 2. 3) Find all of the critical points of the function f (x) = cos (x). 4) Find all of the critical points of the function f (x) = x 2 2 x. Sean Ellermeyer (Kennesaw State University) Maxima and Minima of Functions October 21, / 13

10 Steps for Finding the Absolute Extrema of a Function on a Given Interval Suppose that we want to find the absolute extreme values of some function f on some given closed interval [a, b]. Step 1) Locate all critical numbers of f that lie in the open interval (a, b). Step 2) Evaluate f at each of the critical numbers found in Step 1 and also evaluate f at the endpoints a and b. Step 3) The largest of the values calculated in Step 2 is the absolute maximum value of f on [a, b] and the smallest is the absolute minimum value. Sean Ellermeyer (Kennesaw State University) Maxima and Minima of Functions October 21, / 13

11 Example 5 1) For the function f (x) = 2x + 4 on the interval [ 2, 3], find the absolute extreme values of f and all points at which these extrema are assumed. 2) For the function f (x) = x 2 on the interval [ 2, 3], find the absolute extreme values of f and all points at which these extrema are assumed. 3) For the function f (x) = cos (x) on the interval [0, 4π], find the absolute extreme values of f and all points at which these extrema are assumed. 4) For the function f (x) = x 2 2 x on the interval [ 2, 2], find the absolute extreme values of f and all points at which these extrema are assumed. Sean Ellermeyer (Kennesaw State University) Maxima and Minima of Functions October 21, / 13

12 Example 6: A Maximization Problem Among all possible rectangles that have perimeter 10 feet, find the one whose area is maximum. Sean Ellermeyer (Kennesaw State University) Maxima and Minima of Functions October 21, / 13

13 Homework In Section 4.2, do problems 1 12 (all), (odd), (odd), 71 and 72. Sean Ellermeyer (Kennesaw State University) Maxima and Minima of Functions October 21, / 13

MA 123 (Calculus I) Lecture 13: October 19, 2017 Section A2. Professor Jennifer Balakrishnan,

MA 123 (Calculus I) Lecture 13: October 19, 2017 Section A2. Professor Jennifer Balakrishnan, Professor Jennifer Balakrishnan, jbala@bu.edu What is on today 1 Maxima and minima 1 1.1 Applications.................................... 1 2 What derivatives tell us 2 2.1 Increasing and decreasing functions.......................

More information

Extreme values: Maxima and minima. October 16, / 12

Extreme values: Maxima and minima. October 16, / 12 Extreme values: Maxima and minima October 16, 2015 1 / 12 Motivation for Maxima and Minima Imagine you have some model which predicts profits / cost of doing something /.... Then you probably want to find

More information

4.1 - Maximum and Minimum Values

4.1 - Maximum and Minimum Values 4.1 - Maximum and Minimum Values Calculus I, Section 011 Zachary Cline Temple University October 27, 2017 Maximum and Minimum Values absolute max. of 5 occurs at 3 absolute min. of 2 occurs at 6 Maximum

More information

Math Maximum and Minimum Values, I

Math Maximum and Minimum Values, I Math 213 - Maximum and Minimum Values, I Peter A. Perry University of Kentucky October 8, 218 Homework Re-read section 14.7, pp. 959 965; read carefully pp. 965 967 Begin homework on section 14.7, problems

More information

= c, we say that f ( c ) is a local

= c, we say that f ( c ) is a local Section 3.4 Extreme Values Local Extreme Values Suppose that f is a function defined on open interval I and c is an interior point of I. The function f has a local minimum at x= c if f ( c) f ( x) for

More information

Bob Brown Math 251 Calculus 1 Chapter 4, Section 1 Completed 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 4, Section 1 Completed 1 CCBC Dundalk Bob Brown Math 251 Calculus 1 Chapter 4, Section 1 Completed 1 Absolute (or Global) Minima and Maxima Def.: Let x = c be a number in the domain of a function f. f has an absolute (or, global ) minimum

More information

4.3 How derivatives affect the shape of a graph. The first derivative test and the second derivative test.

4.3 How derivatives affect the shape of a graph. The first derivative test and the second derivative test. Chapter 4: Applications of Differentiation In this chapter we will cover: 41 Maximum and minimum values The critical points method for finding extrema 43 How derivatives affect the shape of a graph The

More information

Section 3.3 Maximum and Minimum Values

Section 3.3 Maximum and Minimum Values Section 3.3 Maximum and Minimum Values Definition For a function f defined on a set S of real numbers and a number c in S. A) f(c) is called the absolute maximum of f on S if f(c) f(x) for all x in S.

More information

Section 5-1 First Derivatives and Graphs

Section 5-1 First Derivatives and Graphs Name Date Class Section 5-1 First Derivatives and Graphs Goal: To use the first derivative to analyze graphs Theorem 1: Increasing and Decreasing Functions For the interval (a,b), if f '( x ) > 0, then

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables Extreme Values Philippe B Laval KSU April 9, 2012 Philippe B Laval (KSU) Functions of Several Variables April 9, 2012 1 / 13 Introduction In Calculus I (differential calculus

More information

( ) = 0. ( ) does not exist. 4.1 Maximum and Minimum Values Assigned videos: , , , DEFINITION Critical number

( ) = 0. ( ) does not exist. 4.1 Maximum and Minimum Values Assigned videos: , , , DEFINITION Critical number 4.1 Maximum and Minimum Values Assigned videos: 4.1.001, 4.1.005, 4.1.035, 4.1.039 DEFINITION Critical number A critical number of a function f is a number c in the domain of f such that f c or f c ( )

More information

1 Lecture 25: Extreme values

1 Lecture 25: Extreme values 1 Lecture 25: Extreme values 1.1 Outline Absolute maximum and minimum. Existence on closed, bounded intervals. Local extrema, critical points, Fermat s theorem Extreme values on a closed interval Rolle

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables Extreme Values Philippe B. Laval KSU Today Philippe B. Laval (KSU) Extreme Values Today 1 / 18 Introduction In Calculus I (differential calculus for functions of one variable),

More information

4 3A : Increasing and Decreasing Functions and the First Derivative. Increasing and Decreasing. then

4 3A : Increasing and Decreasing Functions and the First Derivative. Increasing and Decreasing. then 4 3A : Increasing and Decreasing Functions and the First Derivative Increasing and Decreasing! If the following conditions both occur! 1. f (x) is a continuous function on the closed interval [ a,b] and

More information

3.2. Polynomial Functions and Their Graphs. Copyright Cengage Learning. All rights reserved.

3.2. Polynomial Functions and Their Graphs. Copyright Cengage Learning. All rights reserved. 3.2 Polynomial Functions and Their Graphs Copyright Cengage Learning. All rights reserved. Objectives Graphing Basic Polynomial Functions End Behavior and the Leading Term Using Zeros to Graph Polynomials

More information

Math 115 Practice for Exam 2

Math 115 Practice for Exam 2 Math 115 Practice for Exam Generated October 30, 017 Name: SOLUTIONS Instructor: Section Number: 1. This exam has 5 questions. Note that the problems are not of equal difficulty, so you may want to skip

More information

Calculus I Homework: Optimization Problems Page 1

Calculus I Homework: Optimization Problems Page 1 Calculus I Homework: Optimization Problems Page 1 Questions Example A farmer wants to fence an area of 1.5 million square feet in a rectangle field and then divide it in half with a fence parallel to one

More information

Calculus. Applications of Differentiations (II)

Calculus. Applications of Differentiations (II) Calculus Applications of Differentiations (II) Outline 1 Maximum and Minimum Values Absolute Extremum Local Extremum and Critical Number 2 Increasing and Decreasing First Derivative Test Outline 1 Maximum

More information

MATH 151, FALL 2017 COMMON EXAM III - VERSION B

MATH 151, FALL 2017 COMMON EXAM III - VERSION B MATH 151, FALL 2017 COMMON EXAM III - VERSION B LAST NAME(print): FIRST NAME(print): INSTRUCTOR: SECTION NUMBER: DIRECTIONS: 1. The use of a calculator, laptop or computer is prohibited. 2. TURN OFF cell

More information

Section 3.2 Polynomial Functions and Their Graphs

Section 3.2 Polynomial Functions and Their Graphs Section 3.2 Polynomial Functions and Their Graphs EXAMPLES: P (x) = 3, Q(x) = 4x 7, R(x) = x 2 + x, S(x) = 2x 3 6x 2 10 QUESTION: Which of the following are polynomial functions? (a) f(x) = x 3 + 2x +

More information

Math 2204 Multivariable Calculus Chapter 14: Partial Derivatives Sec. 14.7: Maximum and Minimum Values

Math 2204 Multivariable Calculus Chapter 14: Partial Derivatives Sec. 14.7: Maximum and Minimum Values Math 2204 Multivariable Calculus Chapter 14: Partial Derivatives Sec. 14.7: Maximum and Minimum Values I. Review from 1225 A. Definitions 1. Local Extreme Values (Relative) a. A function f has a local

More information

Extrema and the First-Derivative Test

Extrema and the First-Derivative Test Extrema and the First-Derivative Test MATH 151 Calculus for Management J. Robert Buchanan Department of Mathematics 2018 Why Maximize or Minimize? In almost all quantitative fields there are objective

More information

LESSON 25: LAGRANGE MULTIPLIERS OCTOBER 30, 2017

LESSON 25: LAGRANGE MULTIPLIERS OCTOBER 30, 2017 LESSON 5: LAGRANGE MULTIPLIERS OCTOBER 30, 017 Lagrange multipliers is another method of finding minima and maxima of functions of more than one variable. In fact, many of the problems from the last homework

More information

Extrema of Functions of Several Variables

Extrema of Functions of Several Variables Extrema of Functions of Several Variables MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Background (1 of 3) In single-variable calculus there are three important results

More information

Applications of Derivatives

Applications of Derivatives ApplicationsDerivativesII.nb 1 Applications of Derivatives Now that we have covered the basic concepts and mechanics of derivatives it's time to look at some applications. We will start with a summary

More information

Section 14.8 Maxima & minima of functions of two variables. Learning outcomes. After completing this section, you will inshaallah be able to

Section 14.8 Maxima & minima of functions of two variables. Learning outcomes. After completing this section, you will inshaallah be able to Section 14.8 Maxima & minima of functions of two variables 14.8 1 Learning outcomes After completing this section, you will inshaallah be able to 1. explain what is meant by relative maxima or relative

More information

1-4 Extrema and Average Rates of Change

1-4 Extrema and Average Rates of Change Use the graph of each function to estimate intervals to the nearest 0.5 unit on which the function is increasing, decreasing, or constant. Support the answer numerically. 6. 3. When the graph is viewed

More information

Absolute Extrema. Joseph Lee. Metropolitan Community College

Absolute Extrema. Joseph Lee. Metropolitan Community College Metropolitan Community College Let f be a function defined over some interval I. An absolute minimum occurs at c if f (c) f (x) for all x in I. An absolute maximum occurs at c if f (c) f (x) for all x

More information

Solving related rates problems

Solving related rates problems Solving related rates problems 1 Draw a diagram 2 Assign symbols to all quantities that are functions of time 3 Express given information and the required rate in terms of derivatives 4 Write down a relation

More information

Sections Practice AP Calculus AB Name

Sections Practice AP Calculus AB Name Sections 4.1-4.5 Practice AP Calculus AB Name Be sure to show work, giving written explanations when requested. Answers should be written exactly or rounded to the nearest thousandth. When the calculator

More information

Test 3 Review. fx ( ) ( x 2) 4/5 at the indicated extremum. y x 2 3x 2. Name: Class: Date: Short Answer

Test 3 Review. fx ( ) ( x 2) 4/5 at the indicated extremum. y x 2 3x 2. Name: Class: Date: Short Answer Name: Class: Date: ID: A Test 3 Review Short Answer 1. Find the value of the derivative (if it exists) of fx ( ) ( x 2) 4/5 at the indicated extremum. 7. A rectangle is bounded by the x- and y-axes and

More information

Math Section TTH 5:30-7:00pm SR 116. James West 620 PGH

Math Section TTH 5:30-7:00pm SR 116. James West 620 PGH Math 1431 Section 15241 TTH 5:30-7:00pm SR 116 James West jdwest@math.uh.edu 620 PGH Office Hours: 2:30 4:30pm TTH in the CASA Tutoring Center or by appointment Class webpage: http://math.uh.edu/~jdwest/teaching/fa14/1431/calendar.html

More information

Warm-Up. Given f ( x) = x 2 + 3x 5, find the function value when x = 4. Solve for x using two methods: 3x 2 + 7x 20 = 0

Warm-Up. Given f ( x) = x 2 + 3x 5, find the function value when x = 4. Solve for x using two methods: 3x 2 + 7x 20 = 0 Warm-Up y CST/CAHSEE: Algebra 2 24.0 Review: Algebra 2 8.0 Given f ( x) = x 2 + 3x 5, find the function value when x = 4. Solve for x using two methods: 3x 2 + 7x 20 = 0 Which method do you find easier?

More information

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a)

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a) MATH 2250 Calculus I Eric Perkerson Test 3 Review Sections Covered: 3.11, 4.1 4.6. Topics Covered: Linearization, Extreme Values, The Mean Value Theorem, Consequences of the Mean Value Theorem, Concavity

More information

Kevin James. MTHSC 102 Section 4.3 Absolute Extreme Points

Kevin James. MTHSC 102 Section 4.3 Absolute Extreme Points MTHSC 102 Section 4.3 Absolute Extreme Points Definition (Relative Extreme Points and Relative Extreme Values) Suppose that f(x) is a function defined on an interval I (possibly I = (, ). 1 We say that

More information

MA Lesson 29 Notes

MA Lesson 29 Notes MA 15910 Lesson 9 Notes Absolute Maximums or Absolute Minimums (Absolute Extrema) in a Closed Interval: Let f be a continuous function on a closed interval [a, b].. Let c be a number in that interval.

More information

Solutions to Section 2.1 Homework Problems S. F. Ellermeyer

Solutions to Section 2.1 Homework Problems S. F. Ellermeyer Solutions to Section 21 Homework Problems S F Ellermeyer 1 [13] 9 = f13; 22; 31; 40; : : :g [ f4; 5; 14; : : :g [3] 10 = f3; 13; 23; 33; : : :g [ f 7; 17; 27; : : :g [4] 11 = f4; 15; 26; : : :g [ f 7;

More information

ExtremeValuesandShapeofCurves

ExtremeValuesandShapeofCurves ExtremeValuesandShapeofCurves Philippe B. Laval Kennesaw State University March 23, 2005 Abstract This handout is a summary of the material dealing with finding extreme values and determining the shape

More information

AP CALCULUS (AB) Outline Chapter 4 Overview. 2) Recovering a function from its derivatives and a single point;

AP CALCULUS (AB) Outline Chapter 4 Overview. 2) Recovering a function from its derivatives and a single point; AP CALCULUS (AB) Outline Chapter 4 Overview NAME Date Objectives of Chapter 4 1) Using the derivative to determine extreme values of a function and the general shape of a function s graph (including where

More information

Section 1.1: THE DISTANCE AND MIDPOINT FORMULAS; GRAPHING UTILITIES; INTRODUCTION TO GRAPHING EQUATIONS

Section 1.1: THE DISTANCE AND MIDPOINT FORMULAS; GRAPHING UTILITIES; INTRODUCTION TO GRAPHING EQUATIONS PRECALCULUS I: COLLEGE ALGEBRA GUIDED NOTEBOOK FOR USE WITH SULLIVAN AND SULLIVAN PRECALCULUS ENHANCED WITH GRAPHING UTILITIES, BY SHANNON MYERS (FORMERLY GRACEY) Section 1.1: THE DISTANCE AND MIDPOINT

More information

AB CALCULUS SEMESTER A REVIEW Show all work on separate paper. (b) lim. lim. (f) x a. for each of the following functions: (b) y = 3x 4 x + 2

AB CALCULUS SEMESTER A REVIEW Show all work on separate paper. (b) lim. lim. (f) x a. for each of the following functions: (b) y = 3x 4 x + 2 AB CALCULUS Page 1 of 6 NAME DATE 1. Evaluate each it: AB CALCULUS Show all work on separate paper. x 3 x 9 x 5x + 6 x 0 5x 3sin x x 7 x 3 x 3 5x (d) 5x 3 x +1 x x 4 (e) x x 9 3x 4 6x (f) h 0 sin( π 6

More information

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved.

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved. 2 Polynomial and Rational Functions Copyright Cengage Learning. All rights reserved. 2.2 Polynomial Functions of Higher Degree Copyright Cengage Learning. All rights reserved. What You Should Learn Use

More information

LESSON 23: EXTREMA OF FUNCTIONS OF 2 VARIABLES OCTOBER 25, 2017

LESSON 23: EXTREMA OF FUNCTIONS OF 2 VARIABLES OCTOBER 25, 2017 LESSON : EXTREMA OF FUNCTIONS OF VARIABLES OCTOBER 5, 017 Just like with functions of a single variable, we want to find the minima (plural of minimum) and maxima (plural of maximum) of functions of several

More information

Polynomial functions right- and left-hand behavior (end behavior):

Polynomial functions right- and left-hand behavior (end behavior): Lesson 2.2 Polynomial Functions For each function: a.) Graph the function on your calculator Find an appropriate window. Draw a sketch of the graph on your paper and indicate your window. b.) Identify

More information

Differentiation - Important Theorems

Differentiation - Important Theorems Differentiation - Important Theorems Philippe B Laval KSU Spring 2012 Philippe B Laval (KSU) Differentiation - Important Theorems Spring 2012 1 / 10 Introduction We study several important theorems related

More information

11.1 Absolute Maximum/Minimum: Definition:

11.1 Absolute Maximum/Minimum: Definition: Module 4 : Local / Global Maximum / Minimum and Curve Sketching Lecture 11 : Absolute Maximum / Minimum [Section 111] Objectives In this section you will learn the following : How to find points of absolute

More information

Increasing or Decreasing Nature of a Function

Increasing or Decreasing Nature of a Function Öğr. Gör. Volkan ÖĞER FBA 1021 Calculus 1/ 46 Increasing or Decreasing Nature of a Function Examining the graphical behavior of functions is a basic part of mathematics and has applications to many areas

More information

Math Essentials of Calculus by James Stewart Prepared by Jason Gaddis

Math Essentials of Calculus by James Stewart Prepared by Jason Gaddis Math 231 - Essentials of Calculus by James Stewart Prepared by Jason Gaddis Chapter 3 - Applications of Differentiation 3.1 - Maximum and Minimum Values Note We continue our study of functions using derivatives.

More information

A.P. Calculus Holiday Packet

A.P. Calculus Holiday Packet A.P. Calculus Holiday Packet Since this is a take-home, I cannot stop you from using calculators but you would be wise to use them sparingly. When you are asked questions about graphs of functions, do

More information

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) Math 3435 Homework Set 4 Solutions 10 Points. 1. (2 pts) First we need the gradient

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) Math 3435 Homework Set 4 Solutions 10 Points. 1. (2 pts) First we need the gradient Math Homework Set Solutions 10 Points 1. ( pts) First we need the gradient 6 F ( x,, z) = 6 + z + x x z 6 F = xz,, x + z + z F, 1, = 16,1, r t =, 1, + t 16,1, = 16 t, 1 + t, t 16 x + 1 + 1 z = 0 16x +

More information

Higher-Degree Polynomial Functions. Polynomials. Polynomials

Higher-Degree Polynomial Functions. Polynomials. Polynomials Higher-Degree Polynomial Functions 1 Polynomials A polynomial is an expression that is constructed from one or more variables and constants, using only the operations of addition, subtraction, multiplication,

More information

Math 1314 Lesson 24 Maxima and Minima of Functions of Several Variables

Math 1314 Lesson 24 Maxima and Minima of Functions of Several Variables Math 1314 Lesson 24 Maxima and Minima of Functions of Several Variables We learned to find the maxima and minima of a function of a single variable earlier in the course We had a second derivative test

More information

Today s Agenda. Upcoming Homework Section 5.1: Areas and Distances Section 5.2: The Definite Integral

Today s Agenda. Upcoming Homework Section 5.1: Areas and Distances Section 5.2: The Definite Integral Today s Agenda Upcoming Homework Section 5.1: Areas and Distances Section 5.2: The Definite Integral Lindsey K. Gamard, ASU SoMSS MAT 265: Calculus for Engineers I Wed., 18 November 2015 1 / 13 Upcoming

More information

Section 1.2 DOMAIN, RANGE, INTERCEPTS, SYMMETRY, EVEN/ODD

Section 1.2 DOMAIN, RANGE, INTERCEPTS, SYMMETRY, EVEN/ODD Section 1.2 DOMAIN, RANGE, INTERCEPTS, SYMMETRY, EVEN/ODD zeros roots line symmetry point symmetry even function odd function Estimate Function Values A. ADVERTISING The function f (x) = 5x 2 + 50x approximates

More information

Final Exam Review Packet

Final Exam Review Packet 1 Exam 1 Material Sections A.1, A.2 and A.6 were review material. There will not be specific questions focused on this material but you should know how to: Simplify functions with exponents. Factor quadratics

More information

Final Exam Review Packet

Final Exam Review Packet 1 Exam 1 Material Sections A.1, A.2 and A.6 were review material. There will not be specific questions focused on this material but you should know how to: Simplify functions with exponents. Factor quadratics

More information

Math 180, Exam 2, Practice Fall 2009 Problem 1 Solution. f(x) = arcsin(2x + 1) = sin 1 (3x + 1), lnx

Math 180, Exam 2, Practice Fall 2009 Problem 1 Solution. f(x) = arcsin(2x + 1) = sin 1 (3x + 1), lnx Math 80, Exam, Practice Fall 009 Problem Solution. Differentiate the functions: (do not simplify) f(x) = x ln(x + ), f(x) = xe x f(x) = arcsin(x + ) = sin (3x + ), f(x) = e3x lnx Solution: For the first

More information

Section 2.3 Properties of Functions

Section 2.3 Properties of Functions 22 Section 2.3 Properties of Functions In this section, we will explore different properties of functions that will allow us to obtain the graph of the function more quickly. Objective #1 Determining Even

More information

Section 4.1 Relative Extrema 3 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 4.1 Relative Extrema 3 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 4.1 Relative Extrema 3 Lectures College of Science MATHS 101: Calculus I (University of Bahrain) Extrema 1 / 16 Application of Differentiation One of the most important applications of differential

More information

Review Guideline for Final

Review Guideline for Final Review Guideline for Final Here is the outline of the required skills for the final exam. Please read it carefully and find some corresponding homework problems in the corresponding sections to practice.

More information

HOMEWORK 7 SOLUTIONS

HOMEWORK 7 SOLUTIONS HOMEWORK 7 SOLUTIONS MA11: ADVANCED CALCULUS, HILARY 17 (1) Using the method of Lagrange multipliers, find the largest and smallest values of the function f(x, y) xy on the ellipse x + y 1. Solution: The

More information

14 Increasing and decreasing functions

14 Increasing and decreasing functions 14 Increasing and decreasing functions 14.1 Sketching derivatives READING Read Section 3.2 of Rogawski Reading Recall, f (a) is the gradient of the tangent line of f(x) at x = a. We can use this fact to

More information

Maxima and Minima. Marius Ionescu. November 5, Marius Ionescu () Maxima and Minima November 5, / 7

Maxima and Minima. Marius Ionescu. November 5, Marius Ionescu () Maxima and Minima November 5, / 7 Maxima and Minima Marius Ionescu November 5, 2012 Marius Ionescu () Maxima and Minima November 5, 2012 1 / 7 Second Derivative Test Fact Suppose the second partial derivatives of f are continuous on a

More information

Calculus 221 worksheet

Calculus 221 worksheet Calculus 221 worksheet Graphing A function has a global maximum at some a in its domain if f(x) f(a) for all other x in the domain of f. Global maxima are sometimes also called absolute maxima. A function

More information

Unit 3 Applications of Differentiation Lesson 4: The First Derivative Lesson 5: Concavity and The Second Derivative

Unit 3 Applications of Differentiation Lesson 4: The First Derivative Lesson 5: Concavity and The Second Derivative Warmup 1) The lengths of the sides of a square are decreasing at a constant rate of 4 ft./min. In terms of the perimeter, P, what is the rate of change of the area of the square in square feet per minute?

More information

Unit #5 Applications of the Derivative Part II Homework Packet

Unit #5 Applications of the Derivative Part II Homework Packet Unit #5 Applications of the Derivative Part II Homework Packet 1. For which of the following functions is the Extreme Value Theorem NOT APPLICABLE on the interval [a, b]? Give a reason for your answer.

More information

39.1 Absolute maxima/minima

39.1 Absolute maxima/minima Module 13 : Maxima, Minima Saddle Points, Constrained maxima minima Lecture 39 : Absolute maxima / minima [Section 39.1] Objectives In this section you will learn the following : The notion of absolute

More information

Announcements. Topics: Homework: - sections , 6.1 (extreme values) * Read these sections and study solved examples in your textbook!

Announcements. Topics: Homework: - sections , 6.1 (extreme values) * Read these sections and study solved examples in your textbook! Announcements Topics: - sections 5.2 5.7, 6.1 (extreme values) * Read these sections and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on practice problems

More information

4.1 Analysis of functions I: Increase, decrease and concavity

4.1 Analysis of functions I: Increase, decrease and concavity 4.1 Analysis of functions I: Increase, decrease and concavity Definition Let f be defined on an interval and let x 1 and x 2 denote points in that interval. a) f is said to be increasing on the interval

More information

NC Math 3 Modelling with Polynomials

NC Math 3 Modelling with Polynomials NC Math 3 Modelling with Polynomials Introduction to Polynomials; Polynomial Graphs and Key Features Polynomial Vocabulary Review Expression: Equation: Terms: o Monomial, Binomial, Trinomial, Polynomial

More information

f (x) = 2x x = 2x2 + 4x 6 x 0 = 2x 2 + 4x 6 = 2(x + 3)(x 1) x = 3 or x = 1.

f (x) = 2x x = 2x2 + 4x 6 x 0 = 2x 2 + 4x 6 = 2(x + 3)(x 1) x = 3 or x = 1. F16 MATH 15 Test November, 016 NAME: SOLUTIONS CRN: Use only methods from class. You must show work to receive credit. When using a theorem given in class, cite the theorem. Reminder: Calculators are not

More information

(a) The best linear approximation of f at x = 2 is given by the formula. L(x) = f(2) + f (2)(x 2). f(2) = ln(2/2) = ln(1) = 0, f (2) = 1 2.

(a) The best linear approximation of f at x = 2 is given by the formula. L(x) = f(2) + f (2)(x 2). f(2) = ln(2/2) = ln(1) = 0, f (2) = 1 2. Math 180 Written Homework Assignment #8 Due Tuesday, November 11th at the beginning of your discussion class. Directions. You are welcome to work on the following problems with other MATH 180 students,

More information

Section Maximum and Minimum Values

Section Maximum and Minimum Values Section 4.2 - Maximum and Minimum Values Definition The number f(c) is a local maximum value of f if when x is near c. local minimum value of f if when x is near c. Example 1: For what values of x does

More information

Student Study Session Topic: Interpreting Graphs

Student Study Session Topic: Interpreting Graphs Student Study Session Topic: Interpreting Graphs Starting with the graph of a function or its derivative, you may be asked all kinds of questions without having (or needing) and equation to work with.

More information

MATH2070/2970 Optimisation

MATH2070/2970 Optimisation MATH2070/2970 Optimisation Introduction Semester 2, 2012 Lecturer: I.W. Guo Lecture slides courtesy of J.R. Wishart Course Information Lecture Information Optimisation: Weeks 1 7 Contact Information Email:

More information

Calculus The Mean Value Theorem October 22, 2018

Calculus The Mean Value Theorem October 22, 2018 Calculus The Mean Value Theorem October, 018 Definitions Let c be a number in the domain D of a function f. Then f(c) is the (a) absolute maximum value of f on D, i.e. f(c) = max, if f(c) for all x in

More information

Name: Date: Block: Quarter 2 Summative Assessment Revision #1

Name: Date: Block: Quarter 2 Summative Assessment Revision #1 Name: Date: Block: Multiple Choice Non-Calculator Quarter Summative Assessment Revision #1 1. The graph of y = x x has a relative maximum at (a) (0,0) only (b) (1,) only (c) (,4) only (d) (4, 16) only

More information

4.1 & 4.2 Student Notes Using the First and Second Derivatives. for all x in D, where D is the domain of f. The number f()

4.1 & 4.2 Student Notes Using the First and Second Derivatives. for all x in D, where D is the domain of f. The number f() 4.1 & 4. Student Notes Using the First and Second Derivatives Definition A function f has an absolute maximum (or global maximum) at c if f ( c) f ( x) for all x in D, where D is the domain of f. The number

More information

It has neither a local maximum value nor an absolute maximum value

It has neither a local maximum value nor an absolute maximum value 1 Here, we learn how derivatives affect the shape of a graph of a function and, in particular, how they help us locate maximum and minimum values of functions. Some of the most important applications of

More information

MAT 145: Test #3 (50 points)

MAT 145: Test #3 (50 points) MAT 145: Test #3 (50 points) Part 2: Calculator OK! Name Calculator Used Score 21. For f (x) = 8x 3 +81x 2 42x 8, defined for all real numbers, use calculus techniques to determine all intervals on which

More information

Final Exam Study Guide

Final Exam Study Guide Final Exam Study Guide Final Exam Coverage: Sections 10.1-10.2, 10.4-10.5, 10.7, 11.2-11.4, 12.1-12.6, 13.1-13.2, 13.4-13.5, and 14.1 Sections/topics NOT on the exam: Sections 10.3 (Continuity, it definition

More information

Applied Calculus I. Review Solutions. Qaisar Latif. October 25, 2016

Applied Calculus I. Review Solutions. Qaisar Latif. October 25, 2016 Applied Calculus I Review Solutions Qaisar Latif October 25, 2016 2 Homework 1 Problem 1. The number of people living with HIV infections increased worldwide approximately exponentially from 2.5 million

More information

3.4 Using the First Derivative to Test Critical Numbers (4.3)

3.4 Using the First Derivative to Test Critical Numbers (4.3) 118 CHAPTER 3. APPLICATIONS OF THE DERIVATIVE 3.4 Using the First Derivative to Test Critical Numbers (4.3) 3.4.1 Theory: The rst derivative is a very important tool when studying a function. It is important

More information

A.P. Calculus BC Test Three Section Two Free-Response No Calculators Time 45 minutes Number of Questions 3

A.P. Calculus BC Test Three Section Two Free-Response No Calculators Time 45 minutes Number of Questions 3 A.P. Calculus BC Test Three Section Two Free-Response No Calculators Time 45 minutes Number of Questions 3 Each of the three questions is worth 9 points. The maximum possible points earned on this section

More information

Week 12: Optimisation and Course Review.

Week 12: Optimisation and Course Review. Week 12: Optimisation and Course Review. MA161/MA1161: Semester 1 Calculus. Prof. Götz Pfeiffer School of Mathematics, Statistics and Applied Mathematics NUI Galway November 21-22, 2016 Assignments. Problem

More information

UNIVERSITY OF REGINA Department of Mathematics and Statistics. Calculus I Mathematics 110. Final Exam, Winter 2013 (April 25 th )

UNIVERSITY OF REGINA Department of Mathematics and Statistics. Calculus I Mathematics 110. Final Exam, Winter 2013 (April 25 th ) UNIVERSITY OF REGINA Department of Mathematics and Statistics Calculus I Mathematics 110 Final Exam, Winter 2013 (April 25 th ) Time: 3 hours Pages: 11 Full Name: Student Number: Instructor: (check one)

More information

What do derivatives tell us about functions?

What do derivatives tell us about functions? What do derivatives tell us about functions? Math 102 Section 106 Cole Zmurchok October 3, 2016 Announcements New & Improved Anonymous Feedback Form: https://goo.gl/forms/jj3xwycafxgfzerr2 (Link on Section

More information

Applications of Derivatives

Applications of Derivatives Applications of Derivatives What clues can a derivative give us about a graph? Tell me your ideas. How about the second derivative? Global Extremes (or Absolute Extrema plural of extremum) Allow me to

More information

Precalculus Chapter 7 Page 1

Precalculus Chapter 7 Page 1 Section 7.1 Polynomial Functions 1. To evaluate polynomial functions.. To identify general shapes of the graphs of polynomial functions. I. Terminology A. Polynomials in one variable B. Examples: Determine

More information

Math 210 Midterm #2 Review

Math 210 Midterm #2 Review Math 210 Mierm #2 Review Related Rates In general, the approach to a related rates problem is to first determine which quantities in the problem you care about or have relevant information about. Then

More information

Chapter 3: The Derivative in Graphing and Applications

Chapter 3: The Derivative in Graphing and Applications Chapter 3: The Derivative in Graphing and Applications Summary: The main purpose of this chapter is to use the derivative as a tool to assist in the graphing of functions and for solving optimization problems.

More information

Absolute Extrema and Constrained Optimization

Absolute Extrema and Constrained Optimization Calculus 1 Lia Vas Absolute Extrema and Constrained Optimization Recall that a function f (x) is said to have a relative maximum at x = c if f (c) f (x) for all values of x in some open interval containing

More information

Math 121 Winter 2010 Review Sheet

Math 121 Winter 2010 Review Sheet Math 121 Winter 2010 Review Sheet March 14, 2010 This review sheet contains a number of problems covering the material that we went over after the third midterm exam. These problems (in conjunction with

More information

Review of Optimization Methods

Review of Optimization Methods Review of Optimization Methods Prof. Manuela Pedio 20550 Quantitative Methods for Finance August 2018 Outline of the Course Lectures 1 and 2 (3 hours, in class): Linear and non-linear functions on Limits,

More information

Chapter 3: Derivatives and Graphing

Chapter 3: Derivatives and Graphing Chapter 3: Derivatives and Graphing 127 Chapter 3 Overview: Derivatives and Graphs There are two main contexts for derivatives: graphing and motion. In this chapter, we will consider the graphical applications

More information

Solutions to Section 2.9 Homework Problems Problems 1 5, 7, 9, 10 15, (odd), and 38. S. F. Ellermeyer June 21, 2002

Solutions to Section 2.9 Homework Problems Problems 1 5, 7, 9, 10 15, (odd), and 38. S. F. Ellermeyer June 21, 2002 Solutions to Section 9 Homework Problems Problems 9 (odd) and 8 S F Ellermeyer June The pictured set contains the vector u but not the vector u so this set is not a subspace of The pictured set contains

More information

1.2. Functions and Their Properties. Copyright 2011 Pearson, Inc.

1.2. Functions and Their Properties. Copyright 2011 Pearson, Inc. 1.2 Functions and Their Properties Copyright 2011 Pearson, Inc. What you ll learn about Function Definition and Notation Domain and Range Continuity Increasing and Decreasing Functions Boundedness Local

More information

4.3 How derivatives affect the shape of a graph. The first derivative test and the second derivative test.

4.3 How derivatives affect the shape of a graph. The first derivative test and the second derivative test. Chapter 4: Applications of Differentiation In this chapter we will cover: 41 Maimum and minimum values The critical points method for finding etrema 43 How derivatives affect the shape of a graph The first

More information

Analyzing Functions Maximum & Minimum Points Lesson 75

Analyzing Functions Maximum & Minimum Points Lesson 75 (A) Lesson Objectives a. Understand what is meant by the term extrema as it relates to functions b. Use graphic and algebraic methods to determine extrema of a function c. Apply the concept of extrema

More information