Structures of the low frequency Alfvén continuous spectrum and their consequences on MHD and micro-turbulence

Size: px
Start display at page:

Download "Structures of the low frequency Alfvén continuous spectrum and their consequences on MHD and micro-turbulence"

Transcription

1 ENEA Structures of the low frequency Alfvén continuous spectrum 1 Structures of the low frequency Alfvén continuous spectrum and their consequences on MHD and micro-turbulence Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, C.P Frascati, Italy. January 17.th, 2008 Tore Supra Workshop 16-18/01/2008 CEA, Cadarache, France Acknowledgments: S. Briguglio, L. Chen, G. Fogaccia, T.S. Hahm, A.V. Milovanov, G. Vlad

2 ENEA Structures of the low frequency Alfvén continuous spectrum 2 Background A variety of experimental observations have recently renewed the interest in the detailed structures of the Alfvén continuum at low frequencies: finite frequency fishbone oscillations at the GAM frequency and low-frequency feature of Alfvén Cascades (JET) observation of a broad band discrete Alfvén spectrum (DIII-D with n 2 40) excited by both energetic ions (low-n) and thermal ions (high-n) excitations of BAE modes by finite amplitude magnetic islands (FTU, TEX- TOR) evidence of GAM structures (DIII-D, CHS, JFT-2M, HL-2A, AUG, T10, TEXT) All these observations well fit within the present theoretical understanding, which poses new challenging questions to be addressed by next step experiments and theories of burning plasmas. Due to the degeneracy of GAM and BAE accumulation points, these questions encompass issues that impact macroscopic MHD as well as plasma micro-turbulence in a subtle way.

3 ENEA Structures of the low frequency Alfvén continuous spectrum 3 Structures of the low-frequency Alfvén cont. spectrum Shear Alfvén continuous spectrum is damped by phase mixing (H. Grad, 1969, PhTo 22 34) ω 2 = k 2 v2 A. Geometry effects: symmetry breaking in torus Shear Alfvén continuum with gaps (C.E. Kieras, et al. 1982, JPP ). Low-frequency Shear Alfvén Wave (SAW) gap: ω ω i ω ti ; Λ 2 (ω) = k 2 v2 A (ideal MHD) accumulation point (at ω = 0) shifted by thermal ion kinetic effects (F. Zonca, et al. 1996, PPCF ) new low-frequency gap! Diamagnetic drift: KBM (H. Biglari, et al. 1991, PRL ) Thermal ion compress.: BAE (W.W. Heidbrink, et al. 1993, PRL ) T i and wave-part. resonances: AITG (F. Zonca, et al. 1999, POP ) unstable SAW accumulation point localization unstable discrete AITG mode For simmetry reasons (later): BAE GAM degeneracy (F. Zonca, et al. 2006, PPCF 48 B15); (L. Chen, et al. 2007, NF 47 S727).

4 ENEA Structures of the low frequency Alfvén continuous spectrum 4 Experimental observations: JET Observation of finite frequency fishbone oscillations at the GAM frequency (F. Nabais, et al. 2005, PoP ) and low-frequency feature of Alfvén Cascades (B.N. Breizman, et al. 2005, PoP ).

5 ENEA Structures of the low frequency Alfvén continuous spectrum 5 R. Nazikian, et al. 06, PRL 96, R. Nazikian, et al. 06, PRL 96,

6 ENEA Structures of the low frequency Alfvén continuous spectrum 6 The same modes are excited by a large amplitude magnetic island on FTU (P. Buratti, et al. 2005, NF ; S. Annibaldi, et al. 2007, PPCF ). n = -1 HF mode n=+1 n=-1, m=-2 tearing mode Locking & unlocking P. Smeulders, et al. 2002, ECA 26B, D5.016

7 ENEA Structures of the low frequency Alfvén continuous spectrum 7 Experimental observations of GAM: DIII-D Observation of finite frequency zonal flow oscillations (GAM) and corresponding radial structures on DIII-D by BES (G.R. McKee, et al. 2006, PPCF 48 S123).

8 ENEA Structures of the low frequency Alfvén continuous spectrum 8 Experimental observations of GAM: CHS Observation of finite frequency zonal flow oscillations (GAM) and corresponding radial structures on CHS by HIBP (A. Fujisawa, et al. 2007, PPCF ).

9 ENEA Structures of the low frequency Alfvén continuous spectrum 9 Experimental observations of GAM: JFT-2M & HL-2A Observation of finite frequency zonal flow oscillations (GAM) and corresponding radial structures on JFT-2M by HIBP (T. Ido, et al. 2006, PPCF 48 S41) and HL-2A by 3-step Langmuir probes (J.Q. Dong, et al. 2007, APS Conf.).

10 ENEA Structures of the low frequency Alfvén continuous spectrum 10 Experimental observations of GAM: AUG, T10 & TEXT Observation of finite frequency zonal flow oscillations (GAM) in AUG by DR (G.D. Conway, et al. 2005, PPCF ), T10 (A.V. Melnikov, et al. 2006, PPCF 48 S87) and TEXT (P.M. Schoch, et al. 2003, RSI ) by HIBP.

11 Good agreement with f BAE/GAM prediction The frequency of the low frequency modes agrees with the GAM/BAE dispersion relation. shot Evaluation at max. mode amp. : ρ=0 Association Euratom-Cea R. Sabot MHD & Fast particles 16/01/08 TORE SUPRA

12 ENEA Structures of the low frequency Alfvén continuous spectrum 11 BAE GAM degeneracy Kinetic expression of the GAM dispersion relation is degenerate with that of the low frequency shear Alfvén accumulation point (BAE) in the long wavelength limit (no diamagnetic effects). This degeneracy is not accidental [Zonca&Chen PPCF 2006, IAEA 2006, NF 2007]and is due to the identical dynamics of GAM (n = m = 0) and s.a. wave near the mode rational surface (nq m) under the action of geodesic curvature, the difference between the two branches is in the mode polarization In reference to experimental observations of modes at the GAM frequency, besides measuring the mode frequency, it is necessary to measure polarization and toroidal mode number to clearly identify the mode. BAE excitation: n m 0 excitation by both energetic ions (at the longest wavelengths) as well as via the AITG mechanism (at the shortest wavelengths) [Zonca etal. POP 1999]. Confirmed by observations on DIII-D [Nazikian etal. PRL 2006]. GAM excitation: n = m = 0 no linear excitation mechanism by spatial nonuniformity. Only instability mechanism is via velocity space: e.g., intense high-speed drifting beam such that F b / v > 0 at v qv ti /p; p =positive integers.

13 ENEA Structures of the low frequency Alfvén continuous spectrum 12 Experimental observations: fast ion driven GAM in JET Observation of frequency chirping oscillations at the GAM frequency excited in the presence of fast ion tails due to HFS ICRH (H.L. Berk, et al. 2006, NF 46 S888) large orbits...

14 ENEA Structures of the low frequency Alfvén continuous spectrum 13 GAM continuous spectrum In realistic plasmas: T e (r), T i (r), q(r) ωgam 2 2T i (r)/(m i R0) 2 (7/4 + T e (r)/t i (r)) = ωgam(r) 2 ω GAM varies radially ωgam(r) 2 forms a continuous spectrum r δj r (r, t) = 0 BAE-GAM degeneracy r { N 0 (r) Singular solution at ω 2 = ω 2 GAM(r) [ ω 2 2 (γ it i + T e ) (r) m i R 2 0 ]δe r } = 0 Generally r ( N0 (r)λ 2 (ω)δe r ) = 0 [Zonca&Chen PPCF 1996] Similar to Alfvén resonance [Chen&Hasegawa POF 1974]

15 ENEA Structures of the low frequency Alfvén continuous spectrum 14 Kinetic GAM δe r singular at r 0 where ω 2 = ω 2 GAM k r finite ion Larmor radius effects! ion and electron Linear mode conversion to Kinetic GAM (KGAM) propagating radially outward Similar to, e.g., Kinetic Alfvén Wave (KAW) [Hasegawa&Chen POF 1976] Dispersion relation of KGAM Assuming 1 k 2 rρ 2 i 1/q 2 and including higher order k 2 rρ 2 i corrections in GAM δf i expansion up to order O[(ω d /ω) 4 ] terms ω 2 = ω 2 GAM(r) + Cb i C > 0, b i = k 2 rρ 2 i

16 ENEA Structures of the low frequency Alfvén continuous spectrum 15 C > 0, complicated expression, lengthy: can be obtained from [Zonca, Chen, Santoro, Dong PPCF 1998] as a limiting case, using the degeneracy of BAE and GAM spectra [Zonca&Chen 2006, 2007] in the long wavelength limit b i > 0 when ω 2 > ω 2 GAM: propagation b i < 0 when ω 2 < ω 2 GAM: cut-off Radial wave equation and mode conversion of GAM Evidence of outward propagating GAM in JFT-2M [Ido etal. PPCF 2006] r { In nonuniform plasma k r = i / r Radial wave equation [ } N 0 (r) ρ 2 i(r)c(r) 2 r + 2 ω2 ωgam(r) ]δe 2 r Same as that for mode conversion of shear Alfvén wave [Hasegawa&Chen POF 1976] = 0

17 ENEA Structures of the low frequency Alfvén continuous spectrum 16 GAM: eigenmode vs. initial value problem Generally: look at the initial value problem solution of a driven nonlinear system: mode structures are determined by competition between linear and nonlinear dispersion. Nonlinear excitation of GAM favors short wavelengths (later): KGAM is preferentially excited by plasma turbulence and singular MHD structures. When the GAM continuum has a local extremum an eigenmode solution (cavity mode) is also possible when mode drive is provided by, e.g. anisotropic fast ions (JET)

18 ENEA Structures of the low frequency Alfvén continuous spectrum 12 Experimental observations: fast ion driven GAM in JET Observation of frequency chirping oscillations at the GAM frequency excited in the presence of fast ion tails due to HFS ICRH (H.L. Berk, et al. 2006, NF 46 S888) large orbits...

19 ENEA Structures of the low frequency Alfvén continuous spectrum 16 GAM: eigenmode vs. initial value problem Generally: look at the initial value problem solution of a driven nonlinear system: mode structures are determined by competition between linear and nonlinear dispersion. Nonlinear excitation of GAM favors short wavelengths (later): KGAM is preferentially excited by plasma turbulence and singular MHD structures. When the GAM continuum has a local extremum an eigenmode solution (cavity mode) is also possible when mode drive is provided by, e.g. anisotropic fast ions (JET) GAM/KGAM damping at short wavelength: collisionless damping due to resonances with high transit harmonics (L. Chen et al. Sherwood, US-TTF and APS 2007; submitted to EPL) γ GAM /ω GAM ( 1/k 2 rρ 2 i ) exp ( ωgam /ω dti ), k r ρ i q 2 > 1 For small drift orbits, k r ρ i q 2 < 1 (known case), ω ti = v ti /(qr 0 ) ) γ GAM /ω GAM ( π 1/2 /2 ) q 2 ( ω 3 GAM/ω 3 ti) exp ( ω 2 GAM /ω 2 ti Damping expressions are applicable to drive/damping analyses for GAM driven by fast ions on JET

20 ENEA Structures of the low frequency Alfvén continuous spectrum 17 Nonlinear excitations of Kinetic GAM Coherent 3-wave interactions [Chen, Lin, White POP 2000] Linear parametric instability: Pump DW KGAM Lower sideband Pump DW (ITG) δφ 0 : (ω 0,k 0 ) [ δφ 0 = A 0 e in 0ζ e imθ iω0t Φ 0 (n 0 q m) + c.c. m Zonal Mode (KGAM) δφ ζ : (ω ζ,k ζ ) and Pump DW modulation ] δφ ζ = [ A ζ e ik ζr iω ζ t + c.c. ]

21 ENEA Structures of the low frequency Alfvén continuous spectrum 18 Nonlinear excitation favors short (zonal) radial wavelengths KGAM is excited (L. Chen et al. Sherwood, US-TTF and APS 2007; submitted to EPL) Nonlinear dynamics δφ, δφ ζ growth depletes the pump δφ 0 3-wave nonlinear system with prey-predator self-regulation (d/dt γ 0n ) δa 0n = c B k θnk g δa nδa ζ (d/dt + γ n )δa n = c B k θnk g δa 0nδA ζ (d/dt + γ g )δa ζ = c 2B α ik θn k g δa 0n δa n Driven-dissipative system: limit cycle, period doubling, route to chaos, strange attractor [Wersinger etal PRL 1980].

22 ENEA Structures of the low frequency Alfvén continuous spectrum 19 Collective modes and DW turbulence E.m. plasma turbulence: theory predicts excitation of Alfénic fluctuations in a wide range of mode numbers near the low frequency accumulation point of s.a. continuum, ω (7/4 + T e /T i ) 1/2 (2T i /m i ) 1/2 /R (F. Zonca, L. Chen, et al. 96, PPCF 38, 2011;... 99, PoP 6, 1917): by energetic ions at long wavelength: finite Beta AE (BAE)/EPM by thermal ions at short wavelength: Alfvén ITG Magnetic flutter: may be relevant for electron transport (B.D. Scott 2005,NJP 7, 92; V. Naulin, et al. 2005, PoP 12, ) Recent observations on DIII-D confirm these predictions (R. Nazikian, et al. 06, PRL 96, )

23 ENEA Structures of the low frequency Alfvén continuous spectrum 5 R. Nazikian, et al. 06, PRL 96, R. Nazikian, et al. 06, PRL 96,

24 ENEA Structures of the low frequency Alfvén continuous spectrum 19 Collective modes and DW turbulence E.m. plasma turbulence: theory predicts excitation of Alfénic fluctuations in a wide range of mode numbers near the low frequency accumulation point of s.a. continuum, ω (7/4 + T e /T i ) 1/2 (2T i /m i ) 1/2 /R (F. Zonca, L. Chen, et al. 96, PPCF 38, 2011;... 99, PoP 6, 1917): by energetic ions at long wavelength: finite Beta AE (BAE)/EPM by thermal ions at short wavelength: Alfvén ITG Magnetic flutter: may be relevant for electron transport (B.D. Scott 2005,NJP 7, 92; V. Naulin, et al. 2005, PoP 12, ) Recent observations on DIII-D confirm these predictions (R. Nazikian, et al. 06, PRL 96, ) Theory describes well the nonlinear excitation of BAE modes in FTU by magnetic islands (S.V. Annibaldi et al. 07, PPCF 49, 475), when FLR/FOW effects are included (F. Zonca, et al. 98, PPCF 40, 2009).

25 ENEA Structures of the low frequency Alfvén continuous spectrum 6 The same modes are excited by a large amplitude magnetic island on FTU (P. Buratti, et al. 2005, NF ; S. Annibaldi, et al. 2007, PPCF ). n = -1 HF mode n=+1 n=-1, m=-2 tearing mode Locking & unlocking P. Smeulders, et al. 2002, ECA 26B, D5.016

26 ENEA Structures of the low frequency Alfvén continuous spectrum 20 Generalized fishbone-like dispersion relation In general, it was demonstrated [Chen, POP 94] that the mode dispersion relation can be always written in the form of a fishbone-like dispersion relation iλ + δw f + δw k = 0, where δw f and δw k play the role of fluid (core plasma) and kinetic (fast ion) contribution to the potential energy, while Λ represents a generalized inertia term. The generalized fishbone-like dispersion relation can be derived by asymptotic matching the regular (ideal MHD) mode structure with the general (known) form of the SA wave field in the singular (inertial) region, as the spatial location of the shear Alfvén resonance, ω 2 = k 2 v2 A, is approached. Examples are : Λ 2 = ω(ω ω pi )/ω 2 A for k qr 0 1 (KBM) and Λ 2 = (ω 2 l ω 2 )/(ω 2 u ω 2 ) for k qr 0 1/2, with ω l and ω u the lower and upper accumulation points of the shear Alfvén continuous spectrum toroidal gap (TAE). δw f is generally real, whereas δw k is characterized by complex values, the real part accounting for non-resonant and the imaginary part for resonant wave particle interactions with energetic ions.

27 ENEA Structures of the low frequency Alfvén continuous spectrum 21 The fishbone-like dispersion relation demonstrates the existence of two types of modes: a discrete gap mode, or Alfvén Eigenmode (AE), for IReΛ 2 < 0; an Energetic Particle continuum Mode (EPM) [Chen POP 94] for IReΛ 2 > 0. For AE, the non-resonant fast ion response provides a real frequency shift, i.e. it removes the degeneracy with the continuum accumulation point, while the resonant wave-particle interaction gives the mode drive. Causality condition imposes δw f + IReδW k > 0 when AE frequency is above the continuum accumulation point: inertia in excess w.r.t. field line bending δw f + IReδW k < 0 when AE frequency is below the continuum accumulation point: inertia in lower than field line bending For EPM, ω is set by the relevant energetic ion characteristic frequency and mode excitation requires the drive exceeding a threshold due to continuum damping. However, the non-resonant fast ion response is crucially important as well, since it provides the compression effect that is necessary for balancing the positive MHD potential energy of the wave.

28 ENEA Structures of the low frequency Alfvén continuous spectrum 22 Fishbone modes: a celebrated example of EPM A celebrated example of EPM is the fishbone instability [Chen etal PRL 84; Coppi etal PRL 86], where i s [( R 2 0/v 2 A) ω (ω ω pi ) (1 + ) ] 1/2 = δ Ŵ f + δŵk, ω pi is the core ion diamagnetic frequency and q 2 is the enhancement of plasma inertia due to geodesic curvature [Glasser etal PF 75; Graves etal PPCF 00]. q 2 inertia enhancement is not the classic GGJ factor obtained in MHD [Glasser etal PF 75] and is mainly determined by trapped particle dynamics [Graves etal PPCF 00]. Wave-particle resonances with trapped particles can be crucial for determining the kink/fishbone stability in burning plasmas [Hu etal POP 06] Using a generalized expression of the inertia term Λ(ω) one readily demonstrates the existence of a high-frequency kink-fishbone branch at the frequencies of the Geodesic Acoustic Mode (GAM) [Zonca etal PPCF 07]. (ω ω pi, ω ti ) Λ 2 = 1 ω 2 A [ ω 2 ( T e T i ) q 2 ω 2 ti ] + i πq 2 e ω2 /ω2ti ω2 ωa 2 ( ωti ω ω ) ( Ti ω 2 ω ti ωti 2 + T ) 2 e. T i

29 ENEA Structures of the low frequency Alfvén continuous spectrum 4 Experimental observations: JET Observation of finite frequency fishbone oscillations at the GAM frequency (F. Nabais, et al. 2005, PoP ) and low-frequency feature of Alfvén Cascades (B.N. Breizman, et al. 2005, PoP ). Λ 2 = k 2 0 v2 A

30 ENEA Structures of the low frequency Alfvén continuous spectrum 23 Zonal Flows and Zonal Structures Very disparate space-time scales of AE/EPM, MHD modes and plasma turbulence: complex self-organized behaviors of burning plasmas will be likely dominated by their nonlinear interplay via zonal flows and fields Crucial role of toroidal geometry for Alfvénic fluctuations: fundamental importance of magnetic curvature couplings in both linear and nonlinear dynamics (B.D. Scott 2005,NJP 7, 92; V. Naulin, et al. 2005, PoP 12, ) Long time scale behaviors of zonal structures are important for the overall burning plasma performance: generators of nonlinear equilibria

31 ENEA Structures of the low frequency Alfvén continuous spectrum 24 Long time scale behaviors Depending on proximity to marginal stability, AE and EPM nonlinear evolutions can be predominantly affected by spontaneous generation of zonal flows and fields (L. Chen, et al. 2001, NF 41, 747; P.N. Guzdar, et al. 2001, PRL 87, ) radial modulations in the fast ion profiles (F. Zonca, et al. 2000, Theory of Fusion Plasmas, 17) EPM NL dynamics (F. Zonca, et al. 2000, Theory of Fusion Plasmas, 17) AITG and strongly driven MHD modes behave similarly

32 ENEA Structures of the low frequency Alfvén continuous spectrum 23 Zonal Flows and Zonal Structures Very disparate space-time scales of AE/EPM, MHD modes and plasma turbulence: complex self-organized behaviors of burning plasmas will be likely dominated by their nonlinear interplay via zonal flows and fields Crucial role of toroidal geometry for Alfvénic fluctuations: fundamental importance of magnetic curvature couplings in both linear and nonlinear dynamics (B.D. Scott 2005,NJP 7, 92; V. Naulin, et al. 2005, PoP 12, ) Long time scale behaviors of zonal structures are important for the overall burning plasma performance: generators of nonlinear equilibria The corresponding stability determines the dynamics underlying the dissipation of zonal structures in collision-less plasmas and the nonlinear up-shift of thresholds for turbulent transport (L. Chen, et al. 2006) Impact on burning plasma performance

33 ENEA Structures of the low frequency Alfvén continuous spectrum 25 Discussions Burning plasmas are complex self-organized systems, whose investigation requires a conceptual step in the analysis of magnetically confined plasmas. Integrated numerical simulations are crucial to investigate these new physics; while fundamental theories provide the conceptual framework and the necessary insights. Verification against experimental observations in present day machines is a necessary step for the validation of physical models and numerical codes for reliable extrapolations to burning plasmas. Lack of understanding of some complex burning plasma behaviors can be likely filled in by increasingly complicated and more realistic modeling of plasma conditions as computing performances improve. However, some other unexplained behaviors may be just indications of fundamental conceptual problems: mutual positive feedbacks between theory, simulation and experiment will be necessary. Burning plasma physics is an exciting and challenging field: many examples of fundamental problems with broader applications and implications.

Lecture 5 Relationship of low frequency shear Alfvén spectrum to MHD and microturbulence

Lecture 5 Relationship of low frequency shear Alfvén spectrum to MHD and microturbulence IFTS Intensive Course on Advanced Plasma Physics-Spring 2009 Lecture 5 1 Lecture 5 Relationship of low frequency shear Alfvén spectrum to MHD and microturbulence Fulvio Zonca http://www.afs.enea.it/zonca

More information

Physics of Burning Plasmas in Toroidal Magnetic Field Devices

Physics of Burning Plasmas in Toroidal Magnetic Field Devices ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, T.S. Hahm, A.V. Milovanov, G. Vlad 1 Physics of Burning Plasmas in Toroidal Magnetic Field Devices F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, T.S.

More information

Lecture 4. Relationship of low frequency shear Alfvén spectrum to MHD and. microturbulence. Fulvio Zonca

Lecture 4. Relationship of low frequency shear Alfvén spectrum to MHD and. microturbulence. Fulvio Zonca Max-Planck-Institut für Plasmaphysik Lecture Series-Winter 2013 Lecture 4 1 Lecture 4 Relationship of low frequency shear Alfvén spectrum to MHD and microturbulence Fulvio Zonca http://www.afs.enea.it/zonca

More information

Geodesic Acoustic and related modes

Geodesic Acoustic and related modes Geodesic Acoustic and related modes A. Smolyakov* Acknowledgements X. Garbet, C. Nguyen (CEA Cadarache) V.I. Ilgisonis, V.P. Lakhin, A.Melnikov (Kurchatov Institute) * University of Saskatchewan, Canada

More information

L Aquila, Maggio 2002

L Aquila, Maggio 2002 Nonlinear saturation of Shear Alfvén Modes and energetic ion transports in Tokamak equilibria with hollow-q profiles G. Vlad, S. Briguglio, F. Zonca, G. Fogaccia Associazione Euratom-ENEA sulla Fusione,

More information

Energetic particle and Alfvén wave physics in fusion plasmas: a brief review

Energetic particle and Alfvén wave physics in fusion plasmas: a brief review Symposium on Plasma Theory: A Celebration of Professor Liu Chen s 40 Years of Scientific Accomplishments 1 Energetic particle and Alfvén wave physics in fusion plasmas: a brief review Fulvio Zonca http://www.afs.enea.it/zonca

More information

MHD instabilities and fast particles

MHD instabilities and fast particles ENEA F. Zonca 1 MHD instabilities and fast particles Fulvio Zonca Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, C.P. 65-44 - Frascati, Italy. July 11.th, 25 : Turbulence overshoot and resonant

More information

Shear Alfvén Wave Continuous Spectrum in the Presence of a Magnetic Island

Shear Alfvén Wave Continuous Spectrum in the Presence of a Magnetic Island 1 TH/P3-5 Shear Alfvén Wave Continuous Spectrum in the Presence of a Magnetic Island A. Biancalani 1), L. Chen 2) 3), F. Pegoraro 1), F. Zonca 4), S. V. Annibaldi 5), A. Botrugno 4), P. Buratti 4) and

More information

Alfvénic turbulence in tokamaks: from micro- to meso-scale fluctuations

Alfvénic turbulence in tokamaks: from micro- to meso-scale fluctuations Kinetic-scale turbulence in laboratory and space plasmas 1 Alfvénic turbulence in tokamaks: from micro- to meso-scale fluctuations Fulvio Zonca 1,2 in collaboration with Liu Chen 2,3 http://www.afs.enea.it/zonca

More information

MHD-particle simulations and collective alpha-particle transport: analysis of ITER scenarios and perspectives for integrated modelling

MHD-particle simulations and collective alpha-particle transport: analysis of ITER scenarios and perspectives for integrated modelling MHD-particle simulations and collective alpha-particle transport: analysis of ITER scenarios and perspectives for integrated modelling G. Vlad, S. Briguglio, G. Fogaccia, F. Zonca Associazione Euratom-ENEA

More information

Effects of Alpha Particle Transport Driven by Alfvénic Instabilities on Proposed Burning Plasma Scenarios on ITER

Effects of Alpha Particle Transport Driven by Alfvénic Instabilities on Proposed Burning Plasma Scenarios on ITER Effects of Alpha Particle Transport Driven by Alfvénic Instabilities on Proposed Burning Plasma Scenarios on ITER G. Vlad, S. Briguglio, G. Fogaccia, F. Zonca Associazione Euratom-ENEA sulla Fusione, C.R.

More information

Theory of Alfvén waves and energetic particle physics in burning plasmas

Theory of Alfvén waves and energetic particle physics in burning plasmas 1 OV/5-3 Theory of Alfvén waves and energetic particle physics in burning plasmas L. Chen 1)-2) and F. Zonca 3) 1) Dept. of Physics and Astronomy, Univ. of California, Irvine CA 92697-4575, U.S.A. 2) Institute

More information

Characteristics of Energetic-Ion-Driven Geodesic Acoustic Modes in the Large Helical Device(LHD)

Characteristics of Energetic-Ion-Driven Geodesic Acoustic Modes in the Large Helical Device(LHD) O-4 12 th IAEA TM on Energetic Particles in Magnetic Confinement Systems, 7-10 Sep, Austin, USA Characteristics of Energetic-Ion-Driven Geodesic Acoustic Modes in the Large Helical Device(LHD) K. Toi,

More information

Nonlinear Zonal Dynamics of Drift and Drift-Alfvén Turbulences in Tokamak Plasmas

Nonlinear Zonal Dynamics of Drift and Drift-Alfvén Turbulences in Tokamak Plasmas Nonlinear Zonal Dynamics of Drift and Drift-Alfvén Turbulences in Toama Plasmas Liu Chen, Zhihong Lin, Roscoe B. White and Fulvio Zonca Department of Physics and Astronomy, University of California, Irvine,

More information

Verification of gyrokinetic particle simulation of Alfven eigenmodes excited by external antenna and by fast ions

Verification of gyrokinetic particle simulation of Alfven eigenmodes excited by external antenna and by fast ions Verification of gyrokinetic particle simulation of Alfven eigenmodes excited by external antenna and by fast ions L. Chen 1,2, W. Deng 1, Z. Lin 1, D. Spong 3, G. Y. Sun 4, X. Wang 2,1, X. Q. Xu 5, H.

More information

ENERGETIC PARTICLES AND BURNING PLASMA PHYSICS

ENERGETIC PARTICLES AND BURNING PLASMA PHYSICS ENERGETIC PARTICLES AND BURNING PLASMA PHYSICS Reported by J. Van Dam Institute for Fusion Studies The University of Texas at Austin US-Japan JIFT Workshop on Theory-Based Modeling and Integrated Simulation

More information

Characterization and Nonlinear Interaction of Shear Alfvén Waves in the Presence of Strong Tearing Modes in Tokamak Plasmas

Characterization and Nonlinear Interaction of Shear Alfvén Waves in the Presence of Strong Tearing Modes in Tokamak Plasmas 1 EX/P7-7 Characterization and Nonlinear Interaction of Shear Alfvén Waves in the Presence of Strong Tearing Modes in Tokamak Plasmas W. Chen 1, Z. Qiu, X. T. Ding 1, X. S. Xie, L. M. Yu 1, X. Q. Ji 1,

More information

Energetic-Ion-Driven MHD Instab. & Transport: Simulation Methods, V&V and Predictions

Energetic-Ion-Driven MHD Instab. & Transport: Simulation Methods, V&V and Predictions Energetic-Ion-Driven MHD Instab. & Transport: Simulation Methods, V&V and Predictions 7th APTWG Intl. Conference 5-8 June 2017 Nagoya Univ., Nagoya, Japan Andreas Bierwage, Yasushi Todo 14.1MeV 10 kev

More information

GTC Simulation of Turbulence and Transport in Tokamak Plasmas

GTC Simulation of Turbulence and Transport in Tokamak Plasmas GTC Simulation of Turbulence and Transport in Tokamak Plasmas Z. Lin University it of California, i Irvine, CA 92697, USA and GPS-TTBP Team Supported by SciDAC GPS-TTBP, GSEP & CPES Motivation First-principles

More information

Nonlinear Evolution and Radial Propagation of the Energetic Particle Driven GAM

Nonlinear Evolution and Radial Propagation of the Energetic Particle Driven GAM Nonlinear Evolution and Radial Propagation of the Energetic Particle Driven GAM by R. Nazikian In collaboration with G.Y. Fu, R.V. Budny, G.J. Kramer, PPPL G.R. McKee, U. Wisconsin T. Rhodes, L. Schmidt,

More information

Impact of Localized ECRH on NBI and ICRH Driven Alfven Eigenmodes in the ASDEX Upgrade Tokamak

Impact of Localized ECRH on NBI and ICRH Driven Alfven Eigenmodes in the ASDEX Upgrade Tokamak Impact of Localized ECRH on NBI and ICRH Driven Alfven Eigenmodes in the ASDEX Upgrade Tokamak M. Garcia-Munoz M. A. Van Zeeland, S. Sharapov, Ph. Lauber, J. Ayllon, I. Classen, G. Conway, J. Ferreira,

More information

Proceedings of the 12th Asia Pacific Physics Conference JPS Conf. Proc. 1, (2014) 2014 The Physical Society of Japan Physics of Alfvén Waves Li

Proceedings of the 12th Asia Pacific Physics Conference JPS Conf. Proc. 1, (2014) 2014 The Physical Society of Japan Physics of Alfvén Waves Li Proceedings of the 12th Asia Pacific Physics Conference 2014 The Physical Society of Japan Physics of Alfvén Waves Liu Chen 1,2 and Fulvio Zonca 3,1 1 Institute for Fusion Theory and Simulation, Zhejiang

More information

Nonlinear Consequences of Weakly Driven Energetic Particle Instabilities

Nonlinear Consequences of Weakly Driven Energetic Particle Instabilities 2008 International Sherwood Fusion Theory Conference March 30 - April 2, 2008, Boulder, Colorado Nonlinear Consequences of Weakly Driven Energetic Particle Instabilities Boris Breizman Institute for Fusion

More information

Nonlinear Alfvén Wave Physics in Fusion Plasmas

Nonlinear Alfvén Wave Physics in Fusion Plasmas ASIPP 40 th Anniversary Nonlinear Alfvén Wave Physics in Fusion Plasmas 1 Nonlinear Alfvén Wave Physics in Fusion Plasmas Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027,

More information

Active and Fast Particle Driven Alfvén Eigenmodes in Alcator C-Mod

Active and Fast Particle Driven Alfvén Eigenmodes in Alcator C-Mod Active and Fast Particle Driven Alfvén Eigenmodes in Alcator C-Mod JUST DID IT. J A Snipes, N Basse, C Boswell, E Edlund, A Fasoli #, N N Gorelenkov, R S Granetz, L Lin, Y Lin, R Parker, M Porkolab, J

More information

Alpha Particle Transport Induced by Alfvénic Instabilities in Proposed Burning Plasma Scenarios

Alpha Particle Transport Induced by Alfvénic Instabilities in Proposed Burning Plasma Scenarios Alpha Particle Transport Induced by Alfvénic Instabilities in Proposed Burning Plasma Scenarios G. Vlad, S. Briguglio, G. Fogaccia and F. Zonca Associazione Euratom-ENEA sulla Fusione, C.R. Frascati C.P.

More information

Global gyrokinetic modeling of geodesic acoustic modes and shear Alfvén instabilities in ASDEX Upgrade.

Global gyrokinetic modeling of geodesic acoustic modes and shear Alfvén instabilities in ASDEX Upgrade. 1 EX/P1-18 Global gyrokinetic modeling of geodesic acoustic modes and shear Alfvén instabilities in ASDEX Upgrade. A. Biancalani 1, A. Bottino 1, S. Briguglio 2, G.D. Conway 1, C. Di Troia 2, R. Kleiber

More information

Stability Properties of Toroidal Alfvén Modes Driven. N. N. Gorelenkov, S. Bernabei, C. Z. Cheng, K. Hill, R. Nazikian, S. Kaye

Stability Properties of Toroidal Alfvén Modes Driven. N. N. Gorelenkov, S. Bernabei, C. Z. Cheng, K. Hill, R. Nazikian, S. Kaye Stability Properties of Toroidal Alfvén Modes Driven by Fast Particles Λ N. N. Gorelenkov, S. Bernabei, C. Z. Cheng, K. Hill, R. Nazikian, S. Kaye Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton,

More information

Presentation by Herb Berk University of Texas at Austin Institute for Fusion Studies in Vienna, Austria Sept. 1-4, 2015

Presentation by Herb Berk University of Texas at Austin Institute for Fusion Studies in Vienna, Austria Sept. 1-4, 2015 Review of Theory Papers at 14 th IAEA technical meeting on Engertic Particles in Magnetic Confinement systems Presentation by Herb Berk University of Texas at Austin Institute for Fusion Studies in Vienna,

More information

Lecture 5. Frequency sweeping, phase locking and supra-thermal particle transport:

Lecture 5. Frequency sweeping, phase locking and supra-thermal particle transport: IFTS Intensive Course on Advanced Plasma Physics-Spring 212 Lecture 5 1 Lecture 5 Frequency sweeping, phase locking and supra-thermal particle transport: heuristic models for understanding nonlinear behaviors

More information

Nonlinear MHD effects on TAE evolution and TAE bursts

Nonlinear MHD effects on TAE evolution and TAE bursts Nonlinear MHD effects on TAE evolution and TAE bursts Y. Todo (NIFS) collaborating with H. L. Berk and B. N. Breizman (IFS, Univ. Texas) GSEP 3rd Annual Meeting (remote participation / Aug. 9-10, 2010)

More information

Gyrokinetic Transport Driven by Energetic Particle Modes

Gyrokinetic Transport Driven by Energetic Particle Modes Gyrokinetic Transport Driven by Energetic Particle Modes by Eric Bass (General Atomics) Collaborators: Ron Waltz, Ming Chu GSEP Workshop General Atomics August 10, 2009 Outline I. Background Alfvén (TAE/EPM)

More information

Edge Rotational Shear Requirements for the Edge Harmonic Oscillation in DIII D Quiescent H mode Plasmas

Edge Rotational Shear Requirements for the Edge Harmonic Oscillation in DIII D Quiescent H mode Plasmas Edge Rotational Shear Requirements for the Edge Harmonic Oscillation in DIII D Quiescent H mode Plasmas by T.M. Wilks 1 with A. Garofalo 2, K.H. Burrell 2, Xi. Chen 2, P.H. Diamond 3, Z.B. Guo 3, X. Xu

More information

NumKin, Strasbourg, October 17 th, 2016

NumKin, Strasbourg, October 17 th, 2016 F. Palermo 1 A.Biancalani 1, C.Angioni 1, F.Zonca 2, A.Bottino 1, B.Scott 1, G.D.Conway 1, E.Poli 1 1 Max Planck Institut für Plasmaphysik, Garching, Germany 2 ENEA C. R. Frascati - Via E. Fermi 45, CP

More information

Effects of drag and diffusion on nonlinear behavior of EP-driven instabilities.

Effects of drag and diffusion on nonlinear behavior of EP-driven instabilities. IAEA-TM EP 2011 / 09 / 07 Effects of drag and diffusion on nonlinear behavior of EP-driven instabilities. Maxime Lesur Y. Idomura, X. Garbet, P. Diamond, Y. Todo, K. Shinohara, F. Zonca, S. Pinches, M.

More information

Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission

Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission by F. Turco 1 with J.M. Hanson 1, A.D. Turnbull 2, G.A. Navratil 1, C. Paz-Soldan 2, F. Carpanese 3, C.C. Petty 2, T.C.

More information

Comparative studies of nonlinear ITG and ETG dynamics

Comparative studies of nonlinear ITG and ETG dynamics 1 I1-S1 Comparative studies of nonlinear ITG and ETG dynamics F. Zonca 1), L. Chen ), Z. Lin ), and R. B. White 3) 1) ENEA C. R. Frascati, C.P. 65, 00044 Frascati, Rome, Italy ) Dept. of Physics and Astronomy,

More information

arxiv: v1 [physics.plasm-ph] 17 Nov 2016

arxiv: v1 [physics.plasm-ph] 17 Nov 2016 Primary authors: W. Chen Current version 3. Email: chenw@swip.ac.cn Alfvénic Ion Temperature Gradient Activities in a Weak Magnetic Shear Plasma W. Chen 1, R.R. Ma 1, Y.Y. Li 2, Z.B. Shi 1, H.R. Du 3,

More information

Bounce-averaged gyrokinetic simulations of trapped electron turbulence in elongated tokamak plasmas

Bounce-averaged gyrokinetic simulations of trapped electron turbulence in elongated tokamak plasmas Bounce-averaged gyrokinetic simulations of trapped electron turbulence in elongated tokamak plasmas Lei Qi a, Jaemin Kwon a, T. S. Hahm a,b and Sumin Yi a a National Fusion Research Institute (NFRI), Daejeon,

More information

Global particle-in-cell simulations of Alfvénic modes

Global particle-in-cell simulations of Alfvénic modes Global particle-in-cell simulations of Alfvénic modes A. Mishchenko, R. Hatzky and A. Könies Max-Planck-Institut für Plasmaphysik, EURATOM-Association, D-749 Greifswald, Germany Rechenzentrum der Max-Planck-Gesellschaft

More information

Transport Improvement Near Low Order Rational q Surfaces in DIII D

Transport Improvement Near Low Order Rational q Surfaces in DIII D Transport Improvement Near Low Order Rational q Surfaces in DIII D M.E. Austin 1 With K.H. Burrell 2, R.E. Waltz 2, K.W. Gentle 1, E.J. Doyle 8, P. Gohil 2, C.M. Greenfield 2, R.J. Groebner 2, W.W. Heidbrink

More information

Infernal Alfvén Eigenmodes in Low-Shear Tokamaks. Institute for Nuclear Research, Kyiv, Ukraine

Infernal Alfvén Eigenmodes in Low-Shear Tokamaks. Institute for Nuclear Research, Kyiv, Ukraine 5 th IAEA TM on Theory of Plasma Instabilities Austin, USA, 5-7 Sept. 2011 Infernal Alfvén Eigenmodes in Low-Shear Tokamaks V.S. Marchenko, Ya.I. Kolesnichenko, and S.N. Reznik Institute for Nuclear Research,

More information

Nonlinear magnetohydrodynamic effects on Alfvén eigenmode evolution and zonal flow

Nonlinear magnetohydrodynamic effects on Alfvén eigenmode evolution and zonal flow Home Search Collections Journals About Contact us My IOPscience Nonlinear magnetohydrodynamic effects on Alfvén eigenmode evolution and zonal flow generation This article has been downloaded from IOPscience.

More information

Global gyrokinetic particle simulations with kinetic electrons

Global gyrokinetic particle simulations with kinetic electrons IOP PUBLISHING Plasma Phys. Control. Fusion 49 (2007) B163 B172 PLASMA PHYSICS AND CONTROLLED FUSION doi:10.1088/0741-3335/49/12b/s15 Global gyrokinetic particle simulations with kinetic electrons Z Lin,

More information

Active Control of Alfvén Eigenmodes in the ASDEX Upgrade tokamak

Active Control of Alfvén Eigenmodes in the ASDEX Upgrade tokamak Active Control of Alfvén Eigenmodes in the ASDEX Upgrade tokamak M. Garcia-Munoz, S. E. Sharapov, J. Ayllon, B. Bobkov, L. Chen, R. Coelho, M. Dunne, J. Ferreira, A. Figueiredo, M. Fitzgerald, J. Galdon-Quiroga,

More information

SUMMARY OF EXPERIMENTAL CORE TURBULENCE CHARACTERISTICS IN OH AND ECRH T-10 TOKAMAK PLASMAS

SUMMARY OF EXPERIMENTAL CORE TURBULENCE CHARACTERISTICS IN OH AND ECRH T-10 TOKAMAK PLASMAS SUMMARY OF EXPERIMENTAL CORE TURBULENCE CHARACTERISTICS IN OH AND ECRH T-1 TOKAMAK PLASMAS V. Vershkov, L.G. Eliseev, S.A. Grashin. A.V. Melnikov, D.A. Shelukhin, S.V. Soldatov, A.O. Urazbaev and T-1 team

More information

Damping and drive of low frequency modes in tokamak plasmas

Damping and drive of low frequency modes in tokamak plasmas Damping and drive of low frequency modes in tokamak plasmas Ph. Lauber, S. Günter Max-Planck-Institut für Plasmaphysik, EURATOM-Association, Garching, Germany E-mail: Philipp.Lauber@ipp.mpg.de Abstract.

More information

Progress and Plans on Physics and Validation

Progress and Plans on Physics and Validation Progress and Plans on Physics and Validation T.S. Hahm Princeton Plasma Physics Laboratory Princeton, New Jersey Momentum Transport Studies: Turbulence and Neoclassical Physics Role of Trapped Electrons

More information

MHD instability driven by supra-thermal electrons in TJ-II stellarator

MHD instability driven by supra-thermal electrons in TJ-II stellarator MHD instability driven by supra-thermal electrons in TJ-II stellarator K. Nagaoka 1, S. Yamamoto 2, S. Ohshima 2, E. Ascasíbar 3, R. Jiménez-Gómez 3, C. Hidalgo 3, M.A. Pedrosa 3, M. Ochando 3, A.V. Melnikov

More information

Overview Impact of 3D fields (RMP) on edge turbulence and turbulent transport

Overview Impact of 3D fields (RMP) on edge turbulence and turbulent transport Trilateral Euregio Cluster Overview Impact of 3D fields (RMP) on edge turbulence and turbulent transport TEC Yuhong Xu Laboratory for Plasma Physics, Ecole Royale Militaire - Koninklijke Militaire School,

More information

Excitation of Alfvén eigenmodes with sub-alfvénic neutral beam ions in JET and DIII-D plasmas

Excitation of Alfvén eigenmodes with sub-alfvénic neutral beam ions in JET and DIII-D plasmas Excitation of Alfvén eigenmodes with sub-alfvénic neutral beam ions in JET and DIII-D plasmas D. Borba 1,9, R. Nazikian 2, B. Alper 3, H.L. Berk 4, A. Boboc 3, R.V. Budny 2, K.H. Burrell 5, M. De Baar

More information

Nonperturbative Effects of Energetic Ions on Alfvén Eigenmodes

Nonperturbative Effects of Energetic Ions on Alfvén Eigenmodes 1 TH/3-1Ra Nonperturbative Effects of Energetic Ions on Alfvén Eigenmodes Y. Todo 1), N. Nakajima 1), K. Shinohara 2), M. Takechi 2), M. Ishikawa 2), S. Yamamoto 3) 1) National Institute for Fusion Science,

More information

Predictions of fusion α-particle transport due to Alfvén eigenmodes in ITER

Predictions of fusion α-particle transport due to Alfvén eigenmodes in ITER Predictions of fusion α-particle transport due to Alfvén eigenmodes in ITER M. Fitzgerald, S.E. Sharapov, P. Rodrigues 2, A. Polevoi 3, D. Borba 2 2 Instituto de Plasmas e Fusão Nuclear, Instituto Superior

More information

Snakes and similar coherent structures in tokamaks

Snakes and similar coherent structures in tokamaks Snakes and similar coherent structures in tokamaks A. Y. Aydemir 1, K. C. Shaing 2, and F. W. Waelbroeck 1 1 Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 2 Plasma and

More information

Nonlinear Energetic Particle Transport in the Presence of Multiple Alfvénic Waves in ITER

Nonlinear Energetic Particle Transport in the Presence of Multiple Alfvénic Waves in ITER Nonlinear Energetic Particle Transport in the Presence of Multiple Alfvénic Waves in ITER Mirjam Schneller, Philipp Lauber, Sergio Briguglio, Antti Snicker Acknowledgement M. Schneller 1, Ph. Lauber 1,

More information

Size Scaling and Nondiffusive Features of Electron Heat Transport in Multi-Scale Turbulence

Size Scaling and Nondiffusive Features of Electron Heat Transport in Multi-Scale Turbulence Size Scaling and Nondiffusive Features of Electron Heat Transport in Multi-Scale Turbulence Z. Lin 1, Y. Xiao 1, W. J. Deng 1, I. Holod 1, C. Kamath, S. Klasky 3, Z. X. Wang 1, and H. S. Zhang 4,1 1 University

More information

Impact of Energetic-Ion-Driven Global Modes on Toroidal Plasma Confinements

Impact of Energetic-Ion-Driven Global Modes on Toroidal Plasma Confinements Impact of Energetic-Ion-Driven Global Modes on Toroidal Plasma Confinements Kazuo TOI CHS & LHD Experimental Group National Institute for Fusion Science Toki 59-5292, Japan Special contributions from:

More information

Nonlinear hydrid simulations of precessional Fishbone instability

Nonlinear hydrid simulations of precessional Fishbone instability Nonlinear hydrid simulations of precessional Fishbone instability M. Faganello 1, M. Idouakass 1, H. L. Berk 2, X. Garbet 3, S. Benkadda 1 1 Aix-Marseille University, CNRS, PIIM UMR 7345, Marseille, France

More information

WORK&PACKAGE&ENABLING&RESEARCH&& 2014&scientific/technical&report&template& Report&due&by&31&December&2014&&

WORK&PACKAGE&ENABLING&RESEARCH&& 2014&scientific/technical&report&template& Report&due&by&31&December&2014&& WORK&PACKAGE&ENABLING&RESEARCH&& 2014&scientific/technical&report&template& Report&due&by&31&December&2014&& & WPENR&2014& &report&form& Project&title&& (as&in&task&agreement)& Principal&Investigator&

More information

Spectroscopic determination of the internal amplitude of frequency sweeping TAE

Spectroscopic determination of the internal amplitude of frequency sweeping TAE INSTITUTE OF PHYSICS PUBLISHING Plasma Phys. Control. Fusion 46 (2004) S47 S57 PLASMA PHYSICS AND CONTROLLED FUSION PII: S0741-3335(04)72680-9 Spectroscopic determination of the internal amplitude of frequency

More information

On the Physics of the L/H Transition

On the Physics of the L/H Transition ASDEX Upgrade On the Physics of the L/H Transition B. Scott Max Planck Institut für Plasmaphysik Euratom Association D-85748 Garching, Germany EFDA-TTG Workshop, Sep 2010, updated Apr 2012 Outline Physical

More information

Physics of Energetic Particles and Alfvén Waves*

Physics of Energetic Particles and Alfvén Waves* Athens, October 11 th 2017 Physics of Energetic Particles and Alfvén Waves* 1,2, Liu Chen 2, Zhiyong Qiu 2 and the NLED Team* 1 ENEA C.R. Frascati, Via E. Fermi 45 C.P. 65, 00044 Frascati, Italy 2 Institute

More information

Studies on Neutral Beam Ion Confinement and MHD Induced Fast-Ion. Loss on HL-2A Tokamak

Studies on Neutral Beam Ion Confinement and MHD Induced Fast-Ion. Loss on HL-2A Tokamak Studies on Neutral Beam Ion Confinement and MHD Induced Fast-Ion Loss on HL-A Tokamak LIU Yi, ISOBE Mitsutaka, PENG Xiao-Dong, Wang Hao, JI Xiao-Quan, CHEN Wei, ZHANG Yi-Po, Dong Yun-Bo, MORITA Shigeru

More information

Energetic Particle Physics in Tokamak Burning Plasmas

Energetic Particle Physics in Tokamak Burning Plasmas Energetic Particle Physics in Tokamak Burning Plasmas presented by C. Z. (Frank) Cheng in collaboration with N. N. Gorelenkov, G. J. Kramer, R. Nazikian, E. Fredrickson, Princeton Plasma Physics Laboratory

More information

UCIrvine. Gyrokinetic Studies of Turbulence Spreading IAEA-CN-116/TH1-4

UCIrvine. Gyrokinetic Studies of Turbulence Spreading IAEA-CN-116/TH1-4 AEA-CN-116/TH1-4 Gyrokinetic Studies of Turbulence Spreading T.S. Hahm, Z. Lin, a P.H. Diamond, b G. Rewoldt, W.X. Wang, S. Ethier, O. Gurcan, b W. Lee, and W.M. Tang Princeton University, Plasma Physics

More information

INTERACTION OF DRIFT WAVE TURBULENCE AND MAGNETIC ISLANDS

INTERACTION OF DRIFT WAVE TURBULENCE AND MAGNETIC ISLANDS INTERACTION OF DRIFT WAVE TURBULENCE AND MAGNETIC ISLANDS A. Ishizawa and N. Nakajima National Institute for Fusion Science F. L. Waelbroeck, R. Fitzpatrick, W. Horton Institute for Fusion Studies, University

More information

EFFECT OF PLASMA FLOWS ON TURBULENT TRANSPORT AND MHD STABILITY*

EFFECT OF PLASMA FLOWS ON TURBULENT TRANSPORT AND MHD STABILITY* EFFECT OF PLASMA FLOWS ON TURBULENT TRANSPORT AND MHD STABILITY* by K.H. BURRELL Presented at the Transport Task Force Meeting Annapolis, Maryland April 3 6, 22 *Work supported by U.S. Department of Energy

More information

Kinetic damping in gyro-kinetic simulation and the role in multi-scale turbulence

Kinetic damping in gyro-kinetic simulation and the role in multi-scale turbulence 2013 US-Japan JIFT workshop on New Aspects of Plasmas Kinetic Simulation NIFS, November 22-23, 2013 Kinetic damping in gyro-kinetic simulation and the role in multi-scale turbulence cf. Revisit for Landau

More information

Lecture 11. Instabilities and transport in burning plasmas. Fulvio Zonca

Lecture 11. Instabilities and transport in burning plasmas. Fulvio Zonca MASTER ENEA Modulo 1 Fisica del Plasma. Confinamento Magnetico Lecture 11 1 Lecture 11 Instabilities and transport in burning plasmas http://www.afs.enea.it/zonca Associazione Euratom-ENEA sulla Fusione,

More information

Wave-particle interactions and nonlinear dynamics in magnetized plasmas

Wave-particle interactions and nonlinear dynamics in magnetized plasmas Mathematics Department Colloquium, Bologna 2015 1 Wave-particle interactions and nonlinear dynamics in magnetized plasmas 1,2 1 ENEA, C.R. Frascati, C.P. 65-00044 - Frascati, Italy. 2 Institute for Fusion

More information

Control of Neo-classical tearing mode (NTM) in advanced scenarios

Control of Neo-classical tearing mode (NTM) in advanced scenarios FIRST CHENGDU THEORY FESTIVAL Control of Neo-classical tearing mode (NTM) in advanced scenarios Zheng-Xiong Wang Dalian University of Technology (DLUT) Dalian, China Chengdu, China, 28 Aug, 2018 Outline

More information

Heating and current drive: Radio Frequency

Heating and current drive: Radio Frequency Heating and current drive: Radio Frequency Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 13 th February 2012 Dr Ben Dudson Magnetic Confinement Fusion (1 of 26)

More information

Edge and Internal Transport Barrier Formations in CHS. Identification of Zonal Flows in CHS and JIPPT-IIU

Edge and Internal Transport Barrier Formations in CHS. Identification of Zonal Flows in CHS and JIPPT-IIU Edge and Internal Transport Barrier Formations in CHS S. Okamura, T. Minami, T. Akiyama, T. Oishi, A. Fujisawa, K. Ida, H. Iguchi, M. Isobe, S. Kado, K. Nagaoka, K. Nakamura, S. Nishimura, K. Matsuoka,

More information

Neutral Beam-Ion Prompt Loss Induced by Alfvén Eigenmodes in DIII-D

Neutral Beam-Ion Prompt Loss Induced by Alfvén Eigenmodes in DIII-D Neutral Beam-Ion Prompt Loss Induced by Alfvén Eigenmodes in DIII-D by X. Chen,1 M.E. Austin,2 R.K. Fisher,3 W.W. Heidbrink,1 G.J. Kramer,4 R. Nazikian,4 D.C. Pace,3 C.C. Petty,3 M.A. Van Zeeland3 1University

More information

Relating the L-H Power Threshold Scaling to Edge Turbulence Dynamics

Relating the L-H Power Threshold Scaling to Edge Turbulence Dynamics Relating the L-H Power Threshold Scaling to Edge Turbulence Dynamics Z. Yan 1, G.R. McKee 1, J.A. Boedo 2, D.L. Rudakov 2, P.H. Diamond 2, G. Tynan 2, R.J. Fonck 1, R.J. Groebner 3, T.H. Osborne 3, and

More information

Gyrokinetic Simulation of Energetic Particle Turbulence and Transport

Gyrokinetic Simulation of Energetic Particle Turbulence and Transport Gyrokinetic Simulation of Energetic Particle Turbulence and Transport Z. Lin for SciDAC GSEP Team PSACI Meeting, 2008 I. Motivation Kinetic Effects of Thermal Particles on EP Physics In a burning plasma

More information

Active and Passive MHD Spectroscopy on Alcator C-Mod

Active and Passive MHD Spectroscopy on Alcator C-Mod Active and Passive MHD Spectroscopy on Alcator C-Mod J A Snipes, D A Schmittdiel, C Boswell, A Fasoli *, W Burke, R S Granetz, R R Parker, S Sharapov #, R Vieira MIT Plasma Science and Fusion Center, Cambridge,

More information

Bursty Transport in Tokamaks with Internal Transport Barriers

Bursty Transport in Tokamaks with Internal Transport Barriers Bursty Transport in Tokamaks with Internal Transport Barriers S. Benkadda 1), O. Agullo 1), P. Beyer 1), N. Bian 1), P. H. Diamond 3), C. Figarella 1), X. Garbet 2), P. Ghendrih 2), V. Grandgirard 1),

More information

Large scale flows and coherent structure phenomena in flute turbulence

Large scale flows and coherent structure phenomena in flute turbulence Large scale flows and coherent structure phenomena in flute turbulence I. Sandberg 1, Zh. N. Andrushcheno, V. P. Pavleno 1 National Technical University of Athens, Association Euratom Hellenic Republic,

More information

Gyrokinetic Theory and Dynamics of the Tokamak Edge

Gyrokinetic Theory and Dynamics of the Tokamak Edge ASDEX Upgrade Gyrokinetic Theory and Dynamics of the Tokamak Edge B. Scott Max Planck Institut für Plasmaphysik D-85748 Garching, Germany PET-15, Sep 2015 these slides: basic processes in the dynamics

More information

Plasma instabilities. Dr Ben Dudson, University of York 1 / 37

Plasma instabilities. Dr Ben Dudson, University of York 1 / 37 Plasma instabilities Dr Ben Dudson, University of York 1 / 37 Previously... Plasma configurations and equilibrium Linear machines, and Stellarators Ideal MHD and the Grad-Shafranov equation Collisional

More information

Advances in stellarator gyrokinetics

Advances in stellarator gyrokinetics Advances in stellarator gyrokinetics Per Helander and T. Bird, F. Jenko, R. Kleiber, G.G. Plunk, J.H.E. Proll, J. Riemann, P. Xanthopoulos 1 Background Wendelstein 7-X will start experiments in 2015 optimised

More information

Turbulence and Transport The Secrets of Magnetic Confinement

Turbulence and Transport The Secrets of Magnetic Confinement Turbulence and Transport The Secrets of Magnetic Confinement Presented by Martin Greenwald MIT Plasma Science & Fusion Center IAP January 2005 FUSION REACTIONS POWER THE STARS AND PRODUCE THE ELEMENTS

More information

Energetic-Ion Driven Alfvén Eigenmodes in Large Helical Device Plasmas with Three-Dimensional Structure and Their Impact on Energetic Ion Transport

Energetic-Ion Driven Alfvén Eigenmodes in Large Helical Device Plasmas with Three-Dimensional Structure and Their Impact on Energetic Ion Transport Energetic-Ion Driven Alfvén Eigenmodes in Large Helical Device Plasmas with Three-Dimensional Structure and Their Impact on Energetic Ion Transport K. Toi, S. Yamamoto 1), N. Nakajima, S. Ohdachi, S. Sakakibara,

More information

C-Mod Transport Program

C-Mod Transport Program C-Mod Transport Program PAC 2006 Presented by Martin Greenwald MIT Plasma Science & Fusion Center 1/26/2006 Introduction Programmatic Focus Transport is a broad topic so where do we focus? Where C-Mod

More information

TURBULENT TRANSPORT THEORY

TURBULENT TRANSPORT THEORY ASDEX Upgrade Max-Planck-Institut für Plasmaphysik TURBULENT TRANSPORT THEORY C. Angioni GYRO, J. Candy and R.E. Waltz, GA The problem of Transport Transport is the physics subject which studies the physical

More information

Studies of Turbulence-driven FLOWs:

Studies of Turbulence-driven FLOWs: Studies of Turbulence-driven FLOWs: a) V ", V Competition in a Tube b) Revisiting Zonal Flow Saturation J.C. Li, P.H. Diamond, R. Hong, G. Tynan University of California San Diego, USA This material is

More information

Edge Zonal Flows and Blob Propagation in Alcator C-Mod P5.073 EPS 2011

Edge Zonal Flows and Blob Propagation in Alcator C-Mod P5.073 EPS 2011 Edge Zonal Flows and Blob Propagation in Alcator C-Mod S.J. Zweben 1, J.L. Terry 2, M. Agostini 3, B. Davis 1, O. Grulke 4,J. Hughes 2, B. LaBombard 2 D.A. D'Ippolito 6, R. Hager 5, J.R. Myra 6, D.A. Russell

More information

Nonlinear Energetic Particle Transport in the Presence of Multiple Alfvénic Waves in ITER. Mirjam Schneller

Nonlinear Energetic Particle Transport in the Presence of Multiple Alfvénic Waves in ITER. Mirjam Schneller Nonlinear Energetic Particle Transport in the Presence of Multiple Alfvénic Waves in ITER Mirjam Schneller Acknowledgements Ph. Lauber 1, S. Briguglio 2, A. Snicker 3,1, X. Wang 1 1 Max-Planck-Institut

More information

Interaction of fast particles and Alfvén modes in burning plasmas

Interaction of fast particles and Alfvén modes in burning plasmas Interaction of fast particles and Alfvén modes in burning plasmas G. Vlad, S. Briguglio, G. Fogaccia and F. Zonca Associazione EURATOM-ENEA, CR ENEA-Frascati, Via E. Fermi 45, 44 Frascati, (Rome) Italy

More information

Gyrokinetic Simulations of Tokamak Microturbulence

Gyrokinetic Simulations of Tokamak Microturbulence Gyrokinetic Simulations of Tokamak Microturbulence W Dorland, Imperial College, London With key contributions from: S C Cowley F Jenko G W Hammett D Mikkelsen B N Rogers C Bourdelle W M Nevins D W Ross

More information

Towards Multiscale Gyrokinetic Simulations of ITER-like Plasmas

Towards Multiscale Gyrokinetic Simulations of ITER-like Plasmas Frank Jenko Max-Planck-Institut für Plasmaphysik, Garching Universität Ulm Towards Multiscale Gyrokinetic Simulations of ITER-like Plasmas 23 rd IAEA Fusion Energy Conference 11-16 October 2010, Daejeon,

More information

Gyrokinetic theory for particle transport in fusion plasmas

Gyrokinetic theory for particle transport in fusion plasmas Gyrokinetic theory for particle transport in fusion plasmas Matteo Valerio Falessi 1,2, Fulvio Zonca 3 1 INFN - Sezione di Roma Tre, Via della Vasca Navale, 84 (00146) Roma (Roma), Italy 2 Dipartimento

More information

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.-J. Zheng Institute for Fusion Studies University of Texas at Austin 12th US-EU Transport Task Force Annual

More information

Nonlinear Simulation of Energetic Particle Modes in JT-60U

Nonlinear Simulation of Energetic Particle Modes in JT-60U TH/P6-7 Nonlinear Simulation of Energetic Particle Modes in JT-6U A.Bierwage,N.Aiba 2, K.Shinohara 2, Y.Todo 3,W.Deng 4,M.Ishikawa 2,G.Matsunaga 2 and M. Yagi Japan Atomic Energy Agency (JAEA), Rokkasho,

More information

On tokamak plasma rotation without the neutral beam torque

On tokamak plasma rotation without the neutral beam torque On tokamak plasma rotation without the neutral beam torque Antti Salmi (VTT) With contributions from T. Tala (VTT), C. Fenzi (CEA) and O. Asunta (Aalto) 2 Motivation: Toroidal rotation Plasma rotation

More information

Kinetic Alfvén waves in space plasmas

Kinetic Alfvén waves in space plasmas Kinetic Alfvén waves in space plasmas Yuriy Voitenko Belgian Institute for Space Aeronomy, Brussels, Belgium Solar-Terrestrial Center of Excellence, Space Pole, Belgium Recent results obtained in collaboration

More information

Observation of modes at frequencies above the Alfvén frequency in JET

Observation of modes at frequencies above the Alfvén frequency in JET Observation of modes at frequencies above the Alfvén frequency in JET F. Nabais 1, D. Borba 1, R. Coelho 1, L. Fazendeiro 1, J. Ferreira 1, A. Figueiredo 1, L. Fitzgerald 2, P. Rodrigues 1, S. Sharapov

More information

Simulation Study of Interaction between Energetic Ions and Alfvén Eigenmodes in LHD

Simulation Study of Interaction between Energetic Ions and Alfvén Eigenmodes in LHD 1 Simulation Study of Interaction between Energetic Ions and Alfvén Eigenmodes in LHD Y. Todo 1), N. Nakajima 1), M. Osakabe 1), S. Yamamoto 2), D. A. Spong 3) 1) National Institute for Fusion Science,

More information

Experimental Achievements on Plasma Confinement and Turbulence

Experimental Achievements on Plasma Confinement and Turbulence Experimental Achievements on Plasma Confinement and Turbulence Akihide Fujisawa National Institute for Fusion Science since ~9 Zonal-flow Helical Plasma ITER- Summer School 28 in Fukuoka Japan Introduction

More information