B.S. Sathyaprakash School of Physics and Astronomy in collaboration with Kamaretsos, Hannam and Husa

Size: px
Start display at page:

Download "B.S. Sathyaprakash School of Physics and Astronomy in collaboration with Kamaretsos, Hannam and Husa"

Transcription

1 Black Holes Ain t Got No Hair But They Do Grin 46th Rencontres De Moriond Gravitational Waves and Experimental Gravity La Thuile, Aosta Valley, Italy March 20-27, 2011 B.S. Sathyaprakash School of Physics and Astronomy in collaboration with Kamaretsos, Hannam and Husa

2 Black Hole No-Hair Theorem

3 Black Hole No-Hair Theorem Perturbed black holes regain their quiescent state by emitting the energy in their deformation as gravitational radiation

4 Black Hole No-Hair Theorem Perturbed black holes regain their quiescent state by emitting the energy in their deformation as gravitational radiation These are called quasi-normal modes (QNM)

5 Black Hole No-Hair Theorem Perturbed black holes regain their quiescent state by emitting the energy in their deformation as gravitational radiation These are called quasi-normal modes (QNM) They are damped sinusoids with characteristic frequencies and decay times which depend on only the mass and spin of the black hole (below assume j=0)

6 Black Hole No-Hair Theorem Perturbed black holes regain their quiescent state by emitting the energy in their deformation as gravitational radiation These are called quasi-normal modes (QNM) They are damped sinusoids with characteristic frequencies and decay times which depend on only the mass and spin of the black hole (below assume j=0) There are infinitely large number of modes. For the dominant mode:

7 Black Hole No-Hair Theorem Perturbed black holes regain their quiescent state by emitting the energy in their deformation as gravitational radiation These are called quasi-normal modes (QNM) They are damped sinusoids with characteristic frequencies and decay times which depend on only the mass and spin of the black hole (below assume j=0) There are infinitely large number of modes. For the dominant mode: h(t) = A e -t/τ cos(ωt+ϕ)

8 Black Hole No-Hair Theorem Perturbed black holes regain their quiescent state by emitting the energy in their deformation as gravitational radiation These are called quasi-normal modes (QNM) They are damped sinusoids with characteristic frequencies and decay times which depend on only the mass and spin of the black hole (below assume j=0) There are infinitely large number of modes. For the dominant mode: h(t) = A e -t/τ cos(ωt+ϕ) f(m, j) = ω/(2π) = 1200 Hz (10 M /M) (2 khz for j=0.9)

9 Black Hole No-Hair Theorem Perturbed black holes regain their quiescent state by emitting the energy in their deformation as gravitational radiation These are called quasi-normal modes (QNM) They are damped sinusoids with characteristic frequencies and decay times which depend on only the mass and spin of the black hole (below assume j=0) There are infinitely large number of modes. For the dominant mode: h(t) = A e -t/τ cos(ωt+ϕ) f(m, j) = ω/(2π) = 1200 Hz (10 M /M) (2 khz for j=0.9) τ(m, j) = 0.55 ms (M/10 M )

10 Black Hole No-Hair Theorem Perturbed black holes regain their quiescent state by emitting the energy in their deformation as gravitational radiation These are called quasi-normal modes (QNM) They are damped sinusoids with characteristic frequencies and decay times which depend on only the mass and spin of the black hole (below assume j=0) There are infinitely large number of modes. For the dominant mode: h(t) = A e -t/τ cos(ωt+ϕ) f(m, j) = ω/(2π) = 1200 Hz (10 M /M) (2 khz for j=0.9) τ(m, j) = 0.55 ms (M/10 M ) Q = τω/2 ~ 2 (for j=0.9, Q=5)

11 Application of Black Hole No-Hair Theorem

12 Application of Black Hole No-Hair Theorem There are infinitely many quasi-normal modes enumerated by integers (l,m,n):

13 Application of Black Hole No-Hair Theorem There are infinitely many quasi-normal modes enumerated by integers (l,m,n): m = -l,..., l and overtones n=1,2,3,...

14 Application of Black Hole No-Hair Theorem There are infinitely many quasi-normal modes enumerated by integers (l,m,n): m = -l,..., l and overtones n=1,2,3,... In general relativity frequencies flmn and decay times τ lmn all depend only on the mass M and spin j of the black hole

15 Application of Black Hole No-Hair Theorem There are infinitely many quasi-normal modes enumerated by integers (l,m,n): m = -l,..., l and overtones n=1,2,3,... In general relativity frequencies flmn and decay times τ lmn all depend only on the mass M and spin j of the black hole All but the n=1 overtones are negligible (very small Q)

16 Application of Black Hole No-Hair Theorem There are infinitely many quasi-normal modes enumerated by integers (l,m,n): m = -l,..., l and overtones n=1,2,3,... In general relativity frequencies flmn and decay times τ lmn all depend only on the mass M and spin j of the black hole All but the n=1 overtones are negligible (very small Q) Measurement of a single mode could give the mass and spin of the black hole

17 Application of Black Hole No-Hair Theorem There are infinitely many quasi-normal modes enumerated by integers (l,m,n): m = -l,..., l and overtones n=1,2,3,... In general relativity frequencies flmn and decay times τ lmn all depend only on the mass M and spin j of the black hole All but the n=1 overtones are negligible (very small Q) Measurement of a single mode could give the mass and spin of the black hole Measuring two or modes would constrain General Relativity or provide smoking gun evidence of black holes

18 Application of Black Hole No-Hair Theorem There are infinitely many quasi-normal modes enumerated by integers (l,m,n): m = -l,..., l and overtones n=1,2,3,... In general relativity frequencies flmn and decay times τ lmn all depend only on the mass M and spin j of the black hole All but the n=1 overtones are negligible (very small Q) Measurement of a single mode could give the mass and spin of the black hole Measuring two or modes would constrain General Relativity or provide smoking gun evidence of black holes If modes depend on other parameters (e.g., the structure of the central object), then test of the consistency between different mode frequencies and damping times would fail

19 Application of Black Hole No-Hair Theorem There are infinitely many quasi-normal modes enumerated by integers (l,m,n): m = -l,..., l and overtones n=1,2,3,... In general relativity frequencies flmn and decay times τ lmn all depend only on the mass M and spin j of the black hole All but the n=1 overtones are negligible (very small Q) Measurement of a single mode could give the mass and spin of the black hole Measuring two or modes would constrain General Relativity or provide smoking gun evidence of black holes If modes depend on other parameters (e.g., the structure of the central object), then test of the consistency between different mode frequencies and damping times would fail Absence of quasi-normal modes after merger would reveal failure of GR

20 Frequency of quasi normal modes Berti, Cardoso and Will

21 Quality Factor of QNMs 2 Q lm = τ lm ω lm. Berti, Cardoso and Will

22 The Grin

23 The Grin No-hair theorem really doesn t apply to deformed BHs

24 The Grin No-hair theorem really doesn t apply to deformed BHs It should be possible to measure not just the mass and spin but also, for instance, the mass ratio of the progenitor binary

25 The Grin No-hair theorem really doesn t apply to deformed BHs It should be possible to measure not just the mass and spin but also, for instance, the mass ratio of the progenitor binary They key is that the amplitude of the modes cary additional information

26 The Grin No-hair theorem really doesn t apply to deformed BHs It should be possible to measure not just the mass and spin but also, for instance, the mass ratio of the progenitor binary They key is that the amplitude of the modes cary additional information They depend on the nature of the perturber

27 The Grin No-hair theorem really doesn t apply to deformed BHs It should be possible to measure not just the mass and spin but also, for instance, the mass ratio of the progenitor binary They key is that the amplitude of the modes cary additional information They depend on the nature of the perturber h(t) = A e -t/τ cos(ωt+ϕ)

28 The Grin No-hair theorem really doesn t apply to deformed BHs It should be possible to measure not just the mass and spin but also, for instance, the mass ratio of the progenitor binary They key is that the amplitude of the modes cary additional information They depend on the nature of the perturber h(t) = A e -t/τ cos(ωt+ϕ) A = A(perturbation) = A(mass ratio)

29 Luminosity in Modes from Numerical Simulations 10 0 L L 33 L 44 q=2 1 1 d relative luminosities L 21 r 33 r 44 r Mt 10 Te

30 Luminosity in Modes from Numerical Simulations 10 0 L L 33 L q=2 q= Absolute and relative luminosities L 21 r 33 r 44 r Mt q= Mt q= Mt Mt

31 Amplitudes of quasi-normal modes Kamaretsos, Hannam, Husa, Sathyaprakash, 2010

32 Amplitudes of quasi-normal modes Using numerical relativity simulations we extracted energy and relative amplitude of various quasi-normal modes Kamaretsos, Hannam, Husa, Sathyaprakash, 2010

33 Amplitudes of quasi-normal modes Using numerical relativity simulations we extracted energy and relative amplitude of various quasi-normal modes Table shows, for different mass ratios (q) the final spin of the black hole, energy in QNM and relative amplitudes of higher order modes 5M after peak luminosity Kamaretsos, Hannam, Husa, Sathyaprakash, 2010

34 Amplitudes of quasi-normal modes Using numerical relativity simulations we extracted energy and relative amplitude of various quasi-normal modes Table shows, for different mass ratios (q) the final spin of the black hole, energy in QNM and relative amplitudes of higher order modes 5M after peak luminosity q j % total energy A 21 /A 22 A 33 /A 22 A 44 /A Kamaretsos, Hannam, Husa, Sathyaprakash, 2010

35 Identifying the beginning of Ringdown

36 Identifying the beginning of Ringdown Plot shows the evolution of different mode frequencies

37 Identifying the beginning of Ringdown Plot shows the evolution of different mode frequencies Modes stabilize about 5-10 M after peak luminosity

38 Identifying the beginning of Ringdown Plot shows the evolution of different mode frequencies Modes stabilize about 5-10 M after peak luminosity Frequencies agree reasonably well with BH perturbation theory

39 Identifying the beginning of Ringdown Plot shows the evolution of different mode frequencies Modes stabilize about 5-10 M after peak luminosity Frequencies agree reasonably well with BH perturbation theory q=2 L 22 f 44 f 33 f 22 f Mt

40 Identifying the beginning of Ringdown Plot shows the evolution of different mode frequencies Modes stabilize about 5-10 M after peak luminosity Frequencies agree reasonably well with BH perturbation theory q=2 L 22 f 44 f 33 f 22 f Mt q j f 22 f 21 f 33 Fit NR Fit NR Fit NR

41 Waveform Models The waveform used in our study is given by h A (t) = l,m>0 B lm D L e t/τ lm cos (ω lm t + γ lm ) B lm = α lm (F A D + Y + ) 2 ( lm + F A Y L [ ] F γ lm = m φ + tan 1 A Y lm F+ A Y +. lm lm) 2, The amplitudes obtained with NR simulations α 22 (q) =0.25 e q/7.5. α 21 (q) =0.18 α 22 (q)(q 1) 1/3, α 33 (q) =0.13 α 22 (q)(q 1) 1/2, α 44 (q) =0.024 α 22 (q) q 3/4.

42 Quasi-Normal Modes in LISA 1.5 Depending on the mass of the black hole, one or more modes could be visible dρ 2 d f (5x10 5, 5x10 6 ) M h t Time s dρ 2 d f Frequency mhz (10 6, 10 7 )M Frequency mhz

43 Visibility of QNM in ET

44 Visibility of QNM in LISA

45 The Grin in ET

46 The Grin in LISA

Mining information from unequal-mass binaries

Mining information from unequal-mass binaries Mining information from unequal-mass binaries U. Sperhake Theoretisch-Physikalisches Institut Friedrich-Schiller Universität Jena SFB/Transregio 7 19 th February 2007 B. Brügmann, J. A. González, M. D.

More information

Mining information from unequal-mass binaries

Mining information from unequal-mass binaries Mining information from unequal-mass binaries U. Sperhake Theoretisch-Physikalisches Institut Friedrich-Schiller Universität Jena SFB/Transregio 7 02 th July 2007 B. Brügmann, J. A. González, M. D. Hannam,

More information

The Quasi-normal Modes of Black Holes Review and Recent Updates

The Quasi-normal Modes of Black Holes Review and Recent Updates Ringdown Inspiral, Merger Context: Quasinormal models resulting from the merger of stellar mass BHs, and learning as much as we can from post-merger (ringdown) signals The Quasi-normal Modes of Black Holes

More information

Binary Black Holes. Deirdre Shoemaker Center for Relativistic Astrophysics School of Physics Georgia Tech

Binary Black Holes. Deirdre Shoemaker Center for Relativistic Astrophysics School of Physics Georgia Tech Binary Black Holes Deirdre Shoemaker Center for Relativistic Astrophysics School of Physics Georgia Tech NR confirmed BBH GW detections LIGO-P150914-v12 Abbott et al. 2016a, PRL 116, 061102 an orbital

More information

Gravitational Wave Memory Revisited:

Gravitational Wave Memory Revisited: Gravitational Wave Memory Revisited: Memory from binary black hole mergers Marc Favata Kavli Institute for Theoretical Physics arxiv:0811.3451 [astro-ph] and arxiv:0812.0069 [gr-qc] What is the GW memory?

More information

What have we learned from coalescing Black Hole binary GW150914

What have we learned from coalescing Black Hole binary GW150914 Stas Babak ( for LIGO and VIRGO collaboration). Albert Einstein Institute (Potsdam-Golm) What have we learned from coalescing Black Hole binary GW150914 LIGO_DCC:G1600346 PRL 116, 061102 (2016) Principles

More information

Gravitational Wave Memory Revisited:

Gravitational Wave Memory Revisited: Gravitational Wave Memory Revisited: Memories from the merger and recoil Marc Favata Kavli Institute for Theoretical Physics Metals have memory too What is the GW memory? Generally think of GW s as oscillating

More information

Fundamental Physics, Astrophysics and Cosmology with ET

Fundamental Physics, Astrophysics and Cosmology with ET Fundamental Physics, Astrophysics and Cosmology with ET B.S. Sathyaprakash (CU) and Bernard Schutz (CU, AEI) based on a Living Review article with a similar title (in preparation) ET Science Summary Fundamental

More information

Fundamental Physics, Cosmology and Astrophysics with Advanced and 3G Detectors

Fundamental Physics, Cosmology and Astrophysics with Advanced and 3G Detectors Fundamental Physics, Cosmology and Astrophysics with Advanced and 3G Detectors B.S. Sathyaprakash GW2010-14-16 October 2010, University of Minnesota, Minneapolis Einstein Telescope Vision Document FP7-funded

More information

Testing relativity with gravitational waves

Testing relativity with gravitational waves Testing relativity with gravitational waves Michał Bejger (CAMK PAN) ECT* workshop New perspectives on Neutron Star Interiors Trento, 10.10.17 (DCC G1701956) Gravitation: Newton vs Einstein Absolute time

More information

Coalescing binary black holes in the extreme mass ratio limit

Coalescing binary black holes in the extreme mass ratio limit Coalescing binary black holes in the extreme mass ratio limit Alessandro Nagar Relativity and Gravitation Group, Politecnico di Torino and INFN, sez. di Torino www.polito.it/relgrav/ alessandro.nagar@polito.it

More information

Key ideas on how inspiral-merger-ringdown waveforms are built within the effective-one-body formalism

Key ideas on how inspiral-merger-ringdown waveforms are built within the effective-one-body formalism Key ideas on how inspiral-merger-ringdown waveforms are built within the effective-one-body formalism Alessandra Buonanno Maryland Center for Fundamental Physics & Joint Space-Science Institute Department

More information

Gravitational Waves. Masaru Shibata U. Tokyo

Gravitational Waves. Masaru Shibata U. Tokyo Gravitational Waves Masaru Shibata U. Tokyo 1. Gravitational wave theory briefly 2. Sources of gravitational waves 2A: High frequency (f > 10 Hz) 2B: Low frequency (f < 10 Hz) (talk 2B only in the case

More information

arxiv:gr-qc/ v1 17 May 2006

arxiv:gr-qc/ v1 17 May 2006 Supermassive black holes or boson stars? Hair counting with gravitational wave detectors arxiv:gr-qc/0605101v1 17 May 2006 Emanuele Berti 1 McDonnell Center for the Space Sciences Department of Physics,

More information

Sources of Gravitational Waves

Sources of Gravitational Waves 1 Sources of Gravitational Waves Joan Centrella Laboratory for High Energy Astrophysics NASA/GSFC Gravitational Interaction of Compact Objects KITP May 12-14, 2003 A Different Type of Astronomical Messenger

More information

Gravitational waves from NS-NS/BH-NS binaries

Gravitational waves from NS-NS/BH-NS binaries Gravitational waves from NS-NS/BH-NS binaries Numerical-relativity simulation Masaru Shibata Yukawa Institute for Theoretical Physics, Kyoto University Y. Sekiguchi, K. Kiuchi, K. Kyutoku,,H. Okawa, K.

More information

Calculating Accurate Waveforms for LIGO and LISA Data Analysis

Calculating Accurate Waveforms for LIGO and LISA Data Analysis Calculating Accurate Waveforms for LIGO and LISA Data Analysis Lee Lindblom Theoretical Astrophysics, Caltech HEPL-KIPAC Seminar, Stanford 17 November 2009 Results from the Caltech/Cornell Numerical Relativity

More information

Effective-One-Body approach to the Two-Body Problem in General Relativity

Effective-One-Body approach to the Two-Body Problem in General Relativity Effective-One-Body approach to the Two-Body Problem in General Relativity Thibault Damour Institut des Hautes Etudes Scientifiques (Bures-sur-Yvette, France) 1 Renewed importance of 2-body problem Gravitational

More information

arxiv: v1 [gr-qc] 24 Jan 2019

arxiv: v1 [gr-qc] 24 Jan 2019 Signature of horizon dynamics in binary black hole gravitational waveforms arxiv:1901.08516v1 [gr-qc] 24 Jan 2019 S. Borhanian, 1, 2 K. G. Arun, 1, 3 H. P. Pfeiffer, 4 1, 2, 5, 6 and B. S. Sathyaprakash

More information

The nonlinear gravitational-wave memory in binary black hole mergers

The nonlinear gravitational-wave memory in binary black hole mergers The nonlinear gravitational-wave memory in binary black hole mergers Marc Favata Kavli Institute for Theoretical Physics University of California, Santa Barbara What is memory? Generally think of GW s

More information

Gravitational-wave Detectability of Equal-Mass Black-hole Binaries With Aligned Spins

Gravitational-wave Detectability of Equal-Mass Black-hole Binaries With Aligned Spins Intro Simulations Results Gravitational-wave Detectability of Equal-Mass Black-hole Binaries With Aligned Spins Jennifer Seiler Christian Reisswig, Sascha Husa, Luciano Rezzolla, Nils Dorband, Denis Pollney

More information

Accurate Phenomenological Waveform Models for BH Coalescence in the Frequency Domain

Accurate Phenomenological Waveform Models for BH Coalescence in the Frequency Domain Accurate Phenomenological Waveform Models for BH Coalescence in the Frequency Domain Goal: synthesize inspiral-merger-ringdown models of the complete WF of Compact Binary Coalescence from pn, NR, BH perturbation

More information

The Dynamical Strong-Field Regime of General Relativity

The Dynamical Strong-Field Regime of General Relativity The Dynamical Strong-Field Regime of General Relativity Frans Pretorius Princeton University IFT Colloquium Sao Paulo, March 30, 2016 Outline General Relativity @100 the dynamical, strong-field regime

More information

Strong field tests of Gravity using Gravitational Wave observations

Strong field tests of Gravity using Gravitational Wave observations Strong field tests of Gravity using Gravitational Wave observations K. G. Arun Chennai Mathematical Institute Astronomy, Cosmology & Fundamental Physics with GWs, 04 March, 2015 indig K G Arun (CMI) Strong

More information

A reduced basis representation for chirp and ringdown gravitational wave templates

A reduced basis representation for chirp and ringdown gravitational wave templates A reduced basis representation for chirp and ringdown gravitational wave templates 1 Sarah Caudill 2 Chad Galley 3 Frank Herrmann 1 Jan Hesthaven 4 Evan Ochsner 5 Manuel Tiglio 1 1 University of Maryland,

More information

Newtonian instantaneous action at a distance General Relativity information carried by gravitational radiation at the speed of light

Newtonian instantaneous action at a distance General Relativity information carried by gravitational radiation at the speed of light Modern View of Gravitation Newtonian instantaneous action at a distance G µ = 8 µ # General Relativity information carried by gravitational radiation at the speed of light Gravitational Waves GR predicts

More information

Gravitational Waves from Boson Stars

Gravitational Waves from Boson Stars Gravitational Waves from Boson Stars Ruxandra Bondarescu (ICG, Portsmouth) Gregory Daues (NCSA) Jayashree Balakrishna (Harris Stowe State U) Edward Seidel (NCSA) CQG 23, 2631 (2006), gr-qc/0602078, Phys.

More information

Black Hole Physics via Gravitational Waves

Black Hole Physics via Gravitational Waves Black Hole Physics via Gravitational Waves Image: Steve Drasco, California Polytechnic State University and MIT How to use gravitational wave observations to probe astrophysical black holes In my entire

More information

Black-hole binaries in Einstein-dilaton Gauss Bonnet gravity

Black-hole binaries in Einstein-dilaton Gauss Bonnet gravity Black-hole binaries in Einstein-dilaton Gauss Bonnet gravity Helvi Witek Theoretical Particle Physics and Cosmology Department of Physics, King s College London work in progress with L. Gualtieri, P. Pani,

More information

Testing the Kerr hypothesis with QNMs and ringdowns

Testing the Kerr hypothesis with QNMs and ringdowns Testing the Kerr hypothesis with QNMs and ringdowns NEB 18, 20-23 September 2018, Rhodes, Greece The Kerr solution Testing the Kerr hypothesis QNMs and ringdown Eikonal limit of QNMs and photon orbits

More information

An eccentric binary black hole inspiral-mergerringdown gravitational waveform model from post- Newtonian and numerical relativity

An eccentric binary black hole inspiral-mergerringdown gravitational waveform model from post- Newtonian and numerical relativity An eccentric binary black hole inspiral-mergerringdown gravitational waveform model from post- Newtonian and numerical relativity Ian Hinder Max Planck Institute for Gravitational Physics (Albert Einstein

More information

BBH coalescence in the small mass ratio limit: Marrying black hole perturbation theory and PN knowledge

BBH coalescence in the small mass ratio limit: Marrying black hole perturbation theory and PN knowledge BBH coalescence in the small mass ratio limit: Marrying black hole perturbation theory and PN knowledge Alessandro Nagar INFN (Italy) and IHES (France) Small mass limit: Nagar Damour Tartaglia 2006 Damour

More information

arxiv: v1 [gr-qc] 26 Sep 2011

arxiv: v1 [gr-qc] 26 Sep 2011 Reduced Basis representations of multi-mode black hole ringdown gravitational waves Sarah Caudill, 1 Scott E. Field, 2, 3 Chad R. Galley, 4, 5 Frank Herrmann, 3 and Manuel Tiglio 3 1 Department of Physics

More information

Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 1

Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 1 1 Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 1 Joan Centrella Chief, Gravitational Astrophysics Laboratory NASA/GSFC Summer School on Nuclear and Particle Astrophysics: Connecting

More information

Exploring fundamental physics with gravitational waves

Exploring fundamental physics with gravitational waves Exploring fundamental physics with gravitational waves Archil Kobakhidze 2 nd World Summit on Exploring the Dark Side of The Universe 25-29 June, Guadeloupe Outline Gravitational waves as a testing ground

More information

Probing Relativistic Gravity with the Double Pulsar

Probing Relativistic Gravity with the Double Pulsar Probing Relativistic Gravity with the Double Pulsar Marta Burgay INAF Osservatorio Astronomico di Cagliari The spin period of the original millisecond pulsar PSR B1937+21: P = 0.0015578064924327 ± 0.0000000000000004

More information

Observing Massive Black Hole Binary Coalescence with LISA

Observing Massive Black Hole Binary Coalescence with LISA Observing Massive Black Hole Binary Coalescence with LISA Joan Centrella John Baker NASA/GSFC GSFC - JPL 5 th International LISA Symposium ESTEC July 12-15, 2004 Massive Black Hole Mergers MBHs lurk at

More information

Gravitational-wave radiation from merging binary black holes and Supernovae. I. Kamaretsos

Gravitational-wave radiation from merging binary black holes and Supernovae. I. Kamaretsos Gravitational-wave radiation from merging binary black holes and Supernovae I. Kamaretsos Submitted for the degree of Doctor of Philosophy School of Physics and Astronomy Cardiff University October 2012

More information

arxiv: v2 [gr-qc] 18 Mar 2012

arxiv: v2 [gr-qc] 18 Mar 2012 Reduced Basis representations of multi-mode black hole ringdown gravitational waves Sarah Caudill, 1 Scott E. Field, 2, 3 Chad R. Galley, 4, 5 Frank Herrmann, 3 and Manuel Tiglio 3 1 Department of Physics

More information

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral Lazzaro Claudia for the LIGO Scientific Collaboration and the Virgo Collaboration 25 October 2017 GW170817 PhysRevLett.119.161101

More information

Waveforms produced by a particle plunging into a black hole in massive gravity : Excitation of quasibound states and quasinormal modes

Waveforms produced by a particle plunging into a black hole in massive gravity : Excitation of quasibound states and quasinormal modes Waveforms produced by a particle plunging into a black hole in massive gravity : Excitation of quasibound states and quasinormal modes Mohamed OULD EL HADJ Université de Corse, Corte, France Projet : COMPA

More information

Searching for Gravitational Waves from Coalescing Binary Systems

Searching for Gravitational Waves from Coalescing Binary Systems Searching for Gravitational Waves from Coalescing Binary Systems Stephen Fairhurst Cardiff University and LIGO Scientific Collaboration 1 Outline Motivation Searching for Coalescing Binaries Latest Results

More information

Analytic methods in the age of numerical relativity

Analytic methods in the age of numerical relativity Analytic methods in the age of numerical relativity vs. Marc Favata Kavli Institute for Theoretical Physics University of California, Santa Barbara Motivation: Modeling the emission of gravitational waves

More information

The Lazarus Project. Black Hole Mergers: from simulation to observation

The Lazarus Project. Black Hole Mergers: from simulation to observation Built a model for binary black hole mergers which incorporate the best information available Use Lazarus results explore the interface between source modeling, data analysis The Lazarus Project Black Hole

More information

Decoding binary black hole mergers. Neil J. Cornish Montana State

Decoding binary black hole mergers. Neil J. Cornish Montana State Decoding binary black hole mergers Neil J. Cornish Montana State Outline Anatomy of a comparable mass binary BH signal Inspiral, merger and ringdown Amplitude corrections and spin Detector response Orbital

More information

Discovering new physics with GW observations. Richard Brito Max Planck Institute for Gravitational Physics (Potsdam)

Discovering new physics with GW observations. Richard Brito Max Planck Institute for Gravitational Physics (Potsdam) Discovering new physics with GW observations Richard Brito Max Planck Institute for Gravitational Physics (Potsdam) New Physics? Pillars of modern physics: General Relativity + Standard Model of Particle

More information

On quasi-normal modes, area quantization and Bohr correspondence principle

On quasi-normal modes, area quantization and Bohr correspondence principle On quasi-normal modes, area quantization and Bohr correspondence principle October 27, 2014 Dipartimento di Scienze, Istituto Universitario di Ricerca "Santa Rita", 59100 Prato, Italy Institute for Theoretical

More information

I. Introduction. *

I. Introduction. * Gravitational Wave Detection in the Introductory Lab Lior M. Burko * School of Science and Technology, Georgia Gwinnett College, Lawrenceville, Georgia 30043 February 14, 2016; Revised March 22, 2016 I.

More information

How do black hole binaries form? Studying stellar evolution with gravitational wave observations

How do black hole binaries form? Studying stellar evolution with gravitational wave observations How do black hole binaries form? Studying stellar evolution with gravitational wave observations Irina Dvorkin (Institut d Astrophysique de Paris) with: Joe Silk, Elisabeth Vangioni, Jean-Philippe Uzan,

More information

Compact Binaries as Gravitational-Wave Sources

Compact Binaries as Gravitational-Wave Sources Compact Binaries as Gravitational-Wave Sources Chunglee Kim Lund Observatory Extreme Astrophysics for All 10 February, 2009 Outline Introduction Double-neutron-star systems = NS-NS binaries Neutron star

More information

POST-NEWTONIAN THEORY VERSUS BLACK HOLE PERTURBATIONS

POST-NEWTONIAN THEORY VERSUS BLACK HOLE PERTURBATIONS Rencontres du Vietnam Hot Topics in General Relativity & Gravitation POST-NEWTONIAN THEORY VERSUS BLACK HOLE PERTURBATIONS Luc Blanchet Gravitation et Cosmologie (GRεCO) Institut d Astrophysique de Paris

More information

arxiv: v1 [gr-qc] 11 Aug 2017

arxiv: v1 [gr-qc] 11 Aug 2017 Accurate inspiral-merger-ringdown gravitational waveforms for non-spinning black-hole binaries including the effect of subdominant modes Ajit Kumar Mehta, 1 Chandra Kant Mishra, 1, Vijay Varma, 3, 1 and

More information

Gravitational Waves & Intermediate Mass Black Holes. Lee Samuel Finn Center for Gravitational Wave Physics

Gravitational Waves & Intermediate Mass Black Holes. Lee Samuel Finn Center for Gravitational Wave Physics Gravitational Waves & Intermediate Mass Black Holes Lee Samuel Finn Center for Gravitational Wave Physics Outline What are gravitational waves? How are they produced? How are they detected? Gravitational

More information

GRAVITATIONAL WAVE SOURCES AND RATES FOR LISA

GRAVITATIONAL WAVE SOURCES AND RATES FOR LISA GRAVITATIONAL WAVE SOURCES AND RATES FOR LISA W. Z. Korth, PHZ6607, Fall 2008 Outline Introduction What is LISA? Gravitational waves Characteristics Detection (LISA design) Sources Stochastic Monochromatic

More information

Supplementary material for Black Hole Spectroscopy with Coherent Mode Stacking. Details in deriving the hypothesis test

Supplementary material for Black Hole Spectroscopy with Coherent Mode Stacking. Details in deriving the hypothesis test 1 Supplementary material for Black Hole Spectroscopy with Coherent Mode Stacking Details in deriving the hypothesis test The Generalized Likelihood Ratio Test (GLRT) was first presented in [1] and applied

More information

Gravitational waves, solitons, and causality in modified gravity

Gravitational waves, solitons, and causality in modified gravity Gravitational waves, solitons, and causality in modified gravity Arthur Suvorov University of Melbourne December 14, 2017 1 of 14 General ideas of causality Causality as a hand wave Two events are causally

More information

Synergy with Gravitational Waves

Synergy with Gravitational Waves Synergy with Gravitational Waves Alexandre Le Tiec and Jérôme Novak Laboratoire Univers et Théories Observatoire de Paris / CNRS LIGO, Virgo, ( elisa, ET,... ( What is a gravitational wave? A gravitational

More information

Matched filtering and parameter estimation of ringdown waveforms

Matched filtering and parameter estimation of ringdown waveforms PHYSICAL REVIEW D 76, (7) Matched filtering and parameter estimation of ringdown waveforms Emanuele Berti* McDonnell Center for the Space Sciences, Department of Physics, Washington University, St. Louis,

More information

Analytic methods in the age of numerical relativity

Analytic methods in the age of numerical relativity Analytic methods in the age of numerical relativity vs. Marc Favata Kavli Institute for Theoretical Physics University of California, Santa Barbara Motivation: Modeling the emission of gravitational waves

More information

arxiv: v1 [gr-qc] 17 Jun 2014

arxiv: v1 [gr-qc] 17 Jun 2014 Quasinormal Modes Beyond Kerr Aaron Zimmerman, Huan Yang, Zachary Mark, Yanbei Chen, Luis Lehner arxiv:1406.4206v1 [gr-qc] 17 Jun 2014 Abstract he quasinormal modes (QNMs) of a black hole spacetime are

More information

Pulsar Glitches: Gravitational waves at r-modes frequencies

Pulsar Glitches: Gravitational waves at r-modes frequencies Pulsar Glitches: Gravitational waves at r-modes frequencies LIGO-G1100022 I. Santiago 1, J. Clark 2, I. Heng 1, I. Jones 3, Graham Woan 1 1 University of Glasgow, 2 Cardiff University, 3 University of

More information

Astrophysics to z~10 with Gravitational Waves

Astrophysics to z~10 with Gravitational Waves Astrophysics to z~10 with Gravitational Waves Robin Stebbins U.S. LISA Project Scientist University of Maryland Physics Seminar College Park, MD 1 May 2007 My Problem Gravitational wave detection is capability-driven,

More information

Testing GR with Compact Object Binary Mergers

Testing GR with Compact Object Binary Mergers Testing GR with Compact Object Binary Mergers Frans Pretorius Princeton University The Seventh Harvard-Smithsonian Conference on Theoretical Astrophysics : Testing GR with Astrophysical Systems May 16,

More information

Gravitational Wave Background Radiation from Supermassive Black Hole Binaries on Eccentric Orbits

Gravitational Wave Background Radiation from Supermassive Black Hole Binaries on Eccentric Orbits Gravitational Wave Background Radiation from Supermassive Black Hole Binaries on Eccentric Orbits Motohiro ENOKI (National Astronomical Observatory of Japan) & Masahiro NAGASHIMA (Nagasaki University)

More information

The Potential for Very High Frequency Gravitational Wave Science. Mike Cruise University of Birmingham GPhyS 2010 [In memory of P.

The Potential for Very High Frequency Gravitational Wave Science. Mike Cruise University of Birmingham GPhyS 2010 [In memory of P. The Potential for Very High Frequency Gravitational Wave Science Mike Cruise University of Birmingham GPhyS 2010 [In memory of P.Tourrenc] LISA, LIGO and VIRGO The obvious sources of gravitational waves

More information

Kicked Waveforms Observing Black Hole Recoils in Gravitational Wave Signals

Kicked Waveforms Observing Black Hole Recoils in Gravitational Wave Signals Kicked Waveforms Observing Black Hole Recoils in Gravitational Wave Signals Christopher Moore, DAMTP, Cambridge, UK StronG BaD, Mississippi 1st March 2017 Work done in collaboration with Davide Gerosa

More information

Waveform modeling for LIGO parameter estimation: status & challenges for LISA Prayush Kumar Cornell University

Waveform modeling for LIGO parameter estimation: status & challenges for LISA Prayush Kumar Cornell University Waveform modeling for LIGO parameter estimation: status & challenges for LISA Prayush Kumar Cornell University The Architecture of LISA Science Analysis: Imagining the Future January 16-19, 2018 1 Outline

More information

When one black hole is not like the other

When one black hole is not like the other When one black hole is not like the other Cal Poly, San Luis Obispo Center for Computational Relativity and Gravitation Rochester Institute of Technology 13 December 2010 Current gravitational-wave searches

More information

Gravitational waves from bubble collisions

Gravitational waves from bubble collisions Gravitational waves from bubble collisions Thomas Konstandin in collaboration with S. Huber 0709.2091, 0806.1828 Outline 1 Introduction 2 Specific models 3 GWs from bubbles collisions 4 Conclusions Why

More information

Overview of future interferometric GW detectors

Overview of future interferometric GW detectors Overview of future interferometric GW detectors Giovanni Andrea Prodi, University of Trento and INFN, many credits to Michele Punturo, INFN Perugia New perspectives on Neutron Star Interiors Oct.9-13 2017,

More information

Black-hole binary inspiral and merger in scalar-tensor theory of gravity

Black-hole binary inspiral and merger in scalar-tensor theory of gravity Black-hole binary inspiral and merger in scalar-tensor theory of gravity U. Sperhake DAMTP, University of Cambridge General Relativity Seminar, DAMTP, University of Cambridge 24 th January 2014 U. Sperhake

More information

Overview and Innerview of Black Holes

Overview and Innerview of Black Holes Overview and Innerview of Black Holes Kip S. Thorne, Caltech Beyond Einstein: From the Big Bang to Black Holes SLAC, 14 May 2004 1 Black Hole Created by Implosion of a Star Our Focus: quiescent black hole

More information

Applications of Neutron-Star Universal Relations to Gravitational Wave Observations

Applications of Neutron-Star Universal Relations to Gravitational Wave Observations Applications of Neutron-Star Universal Relations to Gravitational Wave Observations Department of Physics, Montana State University INT, Univ. of Washington, Seattle July 3rd 2014 Universal Relations:

More information

Bayesian methods in the search for gravitational waves

Bayesian methods in the search for gravitational waves Bayesian methods in the search for gravitational waves Reinhard Prix Albert-Einstein-Institut Hannover Bayes forum Garching, Oct 7 2016 Statistics as applied Probability Theory Probability Theory: extends

More information

Gravity s Standard Sirens. B.S. Sathyaprakash School of Physics and Astronomy

Gravity s Standard Sirens. B.S. Sathyaprakash School of Physics and Astronomy Gravity s Standard Sirens B.S. Sathyaprakash School of Physics and Astronomy What this talk is about Introduction to Gravitational Waves What are gravitational waves Gravitational wave detectors: Current

More information

Noncommutative Scalar Quasinormal Modes of the ReissnerNordström Black Hole

Noncommutative Scalar Quasinormal Modes of the ReissnerNordström Black Hole Corfu Summer Institute Training School Quantum Spacetime and Physics Models Corfu, September 16-23, 2017 Noncommutative Scalar Quasinormal Modes of the ReissnerNordström Black Hole University of Belgrade,

More information

EINSTEIN TELESCOPE rd. 3 generation GW detector

EINSTEIN TELESCOPE rd. 3 generation GW detector EINSTEIN TELESCOPE rd 3 generation GW detector http://www.et-gw.eu/ Dorota Gondek-Rosińska University of Zielona Góra w imieniu polskiego ET konsorcjum (UW, UZG, UwB, PW, CAMK, IMPAN ) Gravitational wave

More information

The direct detection of gravitational waves: The first discovery, and what the future might bring

The direct detection of gravitational waves: The first discovery, and what the future might bring The direct detection of gravitational waves: The first discovery, and what the future might bring Chris Van Den Broeck Nikhef - National Institute for Subatomic Physics Amsterdam, The Netherlands Physics

More information

Kent Yagi BLACK HOLE SOLUTION AND BINARY GRAVITATIONAL WAVES IN DYNAMICAL CHERN-SIMONS GRAVITY. (Montana State University)

Kent Yagi BLACK HOLE SOLUTION AND BINARY GRAVITATIONAL WAVES IN DYNAMICAL CHERN-SIMONS GRAVITY. (Montana State University) BLACK HOLE SOLUTION AND BINARY GRAVITATIONAL WAVES IN DYNAMICAL CHERN-SIMONS GRAVITY JGRG22 @ University of Tokyo November 13 th 2012 Kent Yagi (Montana State University) Collaborators: Nicolas Yunes (Montana

More information

Ref. PRL 107, (2011)

Ref. PRL 107, (2011) Kenta Kiuchi, Y. Sekiguchi, K. Kyutoku, M. Shibata Ref. PRL 107, 051102 (2011) Y TP YUKAWA INSTITUTE FOR THEORETICAL PHYSICS Introduction Coalescence of binary neutron stars Promising source of GWs Verification

More information

Gravitational Waves in General Relativity (Einstein 1916,1918) gij = δij + hij. hij: transverse, traceless and propagates at v=c

Gravitational Waves in General Relativity (Einstein 1916,1918) gij = δij + hij. hij: transverse, traceless and propagates at v=c Gravitational Waves in General Relativity (Einstein 1916,1918) gij = δij + hij hij: transverse, traceless and propagates at v=c 1 Gravitational Waves: pioneering their detection Joseph Weber (1919-2000)

More information

GW Observation of Gravitational Waves from a Binary Black Hole Merger

GW Observation of Gravitational Waves from a Binary Black Hole Merger GW150914 Observation of Gravitational Waves from a Binary Black Hole Merger F. Marion for the LIGO Scientific Collaboration and the Virgo Collaboration Seminar at CPPM, 2016 March 3 Introduction Sources

More information

Solving the binary black hole problem (again and again and again...)

Solving the binary black hole problem (again and again and again...) Solving the binary black hole problem (again and again and again...) Mark Hannam Cardiff University ACCGR Workshop Brown University, May 21 2011 Mark Hannam (Cardiff) ACCGR Workshop, Brown University 1

More information

Ballistic orbits for Gravitational Waves

Ballistic orbits for Gravitational Waves for Gravitational Waves Giuseppe d'ambrosi Jan-Willem van Holten [arxiv:1406.4282] Kyoto 02-07-2015 18th Capra meeting on Radiation Reaction in GR 1 2 3 Giuseppe d'ambrosi for Gravitational Waves 2 Black

More information

Gravitational waves. Markus Pössel. What they are, how to detect them, and what they re good for. MPIA, March 11, 2016.

Gravitational waves. Markus Pössel. What they are, how to detect them, and what they re good for. MPIA, March 11, 2016. What they are, how to detect them, and what they re good for AstroTechTalk MPIA, March 11, 2016 General relativity Interferometric detectors First direct detection What s next? Einstein s general theory

More information

arxiv: v1 [gr-qc] 3 Apr 2008

arxiv: v1 [gr-qc] 3 Apr 2008 LISA parameter estimation of supermassive black holes arxiv:84.49v1 [gr-qc] 3 Apr 8 1. Introduction Miquel Trias 1 and Alicia M. Sintes 1, 1 Departament de Física, Universitat de les Illes Balears, Cra.

More information

Response of the Brazilian gravitational wave detector to signals from a black hole ringdown

Response of the Brazilian gravitational wave detector to signals from a black hole ringdown Response of the Brazilian gravitational wave detector to signals from a black hole ringdown César A. Costa and Odylio D. Aguiar E-mail: cesar@das.inpe.br and odylio@das.inpe.br Instituto Nacional de Pesquisas

More information

arxiv: v2 [gr-qc] 28 Mar 2012

arxiv: v2 [gr-qc] 28 Mar 2012 Generic bounds on dipolar gravitational radiation from inspiralling compact binaries arxiv:1202.5911v2 [gr-qc] 28 Mar 2012 K. G. Arun 1 E-mail: kgarun@cmi.ac.in 1 Chennai Mathematical Institute, Siruseri,

More information

Gravitational waveforms for data analysis of spinning binary black holes

Gravitational waveforms for data analysis of spinning binary black holes Gravitational waveforms for data analysis of spinning binary black holes Andrea Taracchini (Max Planck Institute for Gravitational Physics, Albert Einstein Institute Potsdam, Germany) [https://dcc.ligo.org/g1700243]

More information

A synthetic model of the gravitational wave background from evolving binary compact objects

A synthetic model of the gravitational wave background from evolving binary compact objects A synthetic model of the gravitational wave background from evolving binary compact objects Irina Dvorkin, Jean-Philippe Uzan, Elisabeth Vangioni, Joe Silk (Institut d Astrophysique de Paris) [arxiv:1607.06818]

More information

Gravitational radiation from compact binaries in scalar-tensor gravity

Gravitational radiation from compact binaries in scalar-tensor gravity Gravitational radiation from compact binaries in scalar-tensor gravity Ryan Lang University of Florida 10th International LISA Symposium May 23, 2014 Testing general relativity General relativity has withstood

More information

Present and Future. Nergis Mavalvala October 09, 2002

Present and Future. Nergis Mavalvala October 09, 2002 Gravitational-wave Detection with Interferometers Present and Future Nergis Mavalvala October 09, 2002 1 Interferometric Detectors Worldwide LIGO TAMA LISA LIGO VIRGO GEO 2 Global network of detectors

More information

Stellar-Mass Black Holes

Stellar-Mass Black Holes Stellar-Mass Black Holes General relativity Hawking radiation Gravitational waves 15 February 2018 University of Rochester Escape velocities from stars 15 February 2018 (UR) Astronomy 142 Spring 2018 2

More information

GW150914: Observation of gravitational waves from a binary black hole merger

GW150914: Observation of gravitational waves from a binary black hole merger IL NUOVO CIMENTO 39 C (2016) 310 DOI 10.1393/ncc/i2016-16310-2 Colloquia: La Thuile 2016 GW150914: Observation of gravitational waves from a binary black hole merger F. Marion on behalf of the LIGO Scientific

More information

Gravitational Wave Astronomy the sound of spacetime. Marc Favata Kavli Institute for Theoretical Physics

Gravitational Wave Astronomy the sound of spacetime. Marc Favata Kavli Institute for Theoretical Physics Gravitational Wave Astronomy the sound of spacetime Marc Favata Kavli Institute for Theoretical Physics What are gravitational waves? Oscillations in the gravitational field ripples in the curvature of

More information

Sources of Gravitational Waves

Sources of Gravitational Waves Optical afterglow of GRB 050709 Hubble image 5.6 days after initial gamma-ray burst (Credit: Derek Fox / Penn State University) Sources of Gravitational Waves Peter Shawhan SLAC Summer Institute August

More information

Jonathan Thornburg. Barry Wardell

Jonathan Thornburg. Barry Wardell Scalar self-force for highly eccentric orbits in Kerr spacetime Jonathan Thornburg in collaboration with Barry Wardell Department of Astronomy and Center for Spacetime Symmetries Indiana University Bloomington,

More information

POST-NEWTONIAN METHODS AND APPLICATIONS. Luc Blanchet. 4 novembre 2009

POST-NEWTONIAN METHODS AND APPLICATIONS. Luc Blanchet. 4 novembre 2009 POST-NEWTONIAN METHODS AND APPLICATIONS Luc Blanchet Gravitation et Cosmologie (GRεCO) Institut d Astrophysique de Paris 4 novembre 2009 Luc Blanchet (GRεCO) Post-Newtonian methods and applications Chevaleret

More information

LIGO Observational Results

LIGO Observational Results LIGO Observational Results Patrick Brady University of Wisconsin Milwaukee on behalf of LIGO Scientific Collaboration LIGO Science Goals Direct verification of two dramatic predictions of Einstein s general

More information

Non-Rotating BTZ Black Hole Area Spectrum from Quasi-normal Modes

Non-Rotating BTZ Black Hole Area Spectrum from Quasi-normal Modes Non-Rotating BTZ Black Hole Area Spectrum from Quasi-normal Modes arxiv:hep-th/0311221v2 17 Jan 2004 M.R. Setare Physics Dept. Inst. for Studies in Theo. Physics and Mathematics(IPM) P. O. Box 19395-5531,

More information