F-Praktikum Physikalisches Institut (PI) Stark korrelierte Elektronen und Spins. Report

Size: px
Start display at page:

Download "F-Praktikum Physikalisches Institut (PI) Stark korrelierte Elektronen und Spins. Report"

Transcription

1 F-Praktikum Physikalisches Institut (PI) Stark korrelierte Elektronen und Spins Report Experiment Schallausbreitung in Kristallen (Sound Propagation in Crystals) Intsar Bangwi Physics bachelor 5. term Sven Köppel Physics bachelor 5. term Date of execution: Montag, , 09:00-11:00 Date of paper submission: Montag, Assigned tutor: Protocol author: Language: Daily report: Length of report: Thanh Cong Pham Room No..:.323, Phone: Sven Köppel English 1 page (1 sheet), attached 6 pages

2 Abstract This experiment is about sound propagation in solid state bodies and isotropic media. The sound velocity and elastic constants of LiF are measured by using piezo transducers. Theoretical Background Simple lattice applications: Density of LiF Lithium fluoride is an inorganic compound with a Face-centered cubic crystal structure (fcc). Knowing the lattice parameter a=0,401 nm 19 6,94 and the atomic masses of 9 F and 3Li, we can easily calculate the density of LiF: An elementary unit consists of 4 Li + 4 F atoms (see ill. 1) in the volumina V =a 3 =64, m 3, so we get the density : = 4 M 4 M Li F 4 19 u 4 6,04u = =2,679 g V N A V cm 3 (This matches very well the experimental value of exp =2.635 g cm 3 ) The elastic constants Sound propagation in solid states can be explained with the simple model of linking adjacent atoms in the lattice structure together with springs, that is, harmonic oscillators. A sound wave (with 10 6 cm ) thus can be expressed with infitesimal displacements. This model is called linear elasticity theory and is basically described with Hooke's law, T =C, having T (Cauchy stress tensor), C (Stiffness tensor) and (infinitesimal strain tensor) all being higher order mathematical objects. Starting from this equation (or rather formalism), I want to derice the different elastic constants in a fcc crystal lattice. We can write the stain tensor like =[ xx xy xz yx yy yz zx zy zz] and describe general infinitesimal movements (whenever the body is expanded or compressed) with a vector field R r which describes the movement of every point in the lattice structure: R r =u r x v r y w r z This movement can also be expressed with the stain tensor as R r = r. Now we can identify the components to express the stain tensor through the u,v,w scalar fields which yields equations like xx = u x or xy yx xy = u y v x (9 equations in total). Illustration 1: fcc system Source: English Wikipedia, (File:Lattice_face_centered_cub ic.svg), BSD license, Copyright 2010 Baszoetekouw F-Praktikum (PI), Schallausbreitung in Kristallen: The elastic constants Page 2 of 6

3 The mixed terms are first-order taylor approximations which are sufficient in an infitesimal displacement. We notice that we got a symmetrical tensor = T and thus only 6 independent dimensionless coefficients which fully describe the movement of the solid state body. We can introduce the stress tensor T; the component T xy describes the force in x direction on a per unit area which normal shows into y direction. The 9 components of tensor can be directly reduced to 6 independent components by requiring the angular acceleration to vanish. Using the symmetry of the fcc lattice, we can reduce the 36 equations which are expressed in T =C to only a very few independent ones, yielding the equation set C12 C C 12 C 11 C C T 12 C 12 C =[C C C C 44] Inversing this matrix immediately gives us C 44 =1/T 44, C 11 C 12 = T 11 T 12 1, C 11 2C 12 = T 11 2T 12 1 Following this, we just need a way to express the stress tensor throught the external sound waves (in other words, their velocity). This can be performed by using Newton's Second Law which combines mass density and acceleration t 2 u to the offending forces T, e.g. in x direction: 2 u t = T xx 2 x T xy y T xz z Thus we can study waves in different [hkl] directions. In our experimental setup the sound waves propagate in [110] direction, yielding these simple equations: v L 2 = 1 2 C 11 C 12 2C 44 v 2 T 1 =C 44 v 2 T 2 = 1 2 C 11 C 12 F-Praktikum (PI), Schallausbreitung in Kristallen: The elastic constants Page 3 of 6

4 Measuring setup The crystal probe has a trapezoidal profile (ill. 2). There are three piezo elements (quartz crystal ultrasonic transducers) embedded (numbered 1, 2 and 3). They all emit ultrasonic waves parallel to the [110] layer, but with different polarizations (two transverally and one longitudinally polarized ones). These probes are coupled with BNC connectors to power amplifiers both on sending and recieving sides. A pulse generator creates very short 1,2us square-waves. With a diode circuit the high level ramp is used to cut out short wave packages from a high frequency generator which are inserted amplified into the quartz crystal transducer. Using another diode blender and a low-pass filter, we get an output voltage level which can be compared to the pulse generator. On this scale the original signal, the transit signal and various numbers of echos should be visible. The times between these signals are meant to be measured (with an oscilloscope) and can be used to calculate the sound veolcity in the LiF crystal. Execution Illustration 2: Cut of the LiF crystal probe Source: Experimental manual In this experiment there are two methods to measure the sound veolcity. The first is called waytime-method and is fully described by the most simple formula of mechanics: v= L T 0 where L is the length of the way the signal has travelled in time T 0. In our setup, the wave propagates throught the whole crystal, so we measure L=13,7 mm. In the second way we don't measure time distances on the oscilloscope, but look directly at the output signal of the crystal (before low-pass). The propagating wave can be described at the origin with the ansatz x 1 = A sin t. After transmitting throught the crystal, it looks like x 2 = A sin t L/v. So there is a phase difference of = 2 1 = L v =2 f L v If we tune the output frequency from the HF generator slowly, we change the wave form to anything like x = A sin 2 t. By looking closely to the oscilloscope, =2 can be archived (the waves look like each other), which yields =2 =2 f 1 f 2 L v This gives us another nice and quite easy way to read the sound velocity v from the oscilloscope: v= f 1 f 2 L F-Praktikum (PI), Schallausbreitung in Kristallen: Execution Page 4 of 6

5 Measurement retults Connection Piezo 1 1. method v=l/t 0 T 0 = 4±0.5 µs v 1 =3425 m/s 2. method v= f 1 f 2 L f =0,23Mhz v 1 =3151 m/s Average c= v 2, =2635kg/m 3 v 1 =3288m/s c T 2 =28GPa Piezo 2 T 0 = 3±0.5 µs v 2 =4566 m/s f =0,33Mhz v 2 =4521 m /s v 2 =4544 m/s c T 1 =54GPa Piezo 3 T 0 = 2±0.5 µs v 3 =6850 m/s f =0,51Mhz v 3 =6987 m/s v 3 =6919m/s c L =126GPa Inserting these values in the equations v L 2 = 1 2 C 11 C 12 2C 44 v 2 T 1 =C 44 v 2 T 2 = 1 2 C C immediately gives us the results: C xy experimental Literature value Quality ( C lit C exp /C lit ) C GPa 62 GPa 12% C GPa 112 GPa 10% C GPa 42 GPa 1% Conclusions This was a quite short and interesting experiment. Of course the results are not very exact, since the values were just read with the naked eye, and there was a lot of noise, espacially at the phase difference method. However it is quite incredible how well such material constants can be determined using these methods. F-Praktikum (PI), Schallausbreitung in Kristallen: Conclusions Page 5 of 6

6 APPENDIX: Handwritten report of the day F-Praktikum (PI), Schallausbreitung in Kristallen: APPENDIX: Handwritten report of the day Page 6 of 6

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16.

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16. CAVITY INSPECTION NDT&E Methods: UT VJ Technologies NDT&E Methods: UT 6. NDT&E: Introduction to Methods 6.1. Ultrasonic Testing: Basics of Elasto-Dynamics 6.2. Principles of Measurement 6.3. The Pulse-Echo

More information

Orientation of Piezoelectric Crystals and Acoustic Wave Propagation

Orientation of Piezoelectric Crystals and Acoustic Wave Propagation Orientation of Piezoelectric Crystals and Acoustic Wave Propagation Guigen Zhang Department of Bioengineering Department of Electrical and Computer Engineering Institute for Biological Interfaces of Engineering

More information

Introduction to Seismology Spring 2008

Introduction to Seismology Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 12.510 Introduction to Seismology Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Stress and Strain

More information

Chapter 1 Fluid Characteristics

Chapter 1 Fluid Characteristics Chapter 1 Fluid Characteristics 1.1 Introduction 1.1.1 Phases Solid increasing increasing spacing and intermolecular liquid latitude of cohesive Fluid gas (vapor) molecular force plasma motion 1.1.2 Fluidity

More information

Chapter 2 Governing Equations

Chapter 2 Governing Equations Chapter Governing Equations Abstract In this chapter fundamental governing equations for propagation of a harmonic disturbance on the surface of an elastic half-space is presented. The elastic media is

More information

Basic Equations of Elasticity

Basic Equations of Elasticity A Basic Equations of Elasticity A.1 STRESS The state of stress at any point in a loaded bo is defined completely in terms of the nine components of stress: σ xx,σ yy,σ zz,σ xy,σ yx,σ yz,σ zy,σ zx,andσ

More information

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condensed Matter Physics Elasticity M.P. Vaughan Overview Overview of elasticity Classical description of elasticity Speed of sound Strain Stress Young s modulus Shear modulus Poisson ratio

More information

DROP-WEIGHT SYSTEM FOR DYNAMIC PRESSURE CALIBRATION

DROP-WEIGHT SYSTEM FOR DYNAMIC PRESSURE CALIBRATION DROP-WIGHT SYSTM FOR DYNAMIC PRSSUR CALIBRATION Antti Lakka and Sari Saxholm MIKS, Centre for Metrology and Accreditation P.O. Box 9 (Tekniikantie 1) FI-2151 spoo Finland telephone: +358-29-554456, e-mail:

More information

Solid State Theory Physics 545

Solid State Theory Physics 545 olid tate Theory hysics 545 Mechanical properties of materials. Basics. tress and strain. Basic definitions. Normal and hear stresses. Elastic constants. tress tensor. Young modulus. rystal symmetry and

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2007

EE C245 ME C218 Introduction to MEMS Design Fall 2007 EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 13: Material

More information

Elasticity: Term Paper. Danielle Harper. University of Central Florida

Elasticity: Term Paper. Danielle Harper. University of Central Florida Elasticity: Term Paper Danielle Harper University of Central Florida I. Abstract This research was conducted in order to experimentally test certain components of the theory of elasticity. The theory was

More information

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

PEAT SEISMOLOGY Lecture 2: Continuum mechanics PEAT8002 - SEISMOLOGY Lecture 2: Continuum mechanics Nick Rawlinson Research School of Earth Sciences Australian National University Strain Strain is the formal description of the change in shape of a

More information

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso MECH 5312 Solid Mechanics II Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso Table of Contents Preliminary Math Concept of Stress Stress Components Equilibrium

More information

(Total 1 mark) IB Questionbank Physics 1

(Total 1 mark) IB Questionbank Physics 1 1. A transverse wave travels from left to right. The diagram below shows how, at a particular instant of time, the displacement of particles in the medium varies with position. Which arrow represents the

More information

Macroscopic theory Rock as 'elastic continuum'

Macroscopic theory Rock as 'elastic continuum' Elasticity and Seismic Waves Macroscopic theory Rock as 'elastic continuum' Elastic body is deformed in response to stress Two types of deformation: Change in volume and shape Equations of motion Wave

More information

Stress/Strain. Outline. Lecture 1. Stress. Strain. Plane Stress and Plane Strain. Materials. ME EN 372 Andrew Ning

Stress/Strain. Outline. Lecture 1. Stress. Strain. Plane Stress and Plane Strain. Materials. ME EN 372 Andrew Ning Stress/Strain Lecture 1 ME EN 372 Andrew Ning aning@byu.edu Outline Stress Strain Plane Stress and Plane Strain Materials otes and News [I had leftover time and so was also able to go through Section 3.1

More information

12. Stresses and Strains

12. Stresses and Strains 12. Stresses and Strains Finite Element Method Differential Equation Weak Formulation Approximating Functions Weighted Residuals FEM - Formulation Classification of Problems Scalar Vector 1-D T(x) u(x)

More information

(Total 1 mark) IB Questionbank Physics 1

(Total 1 mark) IB Questionbank Physics 1 1. A transverse wave travels from left to right. The diagram below shows how, at a particular instant of time, the displacement of particles in the medium varies with position. Which arrow represents the

More information

3D Elasticity Theory

3D Elasticity Theory 3D lasticity Theory Many structural analysis problems are analysed using the theory of elasticity in which Hooke s law is used to enforce proportionality between stress and strain at any deformation level.

More information

FEA Based Simulation of Ultrasonic Wave Propagation in Isotropic and Orthotropic Media

FEA Based Simulation of Ultrasonic Wave Propagation in Isotropic and Orthotropic Media 19 th World Conference on Non-Destructive Testing 016 FEA Based Simulation of Ultrasonic Wave Propagation in Isotropic and Orthotropic Media Debasis DATTA 1 1 Indian Institute of Engineering Science and

More information

6th NDT in Progress Lamb waves in an anisotropic plate of a single crystal silicon wafer

6th NDT in Progress Lamb waves in an anisotropic plate of a single crystal silicon wafer 6th NDT in Progress 2011 International Workshop of NDT Experts, Prague, 10-12 Oct 2011 Lamb waves in an anisotropic plate of a single crystal silicon wafer Young-Kyu PARK 1, Young H. KIM 1 1 Applied Acoustics

More information

EE C247B ME C218 Introduction to MEMS Design Spring 2017

EE C247B ME C218 Introduction to MEMS Design Spring 2017 247B/M 28: Introduction to MMS Design Lecture 0m2: Mechanics of Materials CTN 2/6/7 Outline C247B M C28 Introduction to MMS Design Spring 207 Prof. Clark T.- Reading: Senturia, Chpt. 8 Lecture Topics:

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Standard Solids and Fracture Fluids: Mechanical, Chemical Effects Effective Stress Dilatancy Hardening and Stability Mead, 1925

More information

Effective mass: from Newton s law. Effective mass. I.2. Bandgap of semiconductors: the «Physicist s approach» - k.p method

Effective mass: from Newton s law. Effective mass. I.2. Bandgap of semiconductors: the «Physicist s approach» - k.p method Lecture 4 1/10/011 Effectie mass I.. Bandgap of semiconductors: the «Physicist s approach» - k.p method I.3. Effectie mass approximation - Electrons - Holes I.4. train effect on band structure - Introduction:

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Overview Milestones in continuum mechanics Concepts of modulus and stiffness. Stress-strain relations Elasticity Surface and body

More information

GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS

GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS I Main Topics A Why deal with tensors? B Order of scalars, vectors, and tensors C Linear transformation of scalars and vectors (and tensors) II Why

More information

Chapter 9: Differential Analysis

Chapter 9: Differential Analysis 9-1 Introduction 9-2 Conservation of Mass 9-3 The Stream Function 9-4 Conservation of Linear Momentum 9-5 Navier Stokes Equation 9-6 Differential Analysis Problems Recall 9-1 Introduction (1) Chap 5: Control

More information

On the study of elastic wave scattering and Rayleigh wave velocity measurement of concrete with steel bar

On the study of elastic wave scattering and Rayleigh wave velocity measurement of concrete with steel bar NDT&E International 33 (2000) 401 407 www.elsevier.com/locate/ndteint On the study of elastic wave scattering and Rayleigh wave velocity measurement of concrete with steel bar T.-T. Wu*, J.-H. Sun, J.-H.

More information

Exercise: concepts from chapter 8

Exercise: concepts from chapter 8 Reading: Fundamentals of Structural Geology, Ch 8 1) The following exercises explore elementary concepts associated with a linear elastic material that is isotropic and homogeneous with respect to elastic

More information

General Physics I. Lecture 10: Rolling Motion and Angular Momentum.

General Physics I. Lecture 10: Rolling Motion and Angular Momentum. General Physics I Lecture 10: Rolling Motion and Angular Momentum Prof. WAN, Xin (万歆) 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Outline Rolling motion of a rigid object: center-of-mass motion

More information

Oscillatory Motion and Wave Motion

Oscillatory Motion and Wave Motion Oscillatory Motion and Wave Motion Oscillatory Motion Simple Harmonic Motion Wave Motion Waves Motion of an Object Attached to a Spring The Pendulum Transverse and Longitudinal Waves Sinusoidal Wave Function

More information

Chapter 9: Differential Analysis of Fluid Flow

Chapter 9: Differential Analysis of Fluid Flow of Fluid Flow Objectives 1. Understand how the differential equations of mass and momentum conservation are derived. 2. Calculate the stream function and pressure field, and plot streamlines for a known

More information

Physical and Biological Properties of Agricultural Products Acoustic, Electrical and Optical Properties and Biochemical Property

Physical and Biological Properties of Agricultural Products Acoustic, Electrical and Optical Properties and Biochemical Property Physical and Biological Properties of Agricultural Products Acoustic, Electrical and Optical Properties and Biochemical Property 1. Acoustic and Vibrational Properties 1.1 Acoustics and Vibration Engineering

More information

Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth

Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth References: Turcotte and Schubert, Geodynamics, Sections 2.1,-2.4, 2.7, 3.1-3.8, 6.1, 6.2, 6.8, 7.1-7.4. Jaeger and Cook, Fundamentals of

More information

Finite Element Method in Geotechnical Engineering

Finite Element Method in Geotechnical Engineering Finite Element Method in Geotechnical Engineering Short Course on + Dynamics Boulder, Colorado January 5-8, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder Contents Steps

More information

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso MECH 5312 Solid Mechanics II Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso Table of Contents Thermodynamics Derivation Hooke s Law: Anisotropic Elasticity

More information

Lecture 8 Analyzing the diffusion weighted signal. Room CSB 272 this week! Please install AFNI

Lecture 8 Analyzing the diffusion weighted signal. Room CSB 272 this week! Please install AFNI Lecture 8 Analyzing the diffusion weighted signal Room CSB 272 this week! Please install AFNI http://afni.nimh.nih.gov/afni/ Next lecture, DTI For this lecture, think in terms of a single voxel We re still

More information

PEAT SEISMOLOGY Lecture 12: Earthquake source mechanisms and radiation patterns II

PEAT SEISMOLOGY Lecture 12: Earthquake source mechanisms and radiation patterns II PEAT8002 - SEISMOLOGY Lecture 12: Earthquake source mechanisms and radiation patterns II Nick Rawlinson Research School of Earth Sciences Australian National University Waveform modelling P-wave first-motions

More information

Section 1 Simple Harmonic Motion. The student is expected to:

Section 1 Simple Harmonic Motion. The student is expected to: Section 1 Simple Harmonic Motion TEKS The student is expected to: 7A examine and describe oscillatory motion and wave propagation in various types of media Section 1 Simple Harmonic Motion Preview Objectives

More information

Summary PHY101 ( 2 ) T / Hanadi Al Harbi

Summary PHY101 ( 2 ) T / Hanadi Al Harbi الكمية Physical Quantity القانون Low التعريف Definition الوحدة SI Unit Linear Momentum P = mθ be equal to the mass of an object times its velocity. Kg. m/s vector quantity Stress F \ A the external force

More information

Lecture 8. Stress Strain in Multi-dimension

Lecture 8. Stress Strain in Multi-dimension Lecture 8. Stress Strain in Multi-dimension Module. General Field Equations General Field Equations [] Equilibrium Equations in Elastic bodies xx x y z yx zx f x 0, etc [2] Kinematics xx u x x,etc. [3]

More information

Continuum Mechanics. Continuum Mechanics and Constitutive Equations

Continuum Mechanics. Continuum Mechanics and Constitutive Equations Continuum Mechanics Continuum Mechanics and Constitutive Equations Continuum mechanics pertains to the description of mechanical behavior of materials under the assumption that the material is a uniform

More information

Wave and Elasticity Equations

Wave and Elasticity Equations 1 Wave and lasticity quations Now let us consider the vibrating string problem which is modeled by the one-dimensional wave equation. Suppose that a taut string is suspended by its extremes at the points

More information

NARAYANA JUNIOR COLLEGE

NARAYANA JUNIOR COLLEGE SR IIT ALL STREAMS ADV MODEL DPT-6 Date: 18/04/2016 One (or) More Than One Answer Type: PHYSICS 31. A particle is executing SHM between points -X m and X m, as shown in figure-i. The velocity V(t) of the

More information

Stress, Strain, Mohr s Circle

Stress, Strain, Mohr s Circle Stress, Strain, Mohr s Circle The fundamental quantities in solid mechanics are stresses and strains. In accordance with the continuum mechanics assumption, the molecular structure of materials is neglected

More information

ELASTICITY (MDM 10203)

ELASTICITY (MDM 10203) LASTICITY (MDM 10203) Lecture Module 5: 3D Constitutive Relations Dr. Waluyo Adi Siswanto University Tun Hussein Onn Malaysia Generalised Hooke's Law In one dimensional system: = (basic Hooke's law) Considering

More information

Uniformity of the Universe

Uniformity of the Universe Outline Universe is homogenous and isotropic Spacetime metrics Friedmann-Walker-Robertson metric Number of numbers needed to specify a physical quantity. Energy-momentum tensor Energy-momentum tensor of

More information

C. points X and Y only. D. points O, X and Y only. (Total 1 mark)

C. points X and Y only. D. points O, X and Y only. (Total 1 mark) Grade 11 Physics -- Homework 16 -- Answers on a separate sheet of paper, please 1. A cart, connected to two identical springs, is oscillating with simple harmonic motion between two points X and Y that

More information

Crystal Relaxation, Elasticity, and Lattice Dynamics

Crystal Relaxation, Elasticity, and Lattice Dynamics http://exciting-code.org Crystal Relaxation, Elasticity, and Lattice Dynamics Pasquale Pavone Humboldt-Universität zu Berlin http://exciting-code.org PART I: Structure Optimization Pasquale Pavone Humboldt-Universität

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y -» $ 5 Y 7 Y Y -Y- Q x Q» 75»»/ q } # ]»\ - - $ { Q» / X x»»- 3 q $ 9 ) Y q - 5 5 3 3 3 7 Q q - - Q _»»/Q Y - 9 - - - )- [ X 7» -» - )»? / /? Q Y»» # X Q» - -?» Q ) Q \ Q - - - 3? 7» -? #»»» 7 - / Q

More information

Quasi-Harmonic Theory of Thermal Expansion

Quasi-Harmonic Theory of Thermal Expansion Chapter 5 Quasi-Harmonic Theory of Thermal Expansion 5.1 Introduction The quasi-harmonic approximation is a computationally efficient method for evaluating thermal properties of materials. Planes and Manosa

More information

1 f. result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by

1 f. result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by amplitude (how far do the bits move from their equilibrium positions? Amplitude of MEDIUM)

More information

SOUND. Representative Sample Physics: Sound. 1. Periodic Motion of Particles PLANCESS CONCEPTS

SOUND. Representative Sample Physics: Sound. 1. Periodic Motion of Particles PLANCESS CONCEPTS Representative Sample Physics: Sound SOUND 1. Periodic Motion of Particles Before we move on to study the nature and transmission of sound, we need to understand the different types of vibratory or oscillatory

More information

Measurement Techniques for Engineers. Motion and Vibration Measurement

Measurement Techniques for Engineers. Motion and Vibration Measurement Measurement Techniques for Engineers Motion and Vibration Measurement Introduction Quantities that may need to be measured are velocity, acceleration and vibration amplitude Quantities useful in predicting

More information

Laboratory 7 Measurement on Strain & Force. Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170

Laboratory 7 Measurement on Strain & Force. Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170 Laboratory 7 Measurement on Strain & Force Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170 Megan Ong Diana Wu Wong B01 Tuesday 11am May 17 th, 2015 Abstract:

More information

AHL 9.1 Energy transformation

AHL 9.1 Energy transformation AHL 9.1 Energy transformation 17.1.2018 1. [1 mark] A pendulum oscillating near the surface of the Earth swings with a time period T. What is the time period of the same pendulum near the surface of the

More information

Tensor Visualization. CSC 7443: Scientific Information Visualization

Tensor Visualization. CSC 7443: Scientific Information Visualization Tensor Visualization Tensor data A tensor is a multivariate quantity Scalar is a tensor of rank zero s = s(x,y,z) Vector is a tensor of rank one v = (v x,v y,v z ) For a symmetric tensor of rank 2, its

More information

Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization

Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization Excerpt from the Proceedings of the COMSOL Conference 2009 Milan Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization Serena De Paolis *, Francesca Lionetto and Alfonso Maffezzoli

More information

St Olave s Grammar School. AS Physics Mock Revision Checklist

St Olave s Grammar School. AS Physics Mock Revision Checklist St Olave s Grammar School Mock Practical skills.. a Can you design experiments, including ones to solve problems set in a practical context?.. b Can you identify the variables that must be controlled in

More information

Physics Important Terms and their Definitions

Physics Important Terms and their Definitions Physics Important Terms and their S.No Word Meaning 1 Acceleration The rate of change of velocity of an object with respect to time 2 Angular Momentum A measure of the momentum of a body in rotational

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Surface and body forces Tensors, Mohr circles. Theoretical strength of materials Defects Stress concentrations Griffith failure

More information

Transducer Design and Modeling 42 nd Annual UIA Symposium Orlando Florida Jay Sheehan JFS Engineering. 4/23/2013 JFS Engineering

Transducer Design and Modeling 42 nd Annual UIA Symposium Orlando Florida Jay Sheehan JFS Engineering. 4/23/2013 JFS Engineering 42 nd Annual UIA Symposium Orlando Florida 2013 Jay Sheehan JFS Engineering Introduction ANSYS Workbench Introduction The project format Setting up different analysis Static, Modal and Harmonic Connection

More information

COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: Piezoelectric Force Sensors. Sensors, Signals and Noise 1

COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: Piezoelectric Force Sensors. Sensors, Signals and Noise 1 Sensors, Signals and Noise 1 COURSE OUTLINE Introduction Signals and Noise Filtering Sensors: Piezoelectric Force Sensors Piezoelectric Force Sensors 2 Piezoelectric Effect and Materials Piezoelectric

More information

Mechanics PhD Preliminary Spring 2017

Mechanics PhD Preliminary Spring 2017 Mechanics PhD Preliminary Spring 2017 1. (10 points) Consider a body Ω that is assembled by gluing together two separate bodies along a flat interface. The normal vector to the interface is given by n

More information

Introduction to Fluid Mechanics

Introduction to Fluid Mechanics Introduction to Fluid Mechanics Tien-Tsan Shieh April 16, 2009 What is a Fluid? The key distinction between a fluid and a solid lies in the mode of resistance to change of shape. The fluid, unlike the

More information

1 Stress and Strain. Introduction

1 Stress and Strain. Introduction 1 Stress and Strain Introduction This book is concerned with the mechanical behavior of materials. The term mechanical behavior refers to the response of materials to forces. Under load, a material may

More information

17 M00/430/H(2) B3. This question is about an oscillating magnet.

17 M00/430/H(2) B3. This question is about an oscillating magnet. 17 M00/430/H(2) B3. This question is about an oscillating magnet. The diagram below shows a magnet M suspended vertically from a spring. When the magnet is in equilibrium its mid-point P coincides with

More information

From Electrons to Materials Properties

From Electrons to Materials Properties From Electrons to Materials Properties: DFT for Engineers and Materials Scientists Funk Fachgebiet Werkstoffe des Bauwesens und Bauchemie Mar-17, 2016 From Electrons to Materials Properties Density Functional

More information

Section 1 Simple Harmonic Motion. Chapter 11. Preview. Objectives Hooke s Law Sample Problem Simple Harmonic Motion The Simple Pendulum

Section 1 Simple Harmonic Motion. Chapter 11. Preview. Objectives Hooke s Law Sample Problem Simple Harmonic Motion The Simple Pendulum Section 1 Simple Harmonic Motion Preview Objectives Hooke s Law Sample Problem Simple Harmonic Motion The Simple Pendulum Section 1 Simple Harmonic Motion Objectives Identify the conditions of simple harmonic

More information

4. Collisions and momentum

4. Collisions and momentum St 4. Collisions and momentum 4. Introduction Collisions occur when two or more bodies interact for a short time. Examples include a ball bouncing back from a wall, the crash of a car, a jump. At each

More information

Lecture 4: Least Squares (LS) Estimation

Lecture 4: Least Squares (LS) Estimation ME 233, UC Berkeley, Spring 2014 Xu Chen Lecture 4: Least Squares (LS) Estimation Background and general solution Solution in the Gaussian case Properties Example Big picture general least squares estimation:

More information

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles.

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles. » ~ $ ) 7 x X ) / ( 8 2 X 39 ««x» ««! «! / x? \» «({? «» q «(? (?? x! «? 8? ( z x x q? ) «q q q ) x z x 69 7( X X ( 3»«! ( ~«x ««x ) (» «8 4 X «4 «4 «8 X «x «(» X) ()»» «X «97 X X X 4 ( 86) x) ( ) z z

More information

Numerical Modelling in Geosciences. Lecture 6 Deformation

Numerical Modelling in Geosciences. Lecture 6 Deformation Numerical Modelling in Geosciences Lecture 6 Deformation Tensor Second-rank tensor stress ), strain ), strain rate ) Invariants quantities independent of the coordinate system): - First invariant trace:!!

More information

Lecture 7. Properties of Materials

Lecture 7. Properties of Materials MIT 3.00 Fall 2002 c W.C Carter 55 Lecture 7 Properties of Materials Last Time Types of Systems and Types of Processes Division of Total Energy into Kinetic, Potential, and Internal Types of Work: Polarization

More information

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS For Marker s Use Only LAST NAME (printed): FIRST

More information

Chapter 5. The Differential Forms of the Fundamental Laws

Chapter 5. The Differential Forms of the Fundamental Laws Chapter 5 The Differential Forms of the Fundamental Laws 1 5.1 Introduction Two primary methods in deriving the differential forms of fundamental laws: Gauss s Theorem: Allows area integrals of the equations

More information

Topic 5-1: Introduction to Phonons Kittel pages: 91, 92

Topic 5-1: Introduction to Phonons Kittel pages: 91, 92 Topic 5-1: Introduction to Phonons Kittel pages: 91, 92 Summary: In this video we introduce the concept that atoms are not rigid, fixed points within the lattice. Instead we treat them as quantum harmonic

More information

W 18e Heat Capacity Ratio γ

W 18e Heat Capacity Ratio γ Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum W 8e Heat Capacity Ratio γ Tasks Determine the heat capacity ratio γ of air and carbon dioxide using the method of Clément and Desormes.

More information

[5] Stress and Strain

[5] Stress and Strain [5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law

More information

NUMERICAL EVALUATION OF A TEFLON BASED PIEZOELECTRIC SENSOR EFFECTIVITY FOR THE MONITORING OF EARLY AGE COCRETE STRENGTHING

NUMERICAL EVALUATION OF A TEFLON BASED PIEZOELECTRIC SENSOR EFFECTIVITY FOR THE MONITORING OF EARLY AGE COCRETE STRENGTHING NUMERICAL EVALUATION OF A TEFLON BASED PIEZOELECTRIC SENSOR EFFECTIVITY FOR THE MONITORING OF EARLY AGE COCRETE STRENGTHING Evangelos V. Liarakos Postdoctoral researcher School of Architecture, Technical

More information

Part 5 ACOUSTIC WAVE PROPAGATION IN ANISOTROPIC MEDIA

Part 5 ACOUSTIC WAVE PROPAGATION IN ANISOTROPIC MEDIA Part 5 ACOUSTIC WAVE PROPAGATION IN ANISOTROPIC MEDIA Review of Fundamentals displacement-strain relation stress-strain relation balance of momentum (deformation) (constitutive equation) (Newton's Law)

More information

Longitudinal Waves. waves in which the particle or oscillator motion is in the same direction as the wave propagation

Longitudinal Waves. waves in which the particle or oscillator motion is in the same direction as the wave propagation Longitudinal Waves waves in which the particle or oscillator motion is in the same direction as the wave propagation Longitudinal waves propagate as sound waves in all phases of matter, plasmas, gases,

More information

SPEED OF SOUND MEASUREMENT IN SOLIDS USING POLYVINYLIDENE FLUORIDE (PVDF) SENSORS

SPEED OF SOUND MEASUREMENT IN SOLIDS USING POLYVINYLIDENE FLUORIDE (PVDF) SENSORS Proceedings of the ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS2013 September 16-18, 2013, Snowbird, Utah, USA SMASIS2013-3206 SPEED OF SOUND MEASUREMENT

More information

Oscillations - AP Physics B 1984

Oscillations - AP Physics B 1984 Oscillations - AP Physics B 1984 1. If the mass of a simple pendulum is doubled but its length remains constant, its period is multiplied by a factor of (A) 1 2 (B) (C) 1 1 2 (D) 2 (E) 2 A block oscillates

More information

Rotational Raman Spectroscopy

Rotational Raman Spectroscopy Rotational Raman Spectroscopy If EM radiation falls upon an atom or molecule, it may be absorbed if the energy of the radiation corresponds to the separation of two energy levels of the atoms or molecules.

More information

Chapter 4: Fluid Kinematics

Chapter 4: Fluid Kinematics Overview Fluid kinematics deals with the motion of fluids without considering the forces and moments which create the motion. Items discussed in this Chapter. Material derivative and its relationship to

More information

Lecture 17. Mechanical waves. Transverse waves. Sound waves. Standing Waves.

Lecture 17. Mechanical waves. Transverse waves. Sound waves. Standing Waves. Lecture 17 Mechanical waves. Transverse waves. Sound waves. Standing Waves. What is a wave? A wave is a traveling disturbance that transports energy but not matter. Examples: Sound waves (air moves back

More information

CHAPTER 4 TEST REVIEW

CHAPTER 4 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 74 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 4 TEST REVIEW 1. In which of the following regions of the electromagnetic spectrum is radiation

More information

6. 3D Kinematics DE2-EA 2.1: M4DE. Dr Connor Myant

6. 3D Kinematics DE2-EA 2.1: M4DE. Dr Connor Myant DE2-EA 2.1: M4DE Dr Connor Myant 6. 3D Kinematics Comments and corrections to connor.myant@imperial.ac.uk Lecture resources may be found on Blackboard and at http://connormyant.com Contents Three-Dimensional

More information

Course 2BA1: Hilary Term 2007 Section 8: Quaternions and Rotations

Course 2BA1: Hilary Term 2007 Section 8: Quaternions and Rotations Course BA1: Hilary Term 007 Section 8: Quaternions and Rotations David R. Wilkins Copyright c David R. Wilkins 005 Contents 8 Quaternions and Rotations 1 8.1 Quaternions............................ 1 8.

More information

Study Sheet for Exam #3

Study Sheet for Exam #3 Physics 121 Spring 2003 Dr. Dragt Study Sheet for Exam #3 14. Physics knowledge, like all subjects having some substance, is cumulative. You are still responsible for all material on the Study Sheets for

More information

Sound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur

Sound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur Sound Propagation through Media Nachiketa Tiwari Indian Institute of Technology Kanpur LECTURE-13 WAVE PROPAGATION IN SOLIDS Longitudinal Vibrations In Thin Plates Unlike 3-D solids, thin plates have surfaces

More information

Physics 326 Lab 6 10/18/04 DAMPED SIMPLE HARMONIC MOTION

Physics 326 Lab 6 10/18/04 DAMPED SIMPLE HARMONIC MOTION DAMPED SIMPLE HARMONIC MOTION PURPOSE To understand the relationships between force, acceleration, velocity, position, and period of a mass undergoing simple harmonic motion and to determine the effect

More information

If the symmetry axes of a uniform symmetric body coincide with the coordinate axes, the products of inertia (Ixy etc.

If the symmetry axes of a uniform symmetric body coincide with the coordinate axes, the products of inertia (Ixy etc. Prof. O. B. Wright, Autumn 007 Mechanics Lecture 9 More on rigid bodies, coupled vibrations Principal axes of the inertia tensor If the symmetry axes of a uniform symmetric body coincide with the coordinate

More information

Electromagnetism II Lecture 7

Electromagnetism II Lecture 7 Electromagnetism II Lecture 7 Instructor: Andrei Sirenko sirenko@njit.edu Spring 13 Thursdays 1 pm 4 pm Spring 13, NJIT 1 Previous Lecture: Conservation Laws Previous Lecture: EM waves Normal incidence

More information

Theoretische Physik 2: Elektrodynamik (Prof. A-S. Smith) Home assignment 9

Theoretische Physik 2: Elektrodynamik (Prof. A-S. Smith) Home assignment 9 WiSe 202 20.2.202 Prof. Dr. A-S. Smith Dipl.-Phys. Ellen Fischermeier Dipl.-Phys. Matthias Saba am Lehrstuhl für Theoretische Physik I Department für Physik Friedrich-Alexander-Universität Erlangen-Nürnberg

More information

Unit IV State of stress in Three Dimensions

Unit IV State of stress in Three Dimensions Unit IV State of stress in Three Dimensions State of stress in Three Dimensions References Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength

More information

An introduction to Solid State NMR and its Interactions

An introduction to Solid State NMR and its Interactions An introduction to Solid State NMR and its Interactions From tensor to NMR spectra CECAM Tutorial September 9 Calculation of Solid-State NMR Parameters Using the GIPAW Method Thibault Charpentier - CEA

More information

Load Cell Design Using COMSOL Multiphysics

Load Cell Design Using COMSOL Multiphysics Load Cell Design Using COMSOL Multiphysics Andrei Marchidan, Tarah N. Sullivan and Joseph L. Palladino Department of Engineering, Trinity College, Hartford, CT 06106, USA joseph.palladino@trincoll.edu

More information