Electric Circuit Theory


 Allan Charles
 3 years ago
 Views:
Transcription
1 Electric Circuit Theory Nam Ki Min
2 Chapter 8 Natural and Step Responses of RLC Circuits Nam Ki Min
3 8.1 Introduction to the Natural Response of 3 FirstOrder Circuits (Chapter 7) Circuits with a single storage element (a capacitor or an inductor). The differential equations describing them are firstorder. v C dv C dt + v C V s RC = 0 i(t) di dt + Ri V s L = 0 SecondOrder Circuits (Chapter 8) Circuits containing two storage elements Their responses are described by differential equations that contain second derivatives. Typical examples of secondorder circuits are RLC circuits. A secondorder circuit is characterized by a secondorder differential equation. It consists of resistors and the equivalent of two energy storage elements. There are two basic types of RLC circuits: parallel connected and series connected.
4 Finding Initial Values Chapter 8 Natural and Step Responses of RLC Circuits 8.1 Introduction to the Natural Response of There are two key points to keep in mind in determining the initial conditions. We must carefully handle the polarity of voltage v C (t) across the capacitor and the direction of the current i L (t) through the inductor. Keep in mind that v C (t) and i L (t) are defined strictly according to the passive sign convention. One should carefully observe how these are defined and apply them accordingly. Keep in mind that the capacitor voltage is always continuous so that v c 0 + = v C (0 ) and the inductor current is always continuous so that i L 0 + = i L (0 ) where t = 0 denotes the time just before a switching event and t = 0 + is the time just after the switching event, assuming that the switching event takes place at t = 0. 4 Thus, in finding initial conditions, we first focus on those variables that cannot change abruptly, capacitor voltage and inductor current.
5 8.1 Introduction to the Natural Response of Obtaining of the Differential Equation for Parallel RLC circuits find many practical applications, notably in communications networks and filter designs. Assume initial inductor current I 0 and initial capacitor voltage V 0, i L 0 = 1 L 0 v t dt = I o 5 v c 0 = V o Since the three elements are in parallel, they have the same voltage v across them. Applying KCL at the top node gives i R + i L + i C = 0 v R + 1 L t v t dt + C dv dt = 0 v R + I o + 1 L t v t dt 0 + C dv dt = 0 (8.1) v R + 1 L 0 v t dt + 1 L t v t dt 0 + C dv dt = 0
6 8.1 Introduction to the Natural Response of 6 Obtaining of the Differential Equation for Taking the derivative with respect to t results in 1 dv R dt + v L + C d2 v dt 2 = 0 (8.2) v R + I o + 1 L t v t dt 0 + C dv dt = 0 (8.1) Dividing by C Arranging the derivatives in the descending order, we get d 2 v dt dv RC dt + v LC = 0 (8.3) This is a secondorder differential equation and is the reason for calling the RLC circuits in this chapter secondorder circuits.
7 8.1 Introduction to the Natural Response of Solution of the Differential Equation Our experience in the preceding chapter on firstorder circuits suggests that the solution is of exponential form. So we let v t = Ae st (8.4) where A and s are unknown constants. d 2 v dt dv RC dt + v LC = 0 (8.3) Substituting Eq. (8.4) into Eq. (8.3) and carrying out the necessary differentiations, we obtain or As 2 e st + As RC est + Aest LC = 0 Ae st s RC s + 1 LC = 0 (8.5) 7 Since e st 0 s RC s + 1 LC = 0 (8.6) We cannot A=0 as a general solution because the voltage is not zero for all time and Ae st is the assumed solution we are trying to find.
8 8.1 Introduction to the Natural Response of 8 Solution of the Differential Equation s RC s + 1 LC = 0 (8.6) d 2 v dt dv RC dt + v LC = 0 (8.3) Eq.(8.6) is known as the characteristic equation of the differential Eq. (8.3), since the roots of the equation determine the mathematical character of v(t). The two roots of Eq. (8.8) are s 1 = 1 2RC + 1 2RC 2 1 LC (8.7) s 2 = 1 2RC 1 2RC 2 1 LC (8.8)
9 8.1 Introduction to the Natural Response of 9 Solution of the Differential Equation The two values of s in Eqs.(8.7) and (8.8) indicate that there are two possible solutions for i, each of which is of the form of the assumed solution in Eq. (8.4); that is, v 1 = A 1 e s 1t v 2 = A 2 e s 2t d 2 v dt dv RC dt + v LC = 0 (8.3) Since Eq. (8.3) is a linear equation, any linear combination of the two distinct solutions v 1 and v 2 is also a solution of Eq. (8.3). A complete or total solution of Eq. (8.3) would therefore require a linear combination of v 1 and v 2. Thus, the natural response of the parallel RLC circuit is v t = v 1 + v 2 = A 1 e s 1t +A 2 e s 2t (8.9) where the constants A 1 and A 2 are determined from the initial values v(0) and dv(0)/dt.
10 Solution of the Differential Equation Chapter 8 Natural and Step Responses of RLC Circuits 8.1 Introduction to the Natural Response of We can show that Eq.(8.9) also is a solution. v t = A 1 e s 1t +A 2 e s 2t dv dt = A 1s 1 e s 1t + A 2 s 2 e s 2t (8.9) d 2 v dt 2 = A 1s 1 2 e s 1t + A 2 s 2 2 e s 2t 10 d 2 v dt dv RC dt + v LC = 0 (8.3) A 1 e s 1t s RC s LC + A 2e s 2t s RC s LC = 0 (8.12) Each parenthetical term is zero because by definition s 1 and s 2 are roots of the characteristic equation. s RC s LC = 0 s RC s LC = 0 s RC s + 1 LC = 0 (8.6)
11 Definition of Frequency Terms Chapter 8 Natural and Step Responses of RLC Circuits 8.1 Introduction to the Natural Response of We have shown that v 1 is a solution, v 2 is a solution, and v 1 +v 2 is a solution. Therefore, the general solution of Eq.(8.3) has the form given in Eq.(8.13). 11 v t = A 1 e s 1t +A 2 e s 2t (8.13), (8.9) The behavior of v(t) depends on the values of s 1 and s 2. s 1 = 1 2RC + 1 2RC 2 1 LC = α + α2 ω o 2 (8.14) s 2 = 1 2RC 1 2RC 2 1 LC = α α2 ω o 2 (8.15) α = 1 2RC ω o = 1 LC (8.16) (8.17) Since the exponents s 1 t and s 2 t must be dimensionless, s 1 and s 2 must have the unit of per second.
12 Definition of Frequency Terms Chapter 8 Natural and Step Responses of RLC Circuits 8.1 Introduction to the Natural Response of Therefore, the units of α and ω o must also be per second or s 1. A unit of this type is called frequency. Let us define new terms: Neper frequency (exponential damping coefficient) α = 1 2RC (8.16) Resonant frequency 12 ω o = 1 LC (8.17) Complex frequency s 1, s 2
13 8.2 The Forms of the Natural Response of 13 Types of Responses(solutions) From Eqs. (8.14),(8.15), we can infer that there are three types of solutions depending on the relative sizes of α and ω o : s 1 = α + α 2 ω o 2 s 2 = α α 2 ω o 2 (8.14) (8.15) α = 1 2RC ω o = 1 LC Overdamped response : If α 2 > ω o 2 Critically damped response If, both roots s 1 and s 2 are negative and real. α 2 2 = ω o, s 1 = s 2 = α L > 4R 2 C L = 4R 2 C α > ω o α = ω o Underdamped response If α 2 < ω o 2, both roots s 1 and s 2 are complex and, in addition, are conjugates of each other. s 1 = α + α 2 ω o 2 = α + ω o 2 α 2 = α + jω d L < 4R 2 C α < ω o s 2 = α α 2 ω o 2 = α ω o 2 α 2 = α jω d
14 8.2 The Forms of the Natural Response of 14 What is the damping? Undamped System The following physical systems are some examples of simple harmonic oscillator. An undamped spring mass system undergoes simple harmonic motion The motion of an undamped pendulum approximates to simple harmonic motion if the angle of oscillation is small
15 Damped System Chapter 8 Natural and Step Responses of RLC Circuits 8.2 The Forms of the Natural Response of Damping is a dissipation of energy from a vibrating structure. The term dissipate is used to mean the transformation of mechanical energy into other form of energy and, therefore, a removal of mechanical energy from the vibrating system. 15 Overdamped Response The system returns (exponentially decays) to equilibrium without oscillating. Underdamped spring mass system Critically Damped Response The system returns to equilibrium as quickly as possible without oscillating. This is often desired for the damping of systems such as doors. x o m x = 0 x m Elastic potential energy A release from rest at a position x 0. Underdamped Response The mass will overshoot the zero point and oscillate about x=0. x o Damped harmonic oscillator
16 8.2 The Forms of the Natural Response of Electrical System The capacitor stores energy in its electric field E and the inductor stores energy in its magnetic field B (green). The charge flows back and forth between the plates of the capacitor, through the inductor. The energy oscillates back and forth between the capacitor and the inductor until (if not replenished from an external circuit) internal resistance makes the oscillations die out. V o 16 Energy oscillations in the LC Circuit and the massspring system V o x = 0 x o
17 Electrical System Chapter 8 Natural and Step Responses of RLC Circuits 8.2 The Forms of the Natural Response of We now consider a RLC circuit which contains a resistor, an inductor and a capacitor. Unlike the LC circuit energy will be dissipated through the resistor. 17 Charging system.
18 8.2 The Forms of the Natural Response of 18 The Overdamped Voltage Response If L > 4R 2 C, α > ω o. The roots of the characteristic equation are negative real numbers. s 1 = α + α 2 ω o 2 s 2 = α α 2 ω o 2 α = 1 2RC ω o = 1 LC V o The response is v t = A 1 e s 1t +A 2 e s 2t (8.18) The process for finding the overdamped response, v(t): (1) Find s 1 and s 2, using the values of R, L, and C. (2) Find v(0 + ) and dv(0 + ) dt. (3) Find the values of A 1 and A 2 using v(0 + ) and dv(0 + ) dt. (4) Substitute the values for s 1, s 2, A 1 and A 2 into Eq.(8.18).
19 8.2 The Forms of the Natural Response of 19 The Overdamped Voltage Response The process for finding the overdamped response, v(t): (2) Find v(0 + ) and dv(0 + ) dt. Two initial conditions v 0 + = V o V o i C = C dv dt dv(0 + ) dt = i C(0 + ) C (8.21) = i L i R 0 + C i C + i L + i R = 0 i C (0 + ) + i L (0 + ) + i R (0 + ) = 0 = I o C V o CR i C 0 + = i L 0 + i R 0 + = I o V 0 R (8.22)
20 8.2 The Forms of the Natural Response of 20 The Overdamped Voltage Response The process for finding the overdamped response, v(t): (3) Find the values of A 1 and A 2 using v(0 + ) and dv(0 + ) dt. v t = A 1 e s 1t +A 2 e s 2t (8.18) v 0 + = A 1 + A 2 = V o (8.23) dv(t) dt dv(0 + ) dt = s 1 A 1 e s 1t + s 2 A 2 e s 2t = s 1 A 1 + s 2 A 2 (8.24)
21 The Underdamped Voltage Response Chapter 8 Natural and Step Responses of RLC Circuits 8.2 The Forms of the Natural Response of 21 If L < 4R 2 C, α < ω o. The roots of the characteristic equation are complex, and the response is underdamped. s 1 = α + α 2 ω o 2 = α + ω o 2 α 2 = α + j ω o 2 α 2 = α + jω d (8.25) s 2 = α α 2 ω o 2 = α jω d (8.26) ω d = ω o 2 α 2 α = 1 2RC ω o = 1 LC The response is v(t) = e αt (B 1 cos ω d t + B 2 sin ω d t) (8.28)
22 The Underdamped Voltage Response Chapter 8 Natural and Step Responses of RLC Circuits 8.2 The Forms of the Natural Response of Finding The Underdamped Voltage Response v(t) = e αt (B 1 cos ω d t + B 2 sin ω d t) (8.28) 22 The natural response is v t = A 1 e α jω d t + A 2 e α+jω d t = e αt (A 1 e jωdt + A 2 e jωdt ) Using Euler s identities, e jθ = cos θ + j sin θ e jθ = cos θ j sin θ v t (8.29) = A 1 e s 1t +A 2 e s 2t s 1 = α + jω d s 1 = α jω d We get v(t) = e αt [A 1 (cos ω d t + j sin ω d t) + A 2 (cos ω d t j sin ω d t)] = e αt [(A 1 + A 2 ) cos ω d t + j(a 1 A 2 ) sin ω d t] v(t) = e αt (B 1 cos ω d t + B 2 sin ω d t) (8.28) B 1 = A 1 + A 2 B 2 = j(a 1 A 2 )
23 8.2 The Forms of the Natural Response of 23 The Underdamped Voltage Response v(t) = e αt (B 1 cos ω d t + B 2 sin ω d t) (8.28) With the presence of sine and cosine functions, it is clear that the natural response for this case is exponentially damped and oscillatory in nature. The response has a time constant of 1/α and a period of T = 2π/ω d. Figure depicts a typical underdamped response. [Figure assumes for each case that i(0) = 0]. e αt V o
24 The Underdamped Voltage Response Chapter 8 Natural and Step Responses of RLC Circuits 8.2 The Forms of the Natural Response of 24 Find the values of B 1 and B 2 using v(0 + ) and dv(0 + ) dt. v(t) = e αt (B 1 cos ω d t + B 2 sin ω d t) (8.28) v 0 + = B = V o (8.30) dv(t) dt = ( αe αt )(B 1 cos ω d t ) + e αt ( ω d B 1 sin ω d t ) +( αe αt )(B 2 sin ω d t ) + e αt (ω d B 2 cos ω d t ) dv(0 + ) dt = αb 1 + ω d B 2 (8.31)
25 8.2 The Forms of the Natural Response of 25 The Critically Damped Voltage Response If L = 4R 2 C, α = ω o. The two roots of the characteristic equation are real and equal. s 1 = α + s 2 = α α 2 ω o 2 = α α 2 ω o 2 = α s 1 = s 2 = α = 1 2RC (8.32) α = 1 2RC ω o = 1 LC The response is v t = (D 1 t + D 2 )e αt (8.34)
26 8.2 The Forms of the Natural Response of 26 The Critically Damped Voltage Response Finding the natural response (Eq.8.34) d 2 v dt dv RC dt + v LC = 0 (1) (8.3) d 2 v dv dt2 + 2α dt + α2 v = 0 (2) α = ω o = 1 2RC = 1 LC d dt dv dt + αv + α dv dt + αv = 0 (3) Eq.(3) is a firstorder differential equation with solution f = A 1 e αt (6) If we let f = dv dt + αv then Eq.(3) becomes df dt + αf = 0 (4) (5) Eq.(4) then becomes dv dv dt + αv = D 1e αt or eαt dt + eαt αv = D 1 This can be written as d(e αt v) dt = D 1 (8) (7)
27 8.2 The Forms of the Natural Response of 27 The Critically Damped Voltage Response Finding the natural response (Eq.8.34) d(e αt v) dt = D 1 (8) Integrating both sides yields d(e αt v) = D 1 dt V o or e αt v = D 1 t + D 2 (9) v(t) = (D 1 t + D 2 )e αt (8.34) v(t) Figure is a sketch of v(t) = te αt, which reaches a maximum value of e 1 /α at t = 1/α, one time constant, and then decays all the way to zero. This is a typical critically damped response. The natural response of the critically damped circuit is a sum of two terms: a negative exponential and a negative exponential multiplied by a linear term.
28 The Critically Damped Voltage Response Chapter 8 Natural and Step Responses of RLC Circuits 8.2 The Forms of the Natural Response of Finding the values of D 1 and D 2 using v(0 + ) and dv(0 + ) dt. 28 v(t) = (D 1 t + D 2 )e αt (8.34) v 0 + = 0 + D 2 = V o (8.35) dv(t) dt = D e αt + D 1 t + D 2 ( αe αt ) V o dv(0 + ) dt = D 1 αd 2 (8.36)
29 8.3 The Step Response of 29 Responses of Parallel RLC Circuit Natural Response: Summary The circuit is being excited by the energy initially stored in the capacitor and inductor. The energy is represented by the initial capacitor voltage V o and initial inductor current I o. Thus, at t = 0, v C 0 = 1 C 0 Overdamped response: i t dt = V o i 0 = I o α 2 > ω o 2 L > 4R 2 C Both roots s 1 and s 2 are negative and real. s 1 = α + α 2 ω o 2 s 2 = α α 2 ω o 2 v t = A 1 e s 1t +A 2 e s 2t Underdamped response: α 2 2 < ω o L < 4R 2 C The roots of the characteristic equation are complex. s 1 = α + jω d s 2 = α jω d v(t) = e αt (B 1 cos ω d t + B 2 sin ω d t) Critically damped response: α 2 2 = ω o L = 4R 2 C The two roots of the characteristic equation are real and equal. s 1 = s 2 = α v(t) = (D 1 t + D 2 )e αt
30 8.3 The Step Response of 30 Responses of Parallel RLC Circuit Step Response The step response is obtained by the sudden application of a dc source. i(t) I 0 t We want to find i due to a sudden application of a dc current. To develop a general approach to finding the step response of a second order circuit, we focus on finding the current in the inductor branch, i L. This current does not approach zero as t increases. i L = I
31 8.3 The Step Response of 31 Step Response Applying KCL at the top node for t > 0, or i L + i R + i C = I i L + v R + C dv dt = I (8.37) From the definition v = L di L dt dv dt = L d2 i L dt 2 (8.38) (8.39) Substituting Eqs.(8.38) and (8.39) into Eq.(8.37) gives i L + L R di L dt + LC d2 i L dt 2 = I d 2 i L dt di L RC dt + i L LC = I LC (8.40) (8.41)
32 8.3 The Step Response of 32 Step Response d 2 i L dt di L RC dt + i L LC = I LC (8.41) The complete solution to Eq. (8.41) consists of the natural response i n and the forced response i f ; that is,, i L t = i n (t) + i f (t) The natural response is the same as what we had in Section 8.2. v t = A 1 e s 1t +A 2 e s 2t v(t) = e αt (B 1 cos ω d t + B 2 sin ω d t) v(t) = (D 1 t + D 2 )e αt i n (t) = A 1 e s 1t +A 2 e s 2t i n (t) = e αt (B 1 cos ω d t + B 2 sin ω d t) i n (t) = (D 1 t + D 2 )e αt The forced response is the steady state or final value of i. In the circuit in Fig.8.11, the final value of the current through the inductor is the same as the source current I. Thus, i f t = I
33 8.3 The Step Response of 33 Step Response The complete solutions: i L t = i n (t) + i f (t) Overdamped response i n (t) = A 1 e s1t +A 2 e s 2t i f t = I i L t = I + A 1 e s 1t +A 2 e s 2t (8.47) Underdamped response i n (t) = e αt (B 1 cos ω d t + B 2 sin ω d t) i f t = I i L t = I + e αt (B 1 cos ω d t + B 2 sin ω d t) (8.48) Critically damped response i n (t) = (D 1 t + D 2 )e αt i f t = I i L t = I + (D 1 t + D 2 )e αt (8.49)
To find the step response of an RC circuit
To find the step response of an RC circuit v( t) v( ) [ v( t) v( )] e tt The time constant = RC The final capacitor voltage v() The initial capacitor voltage v(t ) To find the step response of an RL circuit
More informationResponse of SecondOrder Systems
Unit 3 Response of SecondOrder Systems In this unit, we consider the natural and step responses of simple series and parallel circuits containing inductors, capacitors and resistors. The equations which
More informationENGR 2405 Chapter 8. Second Order Circuits
ENGR 2405 Chapter 8 Second Order Circuits Overview The previous chapter introduced the concept of first order circuits. This chapter will expand on that with second order circuits: those that need a second
More informationSourceFree RC Circuit
First Order Circuits SourceFree RC Circuit Initial charge on capacitor q = Cv(0) so that voltage at time 0 is v(0). What is v(t)? Prof Carruthers (ECE @ BU) EK307 Notes Summer 2018 150 / 264 First Order
More informationChapter 4 Transients. Chapter 4 Transients
Chapter 4 Transients Chapter 4 Transients 1. Solve firstorder RC or RL circuits. 2. Understand the concepts of transient response and steadystate response. 1 3. Relate the transient response of firstorder
More informationFirst and Second Order Circuits. Claudio Talarico, Gonzaga University Spring 2015
First and Second Order Circuits Claudio Talarico, Gonzaga University Spring 2015 Capacitors and Inductors intuition: bucket of charge q = Cv i = C dv dt Resist change of voltage DC open circuit Store voltage
More informationThe RLC circuits have a wide range of applications, including oscillators and frequency filters
9. The RL ircuit The RL circuits have a wide range of applications, including oscillators and frequency filters This chapter considers the responses of RL circuits The result is a secondorder differential
More informationIntroduction to AC Circuits (Capacitors and Inductors)
Introduction to AC Circuits (Capacitors and Inductors) Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/
More information8. Introduction and Chapter Objectives
Real Analog  Circuits Chapter 8: Second Order Circuits 8. Introduction and Chapter Objectives Second order systems are, by definition, systems whose inputoutput relationship is a second order differential
More informationMODULE I. Transient Response:
Transient Response: MODULE I The Transient Response (also known as the Natural Response) is the way the circuit responds to energies stored in storage elements, such as capacitors and inductors. If a capacitor
More informationPhysics 116A Notes Fall 2004
Physics 116A Notes Fall 2004 David E. Pellett Draft v.0.9 Notes Copyright 2004 David E. Pellett unless stated otherwise. References: Text for course: Fundamentals of Electrical Engineering, second edition,
More informationInductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits
Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Selfinductance A timevarying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying
More informationCircuits with Capacitor and Inductor
Circuits with Capacitor and Inductor We have discussed so far circuits only with resistors. While analyzing it, we came across with the set of algebraic equations. Hereafter we will analyze circuits with
More informationP441 Analytical Mechanics  I. RLC Circuits. c Alex R. Dzierba. In this note we discuss electrical oscillating circuits: undamped, damped and driven.
Lecture 10 Monday  September 19, 005 Written or last updated: September 19, 005 P441 Analytical Mechanics  I RLC Circuits c Alex R. Dzierba Introduction In this note we discuss electrical oscillating
More informationEE 242 EXPERIMENT 8: CHARACTERISTIC OF PARALLEL RLC CIRCUIT BY USING PULSE EXCITATION 1
EE 242 EXPERIMENT 8: CHARACTERISTIC OF PARALLEL RLC CIRCUIT BY USING PULSE EXCITATION 1 PURPOSE: To experimentally study the behavior of a parallel RLC circuit by using pulse excitation and to verify that
More informationHandout 10: Inductance. SelfInductance and inductors
1 Handout 10: Inductance SelfInductance and inductors In Fig. 1, electric current is present in an isolate circuit, setting up magnetic field that causes a magnetic flux through the circuit itself. This
More informationElectric Circuit Theory
Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 01094192320 Chapter 11 Sinusoidal SteadyState Analysis Nam Ki Min nkmin@korea.ac.kr 01094192320 Contents and Objectives 3 Chapter Contents 11.1
More informationDEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING RUTGERS UNIVERSITY
DEPARTMENT OF EECTRICA AND COMPUTER ENGINEERING RUTGERS UNIVERSITY 330:222 Principles of Electrical Engineering II Spring 2002 Exam 1 February 19, 2002 SOUTION NAME OF STUDENT: Student ID Number (last
More informationEE292: Fundamentals of ECE
EE292: Fundamentals of ECE Fall 2012 TTh 10:0011:15 SEB 1242 Lecture 14 121011 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review SteadyState Analysis RC Circuits RL Circuits 3 DC SteadyState
More informationThe Harmonic Oscillator
The Harmonic Oscillator Math 4: Ordinary Differential Equations Chris Meyer May 3, 008 Introduction The harmonic oscillator is a common model used in physics because of the wide range of problems it can
More informationModule 24: Outline. Expt. 8: Part 2:Undriven RLC Circuits
Module 24: Undriven RLC Circuits 1 Module 24: Outline Undriven RLC Circuits Expt. 8: Part 2:Undriven RLC Circuits 2 Circuits that Oscillate (LRC) 3 Mass on a Spring: Simple Harmonic Motion (Demonstration)
More informationEE 40: Introduction to Microelectronic Circuits Spring 2008: Midterm 2
EE 4: Introduction to Microelectronic Circuits Spring 8: Midterm Venkat Anantharam 3/9/8 Total Time Allotted : min Total Points:. This is a closed book exam. However, you are allowed to bring two pages
More informationChapter 10: Sinusoids and Phasors
Chapter 10: Sinusoids and Phasors 1. Motivation 2. Sinusoid Features 3. Phasors 4. Phasor Relationships for Circuit Elements 5. Impedance and Admittance 6. Kirchhoff s Laws in the Frequency Domain 7. Impedance
More informationGeneral Response of Second Order System
General Response of Second Order System Slide 1 Learning Objectives Learn to analyze a general second order system and to obtain the general solution Identify the overdamped, underdamped, and critically
More informationSlide 1 / 26. Inductance by Bryan Pflueger
Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one
More informationHandout 11: AC circuit. AC generator
Handout : AC circuit AC generator Figure compares the voltage across the directcurrent (DC) generator and that across the alternatingcurrent (AC) generator For DC generator, the voltage is constant For
More informationElectromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3.
Electromagnetic Oscillations and Alternating Current 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. RLC circuit in AC 1 RL and RC circuits RL RC Charging Discharging I = emf R
More informationSinusoidal SteadyState Analysis
Chapter 4 Sinusoidal SteadyState Analysis In this unit, we consider circuits in which the sources are sinusoidal in nature. The review section of this unit covers most of section 9.1 9.9 of the text.
More informationApplications of SecondOrder Differential Equations
Applications of SecondOrder Differential Equations ymy/013 Building Intuition Even though there are an infinite number of differential equations, they all share common characteristics that allow intuition
More informationC R. Consider from point of view of energy! Consider the RC and LC series circuits shown:
ircuits onsider the R and series circuits shown: ++++  R ++++  Suppose that the circuits are formed at t with the capacitor charged to value. There is a qualitative difference in the time development
More informationRLC Circuits. 1 Introduction. 1.1 Undriven Systems. 1.2 Driven Systems
RLC Circuits Equipment: Capstone, 850 interface, RLC circuit board, 4 leads (91 cm), 3 voltage sensors, Fluke mulitmeter, and BNC connector on one end and banana plugs on the other Reading: Review AC circuits
More information8 sin 3 V. For the circuit given, determine the voltage v for all time t. Assume that no energy is stored in the circuit before t = 0.
For the circuit given, determine the voltage v for all time t. Assume that no energy is stored in the circuit before t = 0. Spring 2015, Exam #5, Problem #1 4t Answer: e tut 8 sin 3 V 1 For the circuit
More informationInductance, RL Circuits, LC Circuits, RLC Circuits
Inductance, R Circuits, C Circuits, RC Circuits Inductance What happens when we close the switch? The current flows What does the current look like as a function of time? Does it look like this? I t Inductance
More informationProblem Set 5 Solutions
University of California, Berkeley Spring 01 EE /0 Prof. A. Niknejad Problem Set 5 Solutions Please note that these are merely suggested solutions. Many of these problems can be approached in different
More informationPhysics 4 Spring 1989 Lab 5  AC Circuits
Physics 4 Spring 1989 Lab 5  AC Circuits Theory Consider the series inductorresistorcapacitor circuit shown in figure 1. When an alternating voltage is applied to this circuit, the current and voltage
More information4.2 Homogeneous Linear Equations
4.2 Homogeneous Linear Equations Homogeneous Linear Equations with Constant Coefficients Consider the firstorder linear differential equation with constant coefficients a 0 and b. If f(t) = 0 then this
More informationElectric Circuits Fall 2015 Solution #5
RULES: Please try to work on your own. Discussion is permissible, but identical submissions are unacceptable! Please show all intermeate steps: a correct solution without an explanation will get zero cret.
More informationElectric Circuits. Overview. Hani Mehrpouyan,
Electric Circuits Hani Mehrpouyan, Department of Electrical and Computer Engineering, Lecture 15 (First Order Circuits) Nov 16 th, 2015 Hani Mehrpouyan (hani.mehr@ieee.org) Boise State c 2015 1 1 Overview
More informationPhysics for Scientists & Engineers 2
Electromagnetic Oscillations Physics for Scientists & Engineers Spring Semester 005 Lecture 8! We have been working with circuits that have a constant current a current that increases to a constant current
More informationQUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34)
QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34) NOTE: FOR NUMERICAL PROBLEMS FOR ALL UNITS EXCEPT UNIT 5 REFER THE EBOOK ENGINEERING CIRCUIT ANALYSIS, 7 th EDITION HAYT AND KIMMERLY. PAGE NUMBERS OF
More informationECE2262 Electric Circuit
ECE2262 Electric Circuit Chapter 7: FIRST AND SECONDORDER RL AND RC CIRCUITS Response to FirstOrder RL and RC Circuits Response to SecondOrder RL and RC Circuits 1 2 7.1. Introduction 3 4 In dc steady
More informationLinear Circuits. Concept Map 9/10/ Resistive Background Circuits. 5 Power. 3 4 Reactive Circuits. Frequency Analysis
Linear Circuits Dr. Bonnie Ferri Professor School of Electrical and Computer Engineering An introduction to linear electric components and a study of circuits containing such devices. School of Electrical
More informationBasic RL and RC Circuits RL TRANSIENTS: STORAGE CYCLE. Engineering Collage Electrical Engineering Dep. Dr. Ibrahim Aljubouri
st Class Basic RL and RC Circuits The RL circuit with D.C (steady state) The inductor is short time at Calculate the inductor current for circuits shown below. I L E R A I L E R R 3 R R 3 I L I L R 3 R
More informationSome of the different forms of a signal, obtained by transformations, are shown in the figure. jwt e z. jwt z e
Transform methods Some of the different forms of a signal, obtained by transformations, are shown in the figure. X(s) X(t) L  L F  F jw s s jw X(jw) X*(t) F  F X*(jw) jwt e z jwt z e X(nT) Z  Z X(z)
More informationLecture 39. PHYC 161 Fall 2016
Lecture 39 PHYC 161 Fall 016 Announcements DO THE ONLINE COURSE EVALUATIONS  response so far is < 8 % Magnetic field energy A resistor is a device in which energy is irrecoverably dissipated. By contrast,
More informationForced Oscillation and Resonance
Chapter Forced Oscillation and Resonance The forced oscillation problem will be crucial to our understanding of wave phenomena Complex exponentials are even more useful for the discussion of damping and
More informationFigure Circuit for Question 1. Figure Circuit for Question 2
Exercises 10.7 Exercises Multiple Choice 1. For the circuit of Figure 10.44 the time constant is A. 0.5 ms 71.43 µs 2, 000 s D. 0.2 ms 4 Ω 2 Ω 12 Ω 1 mh 12u 0 () t V Figure 10.44. Circuit for Question
More informationRC, RL, and LCR Circuits
RC, RL, and LCR Circuits EK307 Lab Note: This is a two week lab. Most students complete part A in week one and part B in week two. Introduction: Inductors and capacitors are energy storage devices. They
More informationarxiv: v1 [physics.classph] 15 Oct 2012
Twocapacitor problem revisited: A mechanical harmonic oscillator model approach Keeyung Lee arxiv:1210.4155v1 [physics.classph] 15 Oct 2012 Department of Physics, Inha University, Incheon, 402751, Korea
More informationCS 436 HCI Technology Basic Electricity/Electronics Review
CS 436 HCI Technology Basic Electricity/Electronics Review *Copyright 19972008, Perry R. Cook, Princeton University August 27, 2008 1 Basic Quantities and Units 1.1 Charge Number of electrons or units
More informationSinusoids and Phasors
CHAPTER 9 Sinusoids and Phasors We now begins the analysis of circuits in which the voltage or current sources are timevarying. In this chapter, we are particularly interested in sinusoidally timevarying
More informationCircuits Advanced Topics by Dr. Colton (Fall 2016)
ircuits Advanced Topics by Dr. olton (Fall 06). Time dependence of general and L problems General and L problems can always be cast into first order ODEs. You can solve these via the particular solution
More informationAnalogue Meter s Concept
M23 Lecture 4 (1/2015) August 27, 2015 1 Analogue Meter s Concept Han Oersted, in 1820, noted his finding without any explanation. B N S Compass Lord Kelvin made more sensitivity to a current. Magnetic
More informationInductance, RL and RLC Circuits
Inductance, RL and RLC Circuits Inductance Temporarily storage of energy by the magnetic field When the switch is closed, the current does not immediately reach its maximum value. Faraday s law of electromagnetic
More informationTransient Response of a SecondOrder System
Transient Response of a SecondOrder System ECEN 830 Spring 01 1. Introduction In connection with this experiment, you are selecting the gains in your feedback loop to obtain a wellbehaved closedloop
More informationChapter 32. Inductance
Chapter 32 Inductance Joseph Henry 1797 1878 American physicist First director of the Smithsonian Improved design of electromagnet Constructed one of the first motors Discovered selfinductance Unit of
More informationELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT
Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 1 A charged capacitor and an inductor are connected in series At time t = 0 the current is zero, but the capacitor is charged If T is the
More informationInductance. Slide 2 / 26. Slide 1 / 26. Slide 4 / 26. Slide 3 / 26. Slide 6 / 26. Slide 5 / 26. Mutual Inductance. Mutual Inductance.
Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one
More informationAPPLICATIONS OF SECONDORDER DIFFERENTIAL EQUATIONS
APPLICATIONS OF SECONDORDER DIFFERENTIAL EQUATIONS Secondorder linear differential equations have a variety of applications in science and engineering. In this section we explore two of them: the vibration
More informationSelfinductance A timevarying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying current.
Inductance Selfinductance A timevarying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying current. Basis of the electrical circuit element called an
More informationCoupled Electrical Oscillators Physics Advanced Physics Lab  Summer 2018 Don Heiman, Northeastern University, 5/24/2018
Coupled Electrical Oscillators Physics 3600  Advanced Physics Lab  Summer 08 Don Heiman, Northeastern University, 5/4/08 I. INTRODUCTION The objectives of this experiment are: () explore the properties
More informationFourier series. XE31EO2  Pavel Máša. Electrical Circuits 2 Lecture1. XE31EO2  Pavel Máša  Fourier Series
Fourier series Electrical Circuits Lecture  Fourier Series Filtr RLC defibrillator MOTIVATION WHAT WE CAN'T EXPLAIN YET Source voltage rectangular waveform Resistor voltage sinusoidal waveform  Fourier
More informationWave Phenomena Physics 15c
Wave Phenomena Physics 15c Lecture Harmonic Oscillators (H&L Sections 1.4 1.6, Chapter 3) Administravia! Problem Set #1! Due on Thursday next week! Lab schedule has been set! See Course Web " Laboratory
More informationChapter 30 INDUCTANCE. Copyright 2012 Pearson Education Inc.
Chapter 30 INDUCTANCE Goals for Chapter 30 To learn how current in one coil can induce an emf in another unconnected coil To relate the induced emf to the rate of change of the current To calculate the
More informationSolutions to these tests are available online in some places (but not all explanations are good)...
The Physics GRE Sample test put out by ETS https://www.ets.org/s/gre/pdf/practice_book_physics.pdf OSU physics website has lots of tips, and 4 additional tests http://www.physics.ohiostate.edu/undergrad/ugs_gre.php
More informationCircuit AnalysisIII. Circuit AnalysisII Lecture # 3 Friday 06 th April, 18
Circuit AnalysisIII Sinusoids Example #1 ü Find the amplitude, phase, period and frequency of the sinusoid: v (t ) =12cos(50t +10 ) Signal Conversion ü From sine to cosine and vice versa. ü sin (A ± B)
More informationSupplemental Notes on Complex Numbers, Complex Impedance, RLC Circuits, and Resonance
Supplemental Notes on Complex Numbers, Complex Impedance, RLC Circuits, and Resonance Complex numbers Complex numbers are expressions of the form z = a + ib, where both a and b are real numbers, and i
More informationEE292: Fundamentals of ECE
EE292: Fundamentals of ECE Fall 2012 TTh 10:0011:15 SEB 1242 Lecture 20 121101 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Chapters 13 Circuit Analysis Techniques Chapter 10 Diodes Ideal Model
More informationChapter 13 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Oscillatory Motion Pearson Education, Inc.
Chapter 13 Lecture Essential University Physics Richard Wolfson nd Edition Oscillatory Motion Slide 131 In this lecture you ll learn To describe the conditions under which oscillatory motion occurs To
More informationECE Circuit Theory. Final Examination. December 5, 2008
ECE 212 H1F Pg 1 of 12 ECE 212  Circuit Theory Final Examination December 5, 2008 1. Policy: closed book, calculators allowed. Show all work. 2. Work in the provided space. 3. The exam has 3 problems
More informationVibrations and Waves MP205, Assignment 4 Solutions
Vibrations and Waves MP205, Assignment Solutions 1. Verify that x = Ae αt cos ωt is a possible solution of the equation and find α and ω in terms of γ and ω 0. [20] dt 2 + γ dx dt + ω2 0x = 0, Given x
More informationEE292: Fundamentals of ECE
EE292: Fundamentals of ECE Fall 2012 TTh 10:0011:15 SEB 1242 Lecture 18 121025 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review RMS Values Complex Numbers Phasors Complex Impedance Circuit Analysis
More information2.4 Models of Oscillation
2.4 Models of Oscillation In this section we give three examples of oscillating physical systems that can be modeled by the harmonic oscillator equation. Such models are ubiquitous in physics, but are
More informationLECTURE 8 RC AND RL FIRSTORDER CIRCUITS (PART 1)
CIRCUITS by Ulaby & Maharbiz LECTURE 8 RC AND RL FIRSTORDER CIRCUITS (PART 1) 07/18/2013 ECE225 CIRCUIT ANALYSIS All rights reserved. Do not copy or distribute. 2013 National Technology and Science Press
More informationAlternating Current Circuits. Home Work Solutions
Chapter 21 Alternating Current Circuits. Home Work s 21.1 Problem 21.11 What is the time constant of the circuit in Figure (21.19). 10 Ω 10 Ω 5.0 Ω 2.0µF 2.0µF 2.0µF 3.0µF Figure 21.19: Given: The circuit
More informationWave Phenomena Physics 15c
Wave Phenomena Physics 15c Lecture Harmonic Oscillators (H&L Sections 1.4 1.6, Chapter 3) Administravia! Problem Set #1! Due on Thursday next week! Lab schedule has been set! See Course Web " Laboratory
More informationPHYSICS 110A : CLASSICAL MECHANICS HW 2 SOLUTIONS. Here is a sketch of the potential with A = 1, R = 1, and S = 1. From the plot we can see
PHYSICS 11A : CLASSICAL MECHANICS HW SOLUTIONS (1) Taylor 5. Here is a sketch of the potential with A = 1, R = 1, and S = 1. From the plot we can see 1.5 1 U(r).5.5 1 4 6 8 1 r Figure 1: Plot for problem
More informationName (print): Lab (circle): W8 Th8 Th11 Th2 F8. θ (radians) θ (degrees) cos θ sin θ π/ /2 1/2 π/4 45 2/2 2/2 π/3 60 1/2 3/2 π/
Name (print): Lab (circle): W8 Th8 Th11 Th2 F8 Trigonometric Identities ( cos(θ) = cos(θ) sin(θ) = sin(θ) sin(θ) = cos θ π ) 2 Cosines and Sines of common angles Euler s Formula θ (radians) θ (degrees)
More informationOscillations. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring of constant k is
Dr. Alain Brizard College Physics I (PY 10) Oscillations Textbook Reference: Chapter 14 sections 18. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring
More informationLecture 4: RLC Circuits and Resonant Circuits
Lecture 4: RLC Circuits and Resonant Circuits RLC series circuit: What's V R? Simplest way to solve for V is to use voltage divider equation in complex notation: V X L X C V R = in R R + X C + X L L
More informationEE221 Circuits II. Chapter 14 Frequency Response
EE22 Circuits II Chapter 4 Frequency Response Frequency Response Chapter 4 4. Introduction 4.2 Transfer Function 4.3 Bode Plots 4.4 Series Resonance 4.5 Parallel Resonance 4.6 Passive Filters 4.7 Active
More informationRLC Circuits and Resonant Circuits
P517/617 Lec4, P1 RLC Circuits and Resonant Circuits Consider the following RLC series circuit What's R? Simplest way to solve for is to use voltage divider equation in complex notation. X L X C in 0
More informationElectric Circuits I. Inductors. Dr. Firas Obeidat
Electric Circuits I Inductors Dr. Firas Obeidat 1 Inductors An inductor is a passive element designed to store energy in its magnetic field. They are used in power supplies, transformers, radios, TVs,
More informationActive Figure 32.3 (SLIDESHOW MODE ONLY)
RL Circuit, Analysis An RL circuit contains an inductor and a resistor When the switch is closed (at time t = 0), the current begins to increase At the same time, a back emf is induced in the inductor
More information4.9 Free Mechanical Vibrations
4.9 Free Mechanical Vibrations SpringMass Oscillator When the spring is not stretched and the mass m is at rest, the system is at equilibrium. Forces Acting in the System When the mass m is displaced
More informationPhasors: Impedance and Circuit Anlysis. Phasors
Phasors: Impedance and Circuit Anlysis Lecture 6, 0/07/05 OUTLINE Phasor ReCap Capacitor/Inductor Example Arithmetic with Complex Numbers Complex Impedance Circuit Analysis with Complex Impedance Phasor
More informationName: Lab: M8 M2 W8 Th8 Th11 Th2 F8. cos( θ) = cos(θ) sin( θ) = sin(θ) sin(θ) = cos. θ (radians) θ (degrees) cos θ sin θ π/6 30
Name: Lab: M8 M2 W8 Th8 Th11 Th2 F8 Trigonometric Identities cos(θ) = cos(θ) sin(θ) = sin(θ) sin(θ) = cos Cosines and Sines of common angles Euler s Formula θ (radians) θ (degrees) cos θ sin θ 0 0 1 0
More informationEECS2200 Electric Circuits. RLC Circuit Natural and Step Responses
54 EECS Electric Circuit Chapter 6 R Circuit Natural and Step Repone Objective Determine the repone form of the circuit Natural repone parallel R circuit Natural repone erie R circuit Step repone of
More informationMixing Problems. Solution of concentration c 1 grams/liter flows in at a rate of r 1 liters/minute. Figure 1.7.1: A mixing problem.
page 57 1.7 Modeling Problems Using FirstOrder Linear Differential Equations 57 For Problems 33 38, use a differential equation solver to determine the solution to each of the initialvalue problems and
More informationChapter 30 Inductance
Chapter 30 Inductance In this chapter we investigate the properties of an inductor in a circuit. There are two kinds of inductance mutual inductance and selfinductance. An inductor is formed by taken
More informationdx n a 1(x) dy
HIGHER ORDER DIFFERENTIAL EQUATIONS Theory of linear equations Initialvalue and boundaryvalue problem nthorder initial value problem is Solve: a n (x) dn y dx n + a n 1(x) dn 1 y dx n 1 +... + a 1(x)
More informationChapter 15. Oscillatory Motion
Chapter 15 Oscillatory Motion Part 2 Oscillations and Mechanical Waves Periodic motion is the repeating motion of an object in which it continues to return to a given position after a fixed time interval.
More informationPhysics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current
Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current People of mediocre ability sometimes achieve outstanding success because they don't know when to quit. Most men succeed because
More informationWPI Physics Dept. Intermediate Lab 2651 Free and Damped Electrical Oscillations
WPI Physics Dept. Intermediate Lab 2651 Free and Damped Electrical Oscillations Qi Wen March 11, 2017 Index: 1. Background Material, p. 2 2. Prelab Exercises, p. 4 3. Report Checklist, p. 6 4. Appendix,
More informationRead each question and its parts carefully before starting. Show all your work. Give units with your answers (where appropriate).
ECSE 10, Fall 013 NAME: Quiz #1 September 17, 013 ID: Read each question and its parts carefully before starting. Show all your work. Give units with your answers (where appropriate). 1. Consider the circuit
More informationTransient Analysis of Electrical Circuits Using Runge Kutta Method and its Application
International Journal of Scientific and Research Publications, Volume 3, Issue 11, November 2013 1 Transient Analysis of Electrical Circuits Using Runge Kutta Method and its Application Anuj Suhag School
More informationMATH 251 Week 6 Not collected, however you are encouraged to approach all problems to prepare for exam
MATH 51 Week 6 Not collected, however you are encouraged to approach all problems to prepare for exam A collection of previous exams could be found at the coordinator s web: http://www.math.psu.edu/tseng/class/m51samples.html
More informationMath 211. Substitute Lecture. November 20, 2000
1 Math 211 Substitute Lecture November 20, 2000 2 Solutions to y + py + qy =0. Look for exponential solutions y(t) =e λt. Characteristic equation: λ 2 + pλ + q =0. Characteristic polynomial: λ 2 + pλ +
More informationReview of 1 st Order Circuit Analysis
ECEN 60 Circuits/Electronics Spring 007707 P. Mathys Review of st Order Circuit Analysis First Order Differential Equation Consider the following circuit with input voltage v S (t) and output voltage
More informationLinear SecondOrder Differential Equations LINEAR SECONDORDER DIFFERENTIAL EQUATIONS
11.11 LINEAR SECONDORDER DIFFERENTIAL EQUATIONS A Spring with Friction: Damped Oscillations The differential equation, which we used to describe the motion of a spring, disregards friction. But there
More information