Effect of Precipitation on Operation Range of the CO 2

Size: px
Start display at page:

Download "Effect of Precipitation on Operation Range of the CO 2"

Transcription

1 Korean Chem. Eng. Res., Vol. 45, No. 3, June, 007, pp g g o mk m o oi n m oi iii i lo Ç Ç k Ç p *Ç p * o re o * l v l o rl re o q 71- (006 1o 18p r, 007 1o 11p }ˆ) Effect of Precipitation on Operation Range of the Capture Process using Ammonia Water Absorbent Jong Kyun You, Ho Seok Park, Won Hi Hong, Jongkee Park* and Jong-Nam Kim* Department of Chemical and Biomolecular Engineering, KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon , Korea *Chemical Process Research Center, KIER, 71- Jang-dong, Yuseong-gu, Daejeon , Korea (Receivecd 18 January 006, accepted 11 January 007) k d p ˆ } o r rp n r k k p rn p m. p ˆ n r p rl r k k r m (loading, mol / ) r m. p o l r kl Pitzer p pn l k k r l n r l m. 5 O p p k k r n l s k r p p n p lp pl. k k r l NH 4 rp p p l slp rk m. 5~14 Op k k r 93, 313 Kl 0.5 p l rp m. r p ˆp sl p f k k r d } rl n ppp k pl. n r p l d p ˆ } o r rm k k l 97~31 Kpl. h Abstract Ammoniater was investigated as a new absorbent of the chemical absorption process for the removal of in flue gas. The suitable range of ammoniater concentration and loading (mol CO /mol NH 3 ) were decided in the point of view of absorption capacity and NH 4 precipitation. The absorption capacity of and the precipitation of NH 4 in liquid phase were calculated by the Pitzer model for electrolyte solution. The absorption capacity of the ammoniater over 5 O was higher than that of conventional amine absorbent. The loadings where precipitation occurred were decided at various absorbent concentrations. Theses values were higher than 0.5 in the concentration range of 5-14 O at 93, 313 K. The absorber for the removal of in flue gas could be operated without NH 4 precipitation by using high concentration of ammoniater below these loading values. The optimum temperature of the ammoniater absorbent for removal of in flue gas was K depending on the concentration of ammoniater. Key words: Ammonia Water, Absorption, Carbon Dioxide, Precipitation, Pitzer Model 1. p ˆ v m p tnopp k r p. Špr k s ll p ˆ r o p l v p. l v p ˆ } t, k To whom correspondence should be addressed. whhong@kaist.ac.kr rl p r p d tp p ˆ } q rp rp k r p [1]. p pn p ˆ p } rl MEA(monoethanolamine), DEA (diethanolamine), MDEA(N-methyldiethanolamine), AMP(-Amino-- methyl-1-propanol) p k r p rp n. Yehm Bai[-3] k k k rl n q l v l qrp v tq k k d 58

2 k k r pn p ˆ r rl r p sl mll m 59 } n r re m. k k rl n n, k rm k kp ep r p r p. k kp ep, k l p r, p p p opp p. k k d } n r n e r l p lr r. r p p re lp er q l rn m kv l. l l d } n rl k k r p rn p m. p ˆ n r p rl k k rp sl s p r m. p o l rl rp r m, r kl Pitzer p n l k k rl sq p m.. m d t p ˆ k k rm e (1)~(5)p p p k p. H O Ë NH 4 OH (1) H O Ë HCO 3 H () HCO 3 Ë H (3) Ë NH COO H O (4) H O Ë H OH (5) (1)~(5)p p l NH 4, NH COONH 4, (NH 4 p r pp p. pp e (6)~(10), p e (11)p ˆ l. e (11)l Table 1l re l [4, 5]. K 1 m NH4 m γ γ OH NH OH m NH3 γ NH3 m K HCO3 m H γ HCO m CO γ H γ CO γ H m K CO3 m H γ CO K 4 K 5 m γ HCO3 HCO3 m NHCOO γ a NHCOO w m NH3 m γ NH3 γ HCO3 HCO3 γ γ H OH m H m OH C lnk C C T 3 lnt C 4 T (6) (7) (8) (9) (10) (11) e (1)~(5)p pl p r,, H Om NH 4, Table 1. Coefficients for equilibrium constants for reaction (1) to (5) [4, 5] C lnk C C T 3 lnt C 4 T Reaction C 1 C C 3 10 C , , , , NH COO, HCO 3, 3, H, OH p pmsp r v (electrolyte) nkp. r v nkl p Gibbs energy Pitzer[6]l p e (1) re l [7]. G E ( 0) f RTn w M 1 ( I) m i m j β ij w i wj w m i m j i wj wk w ( ( 1) β ij ( )) m k τ ijk (1) e (1)p p p (acivity coefficient) (1) lp p. p rp k lv rp β ij e [4] e (13)p llv. I lnγ i A φ z i ( 0) --ln( 1 b I) m 1 b I b j β ij 3 m j m k τ ijk j w j wk w (13) e (13)p m e (6)~(10)p p e 5, e (14)~(16)p v ve, r ve(electroneutrality)p l re p l p (molality) p. m NH3 t m, NH3 m NH4 m NHCOO m CO, t m NH3 t α m m m, CO NHCOO HCO3 m NH4 m H m m NHCOO m HCO3 CO3 m OH 3. y (14) (15) (16) 3-1. nm o rp k rl rp v k mll sl lk. p ml p p p l k k r l rp n, p r p p o l r p m. rp k k r l l rp NMR m. k k rl l NH 4, NH COONH 4, (NH 4 p rp p. p v p t o } o (> 99%)p NMRp r l Fig. 1(A)l ˆ l. NH 4 p n 16 ppm, NH COONH 16, 167, 168 ppm, (NH ppm p l r rp m. 95 Kp ml 10~5 wt% k k l tp l rp okp v pe. 10 k v lp snkp ph k k l 8.1~9.m. r l r p NMR Fig. 1(B)l ˆ l. NMR m 16 ppm }l p l r p NH 4 pp p pl. p NH COONH 4 m (NH 4 mp l n NH 4 l j l rp rp n p NH 4 sq p. l NH 4 r l. 3-. h d p ˆ rp ˆ sls p l r f I m CO3 Korean Chem. Eng. Res., Vol. 45, No. 3, June, 007

3 60 or Ë Ë o Ë s Ë s Fig. 1. NMR spectra of (A) ammonium carbamate, ammonium carbonate, and ammonium bicarbonate, (B) products after the reaction between ammoniater and carbon dioxide at various concentrations from 10 to 5 wt%. m 93~333 K, k k mol NH /kg H O p l k 3 rl sq p m. p o p m p l p l m p kp l [8, 9] l Fig. m 3l ˆ l. r m 93~333 K, k k.1~11.8 Op ol p q p p p. Edward [4] Kurz [8]p e (13)p p o binary interaction parameter / /H O l l m. p k k l l Kurz [8]p re interaction parameter n n p p q m m k k k r d p ˆ rl n o q n p k r p p n p lk. k k l p r k rp MEA(monoethanolamine)m AMP(-Amino--methyl-1- propanol) l Fig. 4l ˆ l. 5 O(8 wt%) p p k k r n l 30 wt%p n k MEA, AMP p n p lp pl n m oiiii i r NH 4 e (17)p pp n (solubility o45 o k Fig.. Partial pressure of (A) and (B) in the.1 mol/kg aqueous solution at various temperatures;,, -experimental data (Van Krevelen et al.[8]), Line - prediction, this work. product)p e (18) re l [8]. NH 4 K NH4HCO3 Ë NH 4 (s) (17) m NH4 m γ γ HCO3 NH4 HCO3, exp T (18) rp (loading) p p p s m. r p v l NH 4 m HCO 3 pm m. pm sp p p e (18)p n ƒv r p [8]. r mll p p o l Kurz [8]p m. Kurz [8]p m 313 K, k k 6.3, 11.8 mol/kgl kl r l m. Fig. 5l ˆ m p rp ml v k mlp q m. Fig. 6l k k l k r l NH 4 rp eq (α precipitation )p ˆ l. r p p lr o l p p l ˆp nr lk. p rp d } rl r

4 k k r pn p ˆ r rl r p sl mll m 61 Fig. 5. Prediction of solubility limitation of NH 4 at 313 K:, experimental data (Kurz et al.[8]) -without precipitation, - with precipitation, Line - prediction, this work. Fig. 3. Partial pressure of (A) and (B) in the various concentrations aqueous solution;,, -experimental data (Kurz et al.[8], Van Krevelen et al.[9]), Line - prediction, this work. Fig. 6. loading of NH 4 precipitate formation at various concentration of ammoniater. 0.5 p l sl p, slm 93~313 K l l 5 O p p k k k l p r rlp r n ppp k p. Fig. 4. Comparison of absorption capacity between ammoniater and conventional amine absorbents; -experimental data (Shen et al.[10]), -experimental data (Li et al.[11], Seo et al.[1]), Line - prediction, this work oi p rp rp (α max )p p p (α eq )p r. m p p n v α eq v l l o v, p m l NH 4 p r p np r sl Korean Chem. Eng. Res., Vol. 45, No. 3, June, 007

5 6 or Ë Ë o Ë s Ë s ) r m. p l k k rl rp p p o l 6.5~0 O(10~5 wt%) k k l rp NMR r m. NMR m 16 ppml l r p NH 4 p p p m. Pitzer p pn l k k r l n l r l m. 5 O p p k k r n l s k r p p n p lp pl. k k r l NH 4 rp p p l slp rk m. 5~14 Op k k r 93, 313 Kl 0.5p l rp m. r p ˆp sl p f k k r d } rl n ppp k pl. n r p l d p ˆ } o r rm k k l 97~31 Kpl. 9 O k k 303 Kl n 0.1 kg /kg solution(1.6 kg /kg )p ˆ l. Fig. 7. Maximum (A) loading and (B) absorption capacity of ammoniater at various temperatures (p CO 15 kpa). p rp s (α precipitate )l r p. Fig. 7(A)l k 15 kpap dl l k k rp m, sl p ˆ l. 5 / kgh Op rl rp v kp p p k s (α eq )l p r l. 7 O p p rp n rp mlp s q l p m mll sl rp (α precipitation )p r l. Fig. 7(A)l ˆ m p q p sl p ˆ m 7~13 mol /kg H Ol 97~31 K v m. sl p n (kg /kg solution)p ˆ Fig. 7(B)m. k 15 kpap l d } l l k k l n p v, r p l rp m sq p p. 9 Op n r s 303 Kl n 0.1 kg /kg solution(1.6 kg /kg )p lp pl. 4. d p ˆ } n k k r k k p rn p m. p ˆ n r p rl r k k r m (loading, mol / o45 o k l p ˆ r } l (CDRS, Carbon Dioxide Reduction and Sequestration R&D Center)p vop lp pl. k A φ : debye-hückel constant [kg 1/ mol -1/ ] : activity of pure water [mol/kg] b : parameter in equation (13) [kg 1/ mol -1/ ] f 1 (I), f (I) : functions in Pitzer s equation G E : total excess Gibbs free energy I : ionic strength [mol/kg] K : equilibrium constant of reaction with activities expressed in molalities M w : molecular weight of pure water [kg/mol] : molality of species i [mol/kg] m i m CO,t m CO,eq m NH3,t n w : total molality of [mol/kg] : molality of in equilibrium with gas phase [mol/kg] : total molality of [mol/kg] : number of moles of pure water [mol] R : gas constant T : temperature [K] z i : ionic charges on species i [-] m m α : loading moles of /moles of [-] (0) (1) β ij, β ij γ i τ ijk : binary interaction parameters defined by Pitzer : activity coefficient of species i (on molality scale) : ternary interaction coefficient

6 k k r pn p ˆ r rl r p sl mll m 63 y 1. Chakma, A., Separation of and SO from Flue Gas Streams by Liquid Membranes, Energy Convers. Manage., 36(6/9), (1995).. Yeh, A. C. and Bai, H., Comparison of Ammonia and Monoethanolamine Solvents to Reduce Greenhouse Gas Emissions, The Science of the Total Environment, 8(/3), (1999). 3. Bai, H. and Yeh, A. C., Removal of Greenhouse Gas by Ammonia Scrubbing, Ind. Eng. Chem. Res., 36(6), (1997). 4. Edwards, T. J., Maurer, G., Newman, J. and Prausnitz, J. M., Vapor-Liquid Equilibria in Multicomponent Aqueous Solutions of Volatile Weak Electrolytes, AIChE J., 4(6), (1978). 5. Bieling, V., Rumpf, B. and Maurer, G., An Evolutionary Optimization Method for Modeling the Solubility of Ammonia and Carbon Dioxide in Aqueous Solutions, Fluid Phase Equilibria, 53, 51-59(1989). 6. Pitzer, K. S., Thermodynamics of Electrolytes, J. Phys. Chem., 77(), 68-77(1973). 7. Bieling, V., Kurz, F., Rumpf, B. and Maurer, G., Simultaneous Solubility of Ammonia and Carbon Dioxide in Aqueous Solution of Sodium Sulfate in the Temperature Range K and Pressure up to 3 MPa, Ind. Eng. Chem. Res., 34, (1995). 8. Kurz, F., Rumpf, B. and Maurer, G., Vapor-Liquid-Solid Equilibria in the System - -H O from Around 310 to 470 K: New Experimental Data and Modeling, Fluid Phase Equilibria, 104, 61-75(1995). 9. Van Krevelen, D. W., Hoftijzer, P. J. and Huntjens, F. J., Composition and Vapour Pressures of Aqueous Solutions of Ammonia, Carbon Dioxide, and Hydrogen Sulphide, Rec. Trav. Chim. Pays-bas, 68, (1949). 10. Shen, K.-P. and Li, M.-H., Solubility of Carbon Dioxide in Aqueous Mixtures of Monoethanolamine with Methyldiethanolamine, J. Chem. Eng. Data, 37(1), (199). 11. Li, M.-H. and Chang, B.-C., Solubilities of Carbon Dioxide in Water Monoethanolamine -amino--methyl-1-propanol, J. Chem. Eng. Data, 39(3), (1994). 1. Seo, D.-J. and Hong, W. H., Solubilities of Carbon Dioxide in Aqueous Mixtures of Diethanolamine and -Amino--methyl-1- Propanol, J. Chem. Eng. Data, 41(), 58-60(1996). Korean Chem. Eng. Res., Vol. 45, No. 3, June, 007

of Science and Technology, Daejeon, Republic of Korea

of Science and Technology, Daejeon, Republic of Korea This article was downloaded by:[2007-2008 Yonsei University Central Library] On: 16 April 2008 Access Details: [subscription number 769136881] Publisher: Taylor & Francis Informa Ltd Registered in England

More information

Current status of R&D in post combustion CO 2 capture

Current status of R&D in post combustion CO 2 capture Current status of R&D in post combustion CO 2 capture Kaj Thomsen, Ph.D. Center for Energy Resources Engineering, CERE DTU Chemical Engineering Technical University of Denmark Outline Choice of solvent

More information

Solubility of carbon dioxide in aqueous solutions of 2-amino-2-ethyl-1,3-propanediol

Solubility of carbon dioxide in aqueous solutions of 2-amino-2-ethyl-1,3-propanediol Fluid Phase Equilibria 202 (2002) 359 366 Solubility of carbon dioxide in aqueous solutions of 2-amino-2-ethyl-1,3-propanediol Jung-Yeon Park a, Sang Jun Yoon a, Huen Lee a,, Ji-Ho Yoon b, Jae-Goo Shim

More information

Available online at Energy Procedia 00 (2008) GHGT-9

Available online at   Energy Procedia 00 (2008) GHGT-9 Available online at www.sciencedirect.com Energy Procedia (8) Energy Procedia www.elsevier.com/locate/xxx GHGT-9 Quantitative Evaluation of the Aqueous-Ammonia Process for CO Capture Using Fundamental

More information

Absorption kinetics of carbon dioxide into aqueous ammonia solution: Addition of hydroxyl groups for suppression of vaporization

Absorption kinetics of carbon dioxide into aqueous ammonia solution: Addition of hydroxyl groups for suppression of vaporization Korean J. Chem. Eng., 30(9), 1790-1796 (2013) DOI: 10.1007/s11814-013-0105-9 INVITED REVIEW PAPER Absorption kinetics of carbon dioxide into aqueous ammonia solution: Addition of hydroxyl groups for suppression

More information

Experimental study into carbon dioxide solubility and species distribution in aqueous alkanolamine solutions

Experimental study into carbon dioxide solubility and species distribution in aqueous alkanolamine solutions Air Pollution XX 515 Experimental study into carbon dioxide solubility and species distribution in aqueous alkanolamine solutions H. Yamada, T. Higashii, F. A. Chowdhury, K. Goto S. Kazama Research Institute

More information

The Study of Structure Design for Dividing Wall Distillation Column

The Study of Structure Design for Dividing Wall Distillation Column Korean Chem. Eng. Res., Vol. 45, No. 1, February, 2007, pp. 39-45 r m o Š i m Çm k m d p 712-749 e 214-1 (2006 11o 18p r, 2006 12o 14p }ˆ) The Study of Structure Design for Dividing Wall Distillation Column

More information

A Thermodynamic Model for Determination of Carbon Dioxide Solubility and Ionic Speciation in Aqueous Alkanolamine Solutions

A Thermodynamic Model for Determination of Carbon Dioxide Solubility and Ionic Speciation in Aqueous Alkanolamine Solutions Humbul Suleman et al., J.Chem.Soc.Pak., Vol. 9, No. 0, 07 74 A Thermodynamic Model for Determination of Carbon Dioxide Solubility and Ionic Speciation in Aqueous Alkanolamine Solutions Humbul Suleman,

More information

Available online at ScienceDirect. Energy Procedia 63 (2014 ) GHGT USA

Available online at  ScienceDirect. Energy Procedia 63 (2014 ) GHGT USA Available online at www.sciencedirect.com ScienceDirect Energy Procedia 63 (2014 ) 1487 1496 GHGT-12 CO 2 mass transfer and solubility in aqueous primary and secondary amine Le Li a, Gary Rochelle a, *

More information

Simulation of gas sweetening process using new formulated amine solutions by developed package and HYSYS

Simulation of gas sweetening process using new formulated amine solutions by developed package and HYSYS Simulation of gas sweetening process using new formulated amine solutions by developed package and Mohammad Irani 1 ١, Reza Dorosti 2, Akbar Zamaniyan 1, Marziye Zare 1- Research Institute of Petroleum

More information

Py x P P P. Py x P. sat. dq du PdV. abs Q S. An Innovative Approach in the G U TS PV P P G U TS PV T H U PV H U PV. abs. Py x P. sat.

Py x P P P. Py x P. sat. dq du PdV. abs Q S. An Innovative Approach in the G U TS PV P P G U TS PV T H U PV H U PV. abs. Py x P. sat. E a 1 1 sat sat ln Py x P Py x P K H k Ae R E sat a Py x P 1 1 sat ln K1 R Py x P K H k Ae R 1 CO P H 1 1 abs ln K H H 1/ R Q C 1 1 CO P ln S K H K1 R 1 P H abs H P K1 R CP 1 K1 R 1/ R S Q P 1 E a E du

More information

Application of GMA Equation of State to Study Thermodynamic Properties of 2- Amino-2-methyl-1-propanol as an Efficient Absorbent for CO 2

Application of GMA Equation of State to Study Thermodynamic Properties of 2- Amino-2-methyl-1-propanol as an Efficient Absorbent for CO 2 Regular Article PHYSICAL CHEMISTRY RESEARCH Published by the Iranian Chemical Society www.physchemres.org info@physchemres.org Phys. Chem. Res., Vol. 5, No., 317-38, June 017 DOI: 10.036/pcr.016.5696.174

More information

Faculty of Technology, Telemark University College, Kjølnes Ring 56, 3918 Porsgrunn, Norway. 2. Tel-Tek, Kjølnes Ring 30, 3918 Porsgrunn, Norway.

Faculty of Technology, Telemark University College, Kjølnes Ring 56, 3918 Porsgrunn, Norway. 2. Tel-Tek, Kjølnes Ring 30, 3918 Porsgrunn, Norway. Attempts to Predict Absorption Equilibria Klaus J. Jens 1,2, Dag A. Eimer 1,2, Bjørnar Arstad 3, Zulkifli Idris 1, Cristina Perinu 1, Gamunu Samarakoon 1 and John Arild Svendsen 1 1 Faculty of Technology,

More information

Development of reactive chemical absorbents at the CSIRO

Development of reactive chemical absorbents at the CSIRO Development of reactive chemical absorbents at the CSIRO HiPerCap Workshop, March 25 2015 Graeme Puxty Research Team Leader CSIRO ENERGY FLAGSHIP CSIRO s chemical absorbent research program Concept Kinetics,

More information

Absorption of carbon dioxide into a mixed aqueous solution of diethanolamine and piperazine

Absorption of carbon dioxide into a mixed aqueous solution of diethanolamine and piperazine Indian Journal of Chemical Technology Vol. 17, November 2010, pp. 431-435 Absorption of carbon dioxide into a mixed aqueous solution of diethanolamine and piperazine M K Mondal Department of Chemical Engineering

More information

Updating 8 m 2MPZ and Independence Models

Updating 8 m 2MPZ and Independence Models Updating 8 m 2MPZ and Independence Models Quarterly Report for January 1 March 31, 2013 by Brent Sherman Supported by the Texas Carbon Management Program and Carbon Capture Simulation Initiative McKetta

More information

Missing Value Estimation and Sensor Fault Identification using Multivariate Statistical Analysis

Missing Value Estimation and Sensor Fault Identification using Multivariate Statistical Analysis Korean Chem. Eng. Res., Vol. 45, No. 1, February, 2007, pp. 87-92 l mk ~ m m i~ m m my Çmm 794-784 e q 31 (2006 10o 31p r, 2007 1o 9p }ˆ) Missing Value Estimation and Sensor Fault Identification using

More information

Carbon Dioxide Absorption into Aqueous Blends of Potassium Carbonate and Amine

Carbon Dioxide Absorption into Aqueous Blends of Potassium Carbonate and Amine Asian Journal of Chemistry; Vol. 24, No. 8 (2012), 33863390 Carbon Dioxide Absorption into Aqueous Blends of Potassium Carbonate and Amine Y.E. KIM, J.H. CHOI, S.C. NAM and Y.I. YOON Korea Institute of

More information

Temperature Control in Autothermal Reforming Reactor

Temperature Control in Autothermal Reforming Reactor Korean Chem. Eng. Res., Vol. 45, No. 1, February, 2007, pp. 12-16 j mi s m i m j oh qç s Çms Ç 702-701 e 1370 (2006 9o 26p r, 2006 12o 13p }ˆ) Temperature Control in Autothermal Reforming Reactor Song

More information

Regeneration Section of CO 2 Capture Plant by MEA Scrubbing with a Rate-Based Model

Regeneration Section of CO 2 Capture Plant by MEA Scrubbing with a Rate-Based Model A publication of 1849 CHEMICAL ENGINEERING TRANSACTIONS VOL. 3, 013 Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright 013, AIDIC Servizi S.r.l., ISBN 978-88-95608-3-5; ISSN 1974-9791 The Italian

More information

A rational approach to amine mixture formulation for CO 2 capture applications. Trondheim CCS Conference - 6 June 14 16, 2011 Graeme Puxty

A rational approach to amine mixture formulation for CO 2 capture applications. Trondheim CCS Conference - 6 June 14 16, 2011 Graeme Puxty A rational approach to amine mixture formulation for CO 2 capture applications Trondheim CCS Conference - 6 June 14 16, 2011 Graeme Puxty The ideal solvent for CO 2 post-combustion capture: Process challenges

More information

Particle Removal on Silicon Wafer Surface by Ozone-HF-NH 4

Particle Removal on Silicon Wafer Surface by Ozone-HF-NH 4 Korean Chem. Eng. Res., Vol. 45, No. 2, April, 2007, pp. 203-207 -jo- g g oi m lmœ Ž m mm o m Ç m (t)e l 730-724 e p 283 (2006 10o 18p r, 2006 12o 7p }ˆ) Particle Removal on Silicon Wafer Surface by Ozone-HF-NH

More information

Reaction kinetics of carbon dioxide with 2-amino-2-hydroxymethyl-1,3-propanediol in aqueous solution obtained from the stopped flow method

Reaction kinetics of carbon dioxide with 2-amino-2-hydroxymethyl-1,3-propanediol in aqueous solution obtained from the stopped flow method Turk J Chem 36 (2012), 427 435. c TÜBİTAK doi:10.3906/kim-1107-33 Reaction kinetics of carbon dioxide with 2-amino-2-hydroxymethyl-1,3-propanediol in aqueous solution obtained from the stopped flow method

More information

GEOL 414/514 ACTIVITY COEFFICIENTS OF DISSOLVED SPECIES

GEOL 414/514 ACTIVITY COEFFICIENTS OF DISSOLVED SPECIES GEOL 414/514 ACTIVITY COEFFICIENTS OF DISSOLVED SPECIES Chapter 4 LANGMUIR ACTIVITY & ACTIVITY COEFFICIENTS Earlier we studied common ion effect on decreasing the solubility CaCO 3 Ca +2 + CO 3 Add Ca

More information

Temperature Effect on the Retention Behavior of Sugars and Organic Acids on poly (4-vinylpyridine) Resin

Temperature Effect on the Retention Behavior of Sugars and Organic Acids on poly (4-vinylpyridine) Resin Korean Chem. Eng. Res., Vol. 44, No. 1, February, 2006, pp. 35-39 PVP 분리수지에서온도에따른당과유기산의체류특성변화 smçmp *Ç l p, *r l 402-701 p}e n 253 (2005 11o 14p r, 2005 12o 11p }ˆ) Temperature Effect on the Retention

More information

수소가스화기에서석탄의메탄화반응특성. Characteristics of Coal Methanation in a Hydrogasifier

수소가스화기에서석탄의메탄화반응특성. Characteristics of Coal Methanation in a Hydrogasifier Korean Chem. Eng. Res., Vol. 44, No. 6, December, 2006, pp. 631-635 수소가스화기에서석탄의메탄화반응특성 m Çl qç iyç m Çmm l v l o ˆr l 305-343 r le o q 71-2 (2006 2o 14p r, 2006 8o 8p }ˆ) Characteristics of Coal Methanation

More information

,, Seong-Bo Kim,Hai-SongBae, and Jeong-Sik Han

,, Seong-Bo Kim,Hai-SongBae, and Jeong-Sik Han Jungho Cho, So-Jin Park,, Myung-Jae Choi,, Seong-Bo Kim,Hai-SongBae, and Jeong-Sik Han Department of Chemical Engineering, Dong-Yang University, Kyoungbuk, 750-711, Korea *Department of Chemical Engineering,

More information

Phase Equilibrium in Amino Acid Salt Systems for CO2 Capture

Phase Equilibrium in Amino Acid Salt Systems for CO2 Capture Downloaded from orbit.dtu.dk on: Dec 22, 217 Phase Equilibrium in Amino Acid Salt Systems for CO2 Capture Sengeløv, Louise With; Thomsen, Kaj Publication date: 211 Document Version Early version, also

More information

Comparison of Carbon Dioxide Absorption in Aqueous MEA, DEA, TEA, and AMP Solutions

Comparison of Carbon Dioxide Absorption in Aqueous MEA, DEA, TEA, and AMP Solutions Carbon Dioxide Capture Using Amine Solutions Bull. Korean Chem. Soc. 2013, Vol. 34, No. 3 783 http://dx.doi.org/10.5012/bkcs.2013.34.3.783 Comparison of Carbon Dioxide Absorption in Aqueous MEA, DEA, TEA,

More information

Modelling and prediction of the solubility of acid gases in diethanolamine solutions

Modelling and prediction of the solubility of acid gases in diethanolamine solutions High Temperatures ^ High Pressures, 2000, volume 32, pages 261 ^ 270 15 ECTP Proceedings pages 247 ^ 256 DOI:10.1068/htwu271 Modelling and prediction of the solubility of acid gases in diethanolamine solutions

More information

Kinetics of absorption of carbon dioxide in aqueous ammonia solutions Derks, P. W. J.; Versteeg, Geert

Kinetics of absorption of carbon dioxide in aqueous ammonia solutions Derks, P. W. J.; Versteeg, Geert University of Groningen Kinetics of absorption of carbon dioxide in aqueous ammonia solutions Ders, P. W. J.; Versteeg, Geert Published in: Energy Procedia DOI: 10.1016/j.egypro.009.01.150 IMPORTANT NOTE:

More information

Miho Nitta a, Masaki Hirose a, Toru Abe a, Yukio Furukawa a, *, Hiroshi Sato b, Yasuro Yamanaka c

Miho Nitta a, Masaki Hirose a, Toru Abe a, Yukio Furukawa a, *, Hiroshi Sato b, Yasuro Yamanaka c Available online at www.sciencedirect.com Energy Procedia 37 (013 ) 869 876 GHGT-11 13 C-NMR Spectroscopic Study on Chemical Species in H O System before and after Heating Miho Nitta a, Masaki Hirose a,

More information

Simulation of CO 2 removal in a split-flow gas sweetening process

Simulation of CO 2 removal in a split-flow gas sweetening process Korean J. Chem. Eng., 28(3), 643-648 (2011) DOI: 10.1007/s11814-010-0446-6 INVITED REVIEW PAPER Simulation of CO 2 removal in a split-flow gas sweetening process Hyung Kun Bae, Sung Young Kim, and Bomsock

More information

경막형용융결정화에의한파라디옥사논과디에틸렌글리콜혼합물로부터파라디옥사논의정제. Purification of p-dioxanone from p-dioxanone and Diethylene Glycol Mixture by a Layer Melt Crystallization

경막형용융결정화에의한파라디옥사논과디에틸렌글리콜혼합물로부터파라디옥사논의정제. Purification of p-dioxanone from p-dioxanone and Diethylene Glycol Mixture by a Layer Melt Crystallization Korean Chem. Eng. Res., Vol. 43, No. 5, October, 2005, pp. 595-602 경막형용융결정화에의한파라디옥사논과디에틸렌글리콜혼합물로부터파라디옥사논의정제 m zk s * l o r l 305-600 re o q 100 * 305-764 re o 220 (2005 6o 15p r, 2005 9o 6p }ˆ) Purification

More information

Ki-Sub Kim, Jong-Won Lee, Jin-Soo Kim and Huen Lee

Ki-Sub Kim, Jong-Won Lee, Jin-Soo Kim and Huen Lee Korean J. Chem. Eng., 20(4), 762-767 (2003) Heat Capacity Measurement and Cycle Simulation of the Trifluoroethanol (TFE) +Quinoline Mixture as a New Organic Working Fluid Used in Absorption Heat Pump Ki-Sub

More information

Slide 1. Slide 2. Slide 3. Colligative Properties. Compounds in Aqueous Solution. Rules for Net Ionic Equations. Rule

Slide 1. Slide 2. Slide 3. Colligative Properties. Compounds in Aqueous Solution. Rules for Net Ionic Equations. Rule Slide 1 Colligative Properties Slide 2 Compounds in Aqueous Solution Dissociation - The separation of ions that occurs when an ionic compound dissolves Precipitation Reactions - A chemical reaction in

More information

CO 2 absorption characteristics of a piperazine derivative with primary, secondary, and tertiary amino groups

CO 2 absorption characteristics of a piperazine derivative with primary, secondary, and tertiary amino groups Korean J. Chem. Eng., 33(11), 3222-3230 (2016) DOI: 10.1007/s11814-016-0180-9 INVITED REVIEW PAPER pissn: 0256-1115 eissn: 1975-7220 CO 2 absorption characteristics of a piperazine derivative with primary,

More information

Measurement and modeling of solubility of H 2 S in aqueous diisopropanolamine solution

Measurement and modeling of solubility of H 2 S in aqueous diisopropanolamine solution Korean J. Chem. Eng., 26(4), 1112-1118 (2009) DOI: 10.1007/s11814-009-0185-8 APID COMMUNICATION Measurement and modeling of solubility of H 2 S in aqueous diisopropanolamine solution Hassan Pahlavanzadeh

More information

Experimental and Simulation Study on the Reactive Distillation Process for the Production of Ethyl Acetate

Experimental and Simulation Study on the Reactive Distillation Process for the Production of Ethyl Acetate Experimental and Simulation Study on the Reactive Distillation Process for the Production of Ethyl Acetate Jongkee Park, Na-Hyun Lee, So-Jin Park, and Jungho Cho, Separation Process Research Center, Korea

More information

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION CO Absorption Rate and Solubility in Monoethanolamine/Piperazine/Water Hongyi Dang (dang@che.utexas.edu) Gary T. Rochelle* (gtr@che.utexas.edu, 51-471-70) The University of Texas at Austin Department of

More information

CO 2 CAPTURE BY ABSORPTION IN ACTIVATED AQUEOUS SOLUTIONS OF N,N-DIETHYLETHANOLOAMINE

CO 2 CAPTURE BY ABSORPTION IN ACTIVATED AQUEOUS SOLUTIONS OF N,N-DIETHYLETHANOLOAMINE DOI: 10.1515/eces-017-0016 EL CHEM ENG S. 017;4():39-48 Ewelina KRUSZCZAK 1 and Hanna KIERZKOWSKA-PAWLAK 1* CAPTURE BY ABSORPTION IN ACTIVATED AQUEOUS SOLUTIONS OF N,N-DIETHYLETHANOLOAMINE ABSORPCYJNE

More information

Chapter 12 & 13 Test Review. Bond, Ionic Bond

Chapter 12 & 13 Test Review. Bond, Ionic Bond Chapter 12 & 13 Test Review A solid solute dissolved in a solid solvent is an Alloy What is happening in a solution at equilibrium? The Ionic rate of Bond dissolving is equal to the rate of crystallization.

More information

The Refined Electrolyte-NRTL Model applied to CO 2 -H 2 O-alkanolamine systems

The Refined Electrolyte-NRTL Model applied to CO 2 -H 2 O-alkanolamine systems 1 The Refined Electrolyte-NRTL Model applied to CO 2 -H 2 O-alkanolamine systems - Equilibrium model predictions - Implementation into the CO2SIM simulator., Finn Andrew Tobiesen*, Mehdi Karimi, Xiao Luo,

More information

A NEW SOLVENT FOR CO2 CAPTURE R.

A NEW SOLVENT FOR CO2 CAPTURE R. A NEW SOLVENT FOR CO 2 CAPTURE R. Viscardi, G. Vanga and V. Barbarossa vincenzo.barbarossa@enea.it C.R. Casaccia ENEA; via Anguillarese, 301; 00123 S. M. Galeria-Roma Abstract This experimental study describes

More information

Thermodynamic and dynamic investigation for CO 2 storage in deep saline aquifers

Thermodynamic and dynamic investigation for CO 2 storage in deep saline aquifers Thermodynamic and dynamic investigation for CO 2 storage in deep saline aquifers Xiaoyan Ji 1,*, Yuanhui Ji 1, Chongwei Xiao 2 1 Division of Energy Engineering, Luleå University of Technology, Luleå, Sweden

More information

SITARAM K. CHAVAN * and MADHURI N. HEMADE ABSTRACT INTRODUCTION

SITARAM K. CHAVAN * and MADHURI N. HEMADE ABSTRACT INTRODUCTION Int. J. Chem. Sci.: 11(1), 013, 619-67 ISSN 097-768X www.sadgurupublications.com DENSITIES, VISCOSITIES AND EXCESS THERMODYNAMIC PROPERTIES OF MONOMETHYL AMMONIUM CHLORIDE IN TETRAHYDROFURAN AND WATER

More information

Variable hydration of small carbohydrates for prediction of equilibrium properties in diluted and concentrated solutions

Variable hydration of small carbohydrates for prediction of equilibrium properties in diluted and concentrated solutions Variable hydration of small carbohydrates for prediction of equilibrium properties in diluted and concentrated solutions J.-B. Gros LGCB, Université B. Pascal, Clermont-Ferrand, France Which thermodynamic

More information

Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide

Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide Korean J. Chem. Eng., 24(3), 438-444 (2007) SHORT COMMUNICATION Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide Jungho Cho and Dong Min Kim* Department of Chemical

More information

Lecture 6. NONELECTROLYTE SOLUTONS

Lecture 6. NONELECTROLYTE SOLUTONS Lecture 6. NONELECTROLYTE SOLUTONS NONELECTROLYTE SOLUTIONS SOLUTIONS single phase homogeneous mixture of two or more components NONELECTROLYTES do not contain ionic species. CONCENTRATION UNITS percent

More information

The solubility of carbon dioxide in aqueous N-methyldiethanolamine solutions

The solubility of carbon dioxide in aqueous N-methyldiethanolamine solutions Available online at www.sciencedirect.com Fluid Phase Equilibria 264 (2008) 99 112 The solubility of carbon dioxide in aqueous N-methyldiethanolamine solutions P.J.G. Huttenhuis a,, N.J. Agrawal a, E.

More information

Optimization of the Sulfolane Extraction Plant Based on Modeling and Simulation

Optimization of the Sulfolane Extraction Plant Based on Modeling and Simulation Korean J. Chem. Eng., 17(6), 712-718 (2000) Optimization of the Sulfolane Extraction Plant Based on Modeling and Simulation Yu-Jung Choi, Tae-In Kwon and Yeong-Koo Yeo Department of Chemical Engineering,

More information

Volatility of MEA and Piperazine

Volatility of MEA and Piperazine Volatility of MEA and Piperazine Department of Chemical Engineering The University of Texas at Austin Austin, Texas 78712 USA Marcus Hilliard, John M c Lees, Dr. Gary T. Rochelle June 16, 2006 This presentation

More information

Benefits from the Rigorous Mass Transfer Rate Approach to Modelling Acid Gas Absorption Using Mixed Amines

Benefits from the Rigorous Mass Transfer Rate Approach to Modelling Acid Gas Absorption Using Mixed Amines Benefits from the Rigorous Mass Transfer Rate Approach to Modelling Acid Gas Absorption Using Mixed Amines David J. Vickery and John T. Adams ChemShare Corporation, Houston Texas and Robert D. Wright Amoco

More information

Chemistry 2000 Lecture 11: Chemical equilibrium

Chemistry 2000 Lecture 11: Chemical equilibrium Chemistry 2000 Lecture 11: Chemical equilibrium Marc R. Roussel February 4, 2019 Marc R. Roussel Chemical equilibrium February 4, 2019 1 / 27 Equilibrium and free energy Thermodynamic criterion for equilibrium

More information

Carbon dioxide removal processes by alkanolamines in aqueous organic solvents Hamborg, Espen Steinseth

Carbon dioxide removal processes by alkanolamines in aqueous organic solvents Hamborg, Espen Steinseth University of Groningen Carbon dioxide removal processes by alkanolamines in aqueous organic solvents Hamborg, Espen Steinseth IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's

More information

/CO/CO 2. Eui-Sub Ahn, Seong-Cheol Jang, Do-Young Choi, Sung-Hyun Kim* and Dae-Ki Choi

/CO/CO 2. Eui-Sub Ahn, Seong-Cheol Jang, Do-Young Choi, Sung-Hyun Kim* and Dae-Ki Choi Korean Chem. Eng. Res., Vol. 44, No. 5, October, 2006, pp. 460-467 Zeolite 5Ai m /CO m y gm Çm zç iç *Ç l o rl 136-791 ne o 39-1 * 136-709 ne kk 5 1 (2006 2o 23p r, 2006 7o 20p }ˆ) Pure Gas Adsorption

More information

Available online at Energy Procedia 4 (2011) Energy Procedia 00 (2010) GHGT-10

Available online at  Energy Procedia 4 (2011) Energy Procedia 00 (2010) GHGT-10 Available online at www.sciencedirect.com 201 208 www.elsevier.com/locate/procedia www.elsevier.com/locate/xxx GGT-10 Synthesis and selection of hindered new amine absorbents for CO 2 capture Firoz Alam

More information

Solubility of Hydrogen in Aqueous Solutions of Sodium and Potassium Bicarbonate from 293 to 333 K

Solubility of Hydrogen in Aqueous Solutions of Sodium and Potassium Bicarbonate from 293 to 333 K 546 J. Chem. Eng. Data 1996, 41, 546-550 Solubility of Hydrogen in Aqueous Solutions of Sodium and Potassium Bicarbonate from 293 to 333 K Dico C. Engel,* Geert F. Versteeg, and Wim P. M. van Swaaij Department

More information

3.Which of the following has the highest melting temperature? A) H 2 O B) CO 2 C) S 8 D) MgF 2 E) P 4

3.Which of the following has the highest melting temperature? A) H 2 O B) CO 2 C) S 8 D) MgF 2 E) P 4 2. Which if the following is the correct order of boiling points for KNO 3, CH 3 OH, C 2 H 6, Ne? A) Ne < CH 3 OH < C 2 H 6 < KNO 3 B) KNO 3 < CH 3 OH < C 2 H 6 < Ne C) Ne < C 2 H 6 < KNO 3 < CH 3 OH D)

More information

Absorption of carbon dioxide into non-aqueous solutions of N-methyldiethanolamine

Absorption of carbon dioxide into non-aqueous solutions of N-methyldiethanolamine Korean J. Chem. Eng., 23(5), 806-811 (2006) SHORT COMMUNICATION Absorption of carbon dioxide into non-aqueous solutions of N-methyldiethanolamine Sang-Wook Park, Joon-Wook Lee, Byoung-Sik Choi and Jae-Wook

More information

Simulation of CO 2 Removal by Potassium Taurate Solution

Simulation of CO 2 Removal by Potassium Taurate Solution A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 57, 2017 Guest Editors: Sauro Pierucci, Jiří Jaromír Klemeš, Laura Piazza, Serafim Bakalis Copyright 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608-48-8;

More information

Chapter 2 Introduction to Aqueous Speciation

Chapter 2 Introduction to Aqueous Speciation Chapter 2 Introduction to Aqueous Speciation Overview It is our belief that the predictive modeling of aqueous systems requires that the system be fully speciated. This allows for smoother extrapolation

More information

Mass Transfer in a Small Scale Flue Gas Absorber Experimental and Modeling

Mass Transfer in a Small Scale Flue Gas Absorber Experimental and Modeling Mass Transfer in a Small Scale Flue Gas Absorber Experimental and Modeling P.J.G. Huttenhuis, E.P. van Elk, S. Van Loo, G.F. Versteeg Procede Gas Treating B.V., The Netherlands 11 th MEETING of the INTERNATIONAL

More information

Effect of alcohol chain length on carbon dioxide absorption into aqueous solutions of alkanolamines

Effect of alcohol chain length on carbon dioxide absorption into aqueous solutions of alkanolamines Available online at www.sciencedirect.com Energy Procedia 37 (2013 ) 499 504 GHGT-11 Effect of alcohol chain length on carbon dioxide absorption into aqueous solutions of alkanolamines Hidetaka Yamada

More information

Solutions and Their Properties

Solutions and Their Properties Chapter 11 Solutions and Their Properties Solutions: Definitions A solution is a homogeneous mixture. A solution is composed of a solute dissolved in a solvent. When two compounds make a solution, the

More information

Simulation of a bubbling fluidized bed process for capturing CO 2 from flue gas

Simulation of a bubbling fluidized bed process for capturing CO 2 from flue gas Korean J. Chem. Eng., 31(2), 194-200 (2014) DOI: 10.1007/s11814-013-0212-7 INVITED REVIEW PAPER INVITED REVIEW PAPER pissn: 0256-1115 eissn: 1975-7220 Simulation of a bubbling fluidized bed process for

More information

Chem 12 Exam 3. Basic Skills Section. 1. What is the chemical formula for aluminum nitrate?

Chem 12 Exam 3. Basic Skills Section. 1. What is the chemical formula for aluminum nitrate? Chem 1 Exam Basic Skills Section 1. What is the chemical formula for aluminum nitrate? a) Al(N ) b) AlN c) Al(N ) d) Al (N ) e) Al (N ). What are the spectator ions in the solution after the complete neutralization

More information

Outline of the Course

Outline of the Course Outline of the Course 1) Review and Definitions 2) Molecules and their Energies 3) 1 st Law of Thermodynamics Conservation of Energy. 4) 2 nd Law of Thermodynamics Ever-Increasing Entropy. 5) Gibbs Free

More information

Activities and Activity Coefficients

Activities and Activity Coefficients CHEM 331 Physical Chemistry Fall 017 Activities and Activity Coefficients We now finish answering the question we asked during our last lecture, what is the form of the chemical potential i (T,P,x i )

More information

Available online at ScienceDirect. Energy Procedia 63 (2014 ) GHGT-12

Available online at  ScienceDirect. Energy Procedia 63 (2014 ) GHGT-12 Available online at www.sciencedirect.com ScienceDirect Energy Procedia 63 (2014 ) 1144 1150 GHGT-12 Application of 15 N-NMR spectroscopy to analysis of amine based CO 2 capture solvents Cristina Perinu

More information

Chemistry 192 Problem Set 7 Spring, 2018

Chemistry 192 Problem Set 7 Spring, 2018 Chemistry 192 Problem Set 7 Spring, 2018 1. Use Table D2 to calculate the standard enthalpy change for the combustion of liquid benzene (C 6 H 6 ) in pure oxygen gas to produce gas phase carbon dioxide

More information

I. Multiple Choice Questions (Type-I) is K p

I. Multiple Choice Questions (Type-I) is K p Unit 7 EQUILIBRIUM I. Multiple Choice Questions (Type-I) 1. We know that the relationship between K c and K p is K p K c (RT) n What would be the value of n for the reaction NH 4 Cl (s) NH 3 (g) + HCl

More information

A comparative study on the recovery of 1,2-dichloroethane and the removal of benzene contained in the byproducts of VCM process

A comparative study on the recovery of 1,2-dichloroethane and the removal of benzene contained in the byproducts of VCM process Korean J. Chem. Eng., 27(3), 970-976 (2010) DOI: 10.1007/s11814-010-0206-7 RAPID COMMUNICATION A comparative study on the recovery of 1,2-dichloroethane and the removal of benzene contained in the byproducts

More information

Chapter 3 Stoichiometry

Chapter 3 Stoichiometry Chapter 3 Sep 22 1:45 PM Average atomic mass: The weighted average of all isotopes of a specific element. Takes into consideration abundance of each isotope. (% x M 1 ) + (% x M 2 ) +... Sep 22 1:45 PM

More information

(i) Purification of common salt

(i) Purification of common salt (i) Purification of common salt Natural common salt consists of many insoluble and soluble impurities. Saturated solution of common salt is prepared and insoluble impurities are filtered off. Hydrogen

More information

Available online at Energy Procedia 1 (2009) (2008) GHGT-9

Available online at  Energy Procedia 1 (2009) (2008) GHGT-9 Available online at www.sciencedirect.com Energy Procedia 1 (2009) (2008) 1257 1264 000 000 Energy Procedia www.elsevier.com/locate/procedia www.elsevier.com/locate/xxx GHGT-9 Solubility of CO 2 in Aqueous

More information

LECTURE 6 NON ELECTROLYTE SOLUTION

LECTURE 6 NON ELECTROLYTE SOLUTION LECTURE 6 NON ELECTROLYTE SOLUTION Ch 45.5 pplied Phy Chem First Sem 2014-15 Ch 45.5 Exam II September 1/3 (Multiple Choice/Problem Solving) Coverage: Second/Third Laws of Thermodynamics Nonelectrolyte

More information

Heat of Absorption of CO 2 in Aqueous Solutions of DEEA, MAPA and their Mixture

Heat of Absorption of CO 2 in Aqueous Solutions of DEEA, MAPA and their Mixture Available online at www.sciencedirect.com Energy Procedia 37 (2013 ) 1532 1542 GHGT-11 Heat of Absorption of CO 2 in Aqueous Solutions of DEEA, MAPA and their Mixture Muhammad Waseem Arshad a, Nicolas

More information

3 BaCl + 2 Na PO Ba PO + 6 NaCl

3 BaCl + 2 Na PO Ba PO + 6 NaCl Q. No. 1 In which mode of expression, the concentration of solution remains independent of temperature? Molarity Normality Formality Molality Explanation Molality because molality involves mass which is

More information

70 Example: If a solution is m citric acid, what is the molar concentration (M) of the solution? The density of the solution is 1.

70 Example: If a solution is m citric acid, what is the molar concentration (M) of the solution? The density of the solution is 1. 70 Example: If a solution is 0.688 m citric acid, what is the molar concentration (M) of the solution? The density of the solution is 1.049 g/ml molality definition molarity definition To solve the problem,

More information

MOCK FINALS APPCHEN QUESTIONS

MOCK FINALS APPCHEN QUESTIONS MOCK FINALS APPCHEN QUESTIONS For questions 1-3 Aluminum dissolves in an aqueous solution of NaOH according to the following reaction: 2 NaOH + 2 Al + 2 H2O 2 NaAlO2 + 3 H2 If 84.1 g of NaOH and 51.0 g

More information

Absorption of Carbon Dioxide at High Partial Pressures in Aqueous Solutions of Di-isopropanolamine

Absorption of Carbon Dioxide at High Partial Pressures in Aqueous Solutions of Di-isopropanolamine Article Subscriber access provided by UNIV DE GRANADA Absorption of Carbon Dioxide at High Partial Pressures in Aqueous Solutions of Di-isopropanolamine Fernando CamachoSebastin Snchez, Rafael Pacheco,

More information

Specimen Geometry Effects on Oxidation Behavior of Nuclear Graphite

Specimen Geometry Effects on Oxidation Behavior of Nuclear Graphite Carbon Science Vol. 7, No. 3 September 2006 pp. 196-200 Specimen Geometry Effects on Oxidation Behavior of Nuclear Graphite Kwang-Youn Cho, Kyung-Ja Kim, Yun-Soo Lim 1, Yun-Joong Chung 1 and Se-Hwan Chi

More information

CHEMISTRY 202 Practice Hour Exam I. Dr. D. DeCoste T.A.

CHEMISTRY 202 Practice Hour Exam I. Dr. D. DeCoste T.A. CHEMISTRY 202 Practice Hour Exam I Fall 2016 Dr. D. DeCoste Name Signature T.A. This exam contains 23 questions on 9 numbered pages. Check now to make sure you have a complete exam. You have two hours

More information

SELECTIVE REMOVAL OF CARBON DIOXIDE FROM AQUEOUS AMMONIA SOLUTIONS

SELECTIVE REMOVAL OF CARBON DIOXIDE FROM AQUEOUS AMMONIA SOLUTIONS Distillation Absorption 2010 A.B. de Haan, H. Kooijman and A. Górak (Editors) All rights reserved by authors as per DA2010 copyright notice SELECTIVE REMOVAL OF CARBON DIOXIDE FROM AQUEOUS AMMONIA SOLUTIONS

More information

A NEW AND A SIMPLE MODEL FOR SURFACE TENSION PREDICTION OF WATER AND ORGANIC LIQUID MIXTURES * R. TAHERY AND H. MODARRESS **

A NEW AND A SIMPLE MODEL FOR SURFACE TENSION PREDICTION OF WATER AND ORGANIC LIQUID MIXTURES * R. TAHERY AND H. MODARRESS ** Iranian Journal of Science & Technology, Transaction B, Engineering, Vol. 29, No. B5 Printed in The Islamic Republic of Iran, 25 Shiraz University NE ND SIMPLE MODEL FOR SURFCE TENSION PREDICTION OF TER

More information

5. What is the name of the phase transition that occurs when a solid is converted directly into a gas (without going through the liquid phase)?

5. What is the name of the phase transition that occurs when a solid is converted directly into a gas (without going through the liquid phase)? 1. If the volume of a confined gas is doubled while the temperature remains constant, what change (if any) would be observed in the pressure? a. It would be half as large. b. It would double. c. It would

More information

Final Exam Review-Honors Name Period

Final Exam Review-Honors Name Period Final Exam Review-Honors Name Period This is not a fully comprehensive review packet. This packet is especially lacking practice of explanation type questions!!! You should study all previous review sheets

More information

Viscosity data of aqueous MDEA [Bmim][BF 4 ] solutions within carbon capture operating conditions

Viscosity data of aqueous MDEA [Bmim][BF 4 ] solutions within carbon capture operating conditions Available online at www.sciencedirect.com Energy Procedia 00 (2016) 000 000 www.elsevier.com/locate/procedia The 8 th International Conference on Applied Energy ICAE2016 Viscosity data of aqueous MDEA

More information

WM2012 Conference, February 26 March 1, 2012, Phoenix, Arizona, USA

WM2012 Conference, February 26 March 1, 2012, Phoenix, Arizona, USA ABSTRACT Development of a Thermodynamic Model for the Hanford Tank Waste Operations Simulator 12193 Robert Carter and Kendra Seniow Washington River Protection Solutions, LLC, Richland, Washington The

More information

Shifting Equilibrium. Section 2. Equilibrium shifts to relieve stress on the system. > Virginia standards. Main Idea. Changes in Pressure

Shifting Equilibrium. Section 2. Equilibrium shifts to relieve stress on the system. > Virginia standards. Main Idea. Changes in Pressure Section 2 Main Ideas Equilibrium shifts to relieve stress on the system. Some ionic reactions seem to go to completion. Common ions often produce precipitates. > Virginia standards CH.3.f The student will

More information

Sectional Solutions Key

Sectional Solutions Key Sectional Solutions Key 1. For the equilibrium: 2SO 2 (g) + O 2 (g) 2SO 3 (g) + 188 kj, the number of moles of sulfur trioxide will increase if: a. the temperature of the system is increased (at constant

More information

- Applications: In chemistry, this effect is often used to determine the molecular weight of an unknown molecule.

- Applications: In chemistry, this effect is often used to determine the molecular weight of an unknown molecule. 73 FREEZING POINT DEPRESSION concentration of solute (molality) Freezing point depression constant (for SOLVENT) Freezing point depression: The amount the freezing temperature is LOWERED by the solute.

More information

Extraction of Phenol from Industrial Water Using Different Solvents

Extraction of Phenol from Industrial Water Using Different Solvents Research Journal of Chemical Sciences ISSN 31-606X. Extraction of Phenol from Industrial Water Using Different Solvents Abstract Sally N. Jabrou Department of Radiology, Health and Medical Technical College

More information

PCC3 CONFERENCE The role of bicarbonate(hco 3- ) in the VLE of DEAB and blended MEA-DEAB systems under

PCC3 CONFERENCE The role of bicarbonate(hco 3- ) in the VLE of DEAB and blended MEA-DEAB systems under 1 PCC3 CONFERENCE The role of bicarbonate(hco 3- ) in the VLE of DEAB and blended MEA-DEAB systems under room and regeneration temperatures, an NMR study. Huancong Shi, 1, 2 Raphael Idem, 1 * Abdulaziz

More information

Initial amounts: mol Amounts at equilibrium: mol (5) Initial amounts: x mol Amounts at equilibrium: x mol

Initial amounts: mol Amounts at equilibrium: mol (5) Initial amounts: x mol Amounts at equilibrium: x mol 4. CHEMICAL EQUILIBRIUM n Equilibrium Constants 4.1. 2A Y + 2Z Initial amounts: 4 0 0 mol Amounts at equilibrium: 1 1.5 3.0 mol Concentrations at equilibrium: 1 5 1.5 5 3.0 5 mol dm 3 K c (1.5/5) (3.0/5)2

More information

Carbon dioxide removal processes by alkanolamines in aqueous organic solvents Hamborg, Espen Steinseth

Carbon dioxide removal processes by alkanolamines in aqueous organic solvents Hamborg, Espen Steinseth University of Groningen Carbon dioxide removal processes by alkanolamines in aqueous organic solvents Hamborg, Espen Steinseth IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's

More information

Chapter 8 Acids, Bases, and Acid-Base Reactions. An Introduction to Chemistry by Mark Bishop

Chapter 8 Acids, Bases, and Acid-Base Reactions. An Introduction to Chemistry by Mark Bishop Chapter 8 Acids, Bases, and Acid-Base Reactions An Introduction to Chemistry by Mark Bishop Chapter Map Arrhenius Base Definitions A base is a substance that generates OH when added to water. A basic solution

More information

Thermodynamics IV - Free Energy and Chemical Equilibria Chemical Potential (Partial Molar Gibbs Free Energy)

Thermodynamics IV - Free Energy and Chemical Equilibria Chemical Potential (Partial Molar Gibbs Free Energy) Thermodynamics IV - Free Energy and Chemical Equilibria Chemical Potential (Partial Molar Gibbs Free Energy) increase in the Gibbs free energy of the system when 1 mole of i is added to a large amount

More information

Balances 9, , 623, 643, , , 679 (also see Electroneutrality. Material balances)

Balances 9, , 623, 643, , , 679 (also see Electroneutrality. Material balances) Handbook of Aqueous Electrolyte Thermodynamics: Theory & Application by Joseph F. Zemaitis, Jr., Diane M. Clark, Marshall Rafal and Noel C. Scrivner Copyright 1986 American Institute of Chemical Engineers,

More information