A strongly rigid binary relation

Size: px
Start display at page:

Download "A strongly rigid binary relation"

Transcription

1 A strongly rigid binary relation Anne Fearnley 8 November 1994 Abstract A binary relation ρ on a set U is strongly rigid if every universal algebra on U such that ρ is a subuniverse of its square is trivial. Rosenberg (1973) found a strongly rigid relation on every universe U of at least 3 elements. We exhibit a new strongly rigid relation for every finite U with U 3. We also show that for U = 3 there are only 2 strongly rigid relations up to isomorphism. AMS classification: 08A40 1 Introduction Let U be a non-empty universe and let n be a positive integer. A function f : U n U is an n-ary function on U. We denote by O (n) U the set of all n-ary functions on U and set O U := 0<n<ω O(n) U. For a positive integer h a subset ρ of U h is an h-ary relation on U (we shall often display h-tuples as column vectors). A function f O (n) U preserves ρ U h if whenever (a 1i a 2i... a hi ) T ρ for all i = 1... n we have that (f(a a 1n ) f(a a 2n )... f(a h1... a hn )) T ρ i.e. ρ is a subuniverse of U; f h. For 1 i n the i-th projection e n i is defined by setting en i (x 1... x n ) x i (the symbol indicates an identity on U i.e. both sides are equal for all x 1... x n U). Clearly every projection preserves ρ. We denote by Polρ the set of all functions on U preserving ρ. It is well known and easy to verify that Polρ is a clone on U i.e. it is a subset of O U which is closed under composition (or substitution) and contains all projections. A relation ρ is strongly rigid if every function on U preserving ρ is a projection [2] i.e. Polρ is the smallest clone; the clone of all projections. From now on relations are always binary U is finite and U 3. Without loss of generality U = n + 1 = {0... n} where n 2. 1

2 It is shown in [2] that the relation {( ) ( ) ( ) ( ) n σ n :=... ( 0 ) 1( ) 2( ) n n n 2 3 ( 1 n ( n 2 n 1 is strongly rigid. In part 2 we show that the relation {( ) ( ) ( ) 1 2 n 1 ρ n :=... ( 2 ) ( 3 ) ( ) ( n ) ( n ) ( ) 2... )} n (1) ) ( n 0 ) } (2) = n-1 n is strongly rigid. In part 3 we show that on three elements (i.e. n = 2) every strongly rigid binary relation is isomorphic to either σ 2 or ρ 2. 2 A new strongly rigid relation Theorem 1 Let n 2. Then the binary relation ρ n defined in (2) is strongly rigid. Proof. We write ρ instead of ρ n. We write a b if (a b) ρ and a b if a b and b a. Recall that e 1 1(x) x. Let U := n 1. Set C := Polρ and C (i) := Polρ O (i) U for i = Claim 1 C (1) = {e 1 1}. Proof. Let h C (1) and a i := h(i) for i = 1... n. From 0 i we have a 0 a i for all i {1... n} likewise n implies that a 1 a 2... a n. Notice that a 1 a 2 therefore a 0 = 0. Now a 1... a n {1... n} satisfy a 1 a 2... a n which is only possible when a i = i for all i {1... n}. Claim 2 Let a {1... n} A := {0 a} m > 1 and f C (m). Then f(b 1... b m ) A whenever b 1... b m A (i.e. A is a subuniverse of U; Polρ ). Proof. By Claim 1 we have f(x... x) x (i.e. f is idempotent). Let b 1... b m A. We distinguish two cases: 2

3 1. If a < n then b i a+1 for all i {1... m}; hence b := f(b 1... b m ) f(a a + 1) = a + 1 proving that b {0 a} = A. 2. If a = n then n 1 b i for all i {1... m}; hence n 1 = f(n 1... n 1) f(b 1... b m ) =: b proving that b {0 n} = A. For a {1... n} and x A = {0 a} we define x a by setting 0 a := a and a a := 0. Notice that the self-map x 1 is the negation from the propositional calculus of logic. An m-ary function f on U is a-selfdual if f(x a 1... x a m) f(x 1... x m ) a for any x 1... x m {0 a}. Claim 3 Let a {1... n}. Then every f C is a-selfdual. Proof. Let f C (m) and b 1... b m A := {0 a}. Set b := f(b 1... b m ) and b := f(b a 1... b a m). Since 0 a we have b i b a i for all i {1... m} therefore b b. But by Claim 2 both b b A which implies that b = b a ; and Claim 3 is verified. Now consider the case a = 1. Let f C (m) and denote by g the restriction of f to {0 1}. By Claim 2 we have g : {0 1} m {0 1} so g is a Boolean function. We say that g is monotone (or order-preserving) if x 1 y 1... x m y m imply that g(x 1... x m ) g(y 1... y m ). Claim 4 The restriction of every f C to {0 1} is a monotone Boolean function. Proof. Let f C (m). Suppose that the restriction of f to {0 1} is not monotone. That means that 1 = f(a) > f(b) = 0 for some a = (a 1... a m ) {0 1} m and b = (b 1... b m ) {0 1} m such that a 1 b 1... a m b m. Set { 1 ai if a c i := i = b i 2 otherwise and c := (c 1... c m ). We must show that b i c i a i for all i {1... m}. Indeed if a i = b i then c i = 1 a i and b i = a i 1 a i (= c i ) a i. Otherwise a i < b i therefore a i = 0 b i = 1 and c i = 2 and thus b i = 1 2(= c i ) 0 = a i. Therefore 0 = f(b) f(c) f(a) = 1 which is a contradiction. Claim 5 The restriction of every f C to {0 1} is a projection. Proof. Let f C. Suppose that g the restriction of f to {0 1} is not a projection. From the Claims 3 and 4 we know that the Boolean function g is monotone and self-dual. It is known [1] that the clone D 2 of Boolean functions which are both monotone and self-dual is a minimal clone (i.e. a clone having the clone of 3

4 projections as its only proper subclone) generated by the majority function m (where m(x y z) := 0 if x + y + z 1 and m(x y z) := 1 otherwise). Since g is not a projection and D 2 is minimal it follows that m is a composition of g (i.e. m can be expressed by a formula made up entirely of the symbol g and the three variables x y z). the same composition with f replacing g everywhere gives us a new function k such that the restriction of k to {0 1} is the majority function m. In other words the clone C contains a function k such that k {01} = m. Since 0 2 and 1 0 we have 1 = k(0 1 1) k(2 0 0) therefore from Claim 2 we obtain k(2 0 0) = 0. Symmetrically k(0 0 2) = 0 and k(0 2 0) = 0. By Claim 3 we have k(0 2 2) = k(2 2 0) = k(2 0 2) = 2. Set a := k(0 1 2). We have 0 = k(2 0 0) k(0 1 2) = a therefore a {1... n}. Now k(1 0 1) k(0 1 2) k(2 2 0) i.e. 1 a 2 which is impossible for a {1... n}. Claim 6 Every f C is a projection. Proof. Let f C (m). Then g := f {01} is a projection by Claim 5 i.e. there exists 1 p m such that f(a 1... a m ) = a p for all a 1... a m {0 1}. By induction on k = 2... n we show that f(b 1... b m ) = b p for all b 1... b m k := {0... k 1}. The statement is true for k = 2. Suppose that the statement is true for some 2 k < n. Let b 1... b m k + 1 and b := f(b 1... b m ). For i = 1... m set { { 1 if bi = 0 1 if bi = 0 d i := and e 0 otherwise i := b i 1 otherwise Then e i b i d i {0 1} for all i = 1... m and so f(e 1... e m ) f(b 1... b m ) f(d 1... d m ). Moreover by the induction hypothesis f(d 1... d m ) = d p and f(e 1... e m ) = e p since d 1... d m e 1... e m k. Therefore e p b d p {0 1}. Now if d p = 1 then b = 0 = b p and we are done. Thus let d p = 0. Then b p 0 and from e p b 0 we obtain b 0. If b p > 1 then b p 1 = e p b therefore b = b p since b 0. Finally let b p = 1. Now suppose to the contrary that b > 1. For i = 1... m set { 2 if bi 1 c i := 0 otherwise and set c := f(c 1... c m ). We have b i c i for i = 1... m; consequently b c. Since c 1... c m {0 2} we know by Claim 2 that c {0 2}. Now b > 1 and b c {0 2} therefore c = 0. Observe that c p = 2 since b p = 1. Set { { 2 if ci = 0 0 if ci = 0 g i := and h 0 if c i = 2 i := 1 if c i = 2 Note that here g p = 0 and h p = 1. By Claim 3 f(g 1... g m ) = f(2 c c m ) = 2 f(c 1... c m ) = 2 c = 2. Since h 1... h m {0 1} we have f(h 1... h m ) = h p = 1 (by Claim 5). Now g i h i for all i {1... m} therefore 2 = g(g 1... g m ) f(h 1... h m ) = 1 a contradiction. This concludes the induction step. For k = n we have the statement of the claim. 4

5 3 Strongly rigid relations on a three-element universe We now show that on {0 1 2} the 6 binary relations isomorphic to σ 2 and the 6 binary relations isomorphic to ρ 2 are the only strongly rigid binary relations. σ 2 : ρ 2 : Here the relation σ 2 is the strongly rigid relation from [2] and the relation ρ 2 is the strongly rigid relation from Section 2. It remains to be shown that all other binary relations on {0 1 2} are not strongly rigid. This is done by finding for each relation a non-trivial (i.e. distinct from a projection) function which preserves it. Let ρ be a binary relation on 3. Every function preserves so ρ. If there exists an a in 3 such that (a a) ρ then the constant function f(x) a preserves ρ. Therefore let ρ be an irreflexive relation. Then ρ 6. If ρ 2 then every minority function preserves ρ (f : 3 3 is a minority function if f(x x y) f(x y x) f(y x x) y). Since Polρ = Polρ 1 (where ρ 1 := {(x y) : (y x) ρ}) if is sufficient to consider only one of the relations ρ and ρ 1. In Table 1 we run through all the irreflexive binary relations ρ with 3 ρ 6 such that ρ is not equivalent to either ρ 2 or σ 2 (the column unary function lists f(0) f(1) f(2)). We have the following possibilities 1. Let ρ = 3. Then either a) ρ consists of a (full) edge and an arc so is of type 1 or b) ρ consists of three arcs and is thus of type 2 or Let ρ = 4. Then either a) ρ consists of two edges and so is of type 4 or b) ρ consists of an edge and two arcs and is thus either isomorphic to σ 2 or of type Let ρ = 5. Then ρ consists of two edges and an arc and is thus isomorphic to ρ Let ρ = 6. Then ρ is of type 6. References [1] E. L. Post. The two-valued iterative systems of mathematical logic. Number 5 in Annals of Math. Studies. Princeton Univ. Press [2] I. Rosenberg. Strongly rigid relations. Rocky Mountain Journal of Mathematics 3:

6 Type ρ ρ Name Function # of rels unary binary ρ strict chain max cycle Table 1: The irreflexive binary relations of cardinality greater than 2 which are not strongly rigid Anne Fearnley Département de Mathématiques et de Statistique Université de Montréal Montreal QC Canada fearnley@dms.umontreal.ca 6

A monoidal interval of clones of selfdual functions

A monoidal interval of clones of selfdual functions Journal of Automata, Languages and Combinatorics u v w, x y c Otto-von-Guericke-Universität Magdeburg A monoidal interval of clones of selfdual functions Andrei Krokhin Department of Computer Science,

More information

Polynomials as Generators of Minimal Clones

Polynomials as Generators of Minimal Clones Polynomials as Generators of Minimal Clones Hajime Machida Michael Pinser Abstract A minimal clone is an atom of the lattice of clones. A minimal function is a function which generates a minimal clone.

More information

Computational Completeness

Computational Completeness Computational Completeness 1 Definitions and examples Let Σ = {f 1, f 2,..., f i,...} be a (finite or infinite) set of Boolean functions. Any of the functions f i Σ can be a function of arbitrary number

More information

3. Abstract Boolean Algebras

3. Abstract Boolean Algebras 3. ABSTRACT BOOLEAN ALGEBRAS 123 3. Abstract Boolean Algebras 3.1. Abstract Boolean Algebra. Definition 3.1.1. An abstract Boolean algebra is defined as a set B containing two distinct elements 0 and 1,

More information

Descending chains and antichains of the unary, linear, and monotone subfunction relations

Descending chains and antichains of the unary, linear, and monotone subfunction relations Descending chains and antichains of the unary, linear, and monotone subfunction relations Erkko Lehtonen November 21, 2005 Abstract The C-subfunction relations on the set of functions on a finite base

More information

ON ENDOMORPHISM MONOIDS OF PARTIAL ORDERS AND CENTRAL RELATIONS 1

ON ENDOMORPHISM MONOIDS OF PARTIAL ORDERS AND CENTRAL RELATIONS 1 Novi Sad J. Math. Vol. 38, No. 1, 2008, 111-125 ON ENDOMORPHISM MONOIDS OF PRTIL ORDERS ND CENTRL RELTIONS 1 Dragan Mašulović 2 bstract. In this paper we characterize pairs of Rosenberg s (ρ, σ) with the

More information

Jónsson posets and unary Jónsson algebras

Jónsson posets and unary Jónsson algebras Jónsson posets and unary Jónsson algebras Keith A. Kearnes and Greg Oman Abstract. We show that if P is an infinite poset whose proper order ideals have cardinality strictly less than P, and κ is a cardinal

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

Bounded width problems and algebras

Bounded width problems and algebras Algebra univers. 56 (2007) 439 466 0002-5240/07/030439 28, published online February 21, 2007 DOI 10.1007/s00012-007-2012-6 c Birkhäuser Verlag, Basel, 2007 Algebra Universalis Bounded width problems and

More information

SUBFUNCTION RELATIONS DEFINED BY BURLE S CLONES

SUBFUNCTION RELATIONS DEFINED BY BURLE S CLONES SUBFUNCTION RELATIONS DEFINED BY BURLE S CLONES ERKKO LEHTONEN Abstract. Certain quasi-orders of k-valued logic functions defined by the clones that contain all unary operations on the k-element set are

More information

06 Recursive Definition and Inductive Proof

06 Recursive Definition and Inductive Proof CAS 701 Fall 2002 06 Recursive Definition and Inductive Proof Instructor: W. M. Farmer Revised: 30 November 2002 1 What is Recursion? Recursion is a method of defining a structure or operation in terms

More information

A GUIDE FOR MORTALS TO TAME CONGRUENCE THEORY

A GUIDE FOR MORTALS TO TAME CONGRUENCE THEORY A GUIDE FOR MORTALS TO TAME CONGRUENCE THEORY Tame congruence theory is not an easy subject and it takes a considerable amount of effort to understand it. When I started this project, I believed that this

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

October 15, 2014 EXISTENCE OF FINITE BASES FOR QUASI-EQUATIONS OF UNARY ALGEBRAS WITH 0

October 15, 2014 EXISTENCE OF FINITE BASES FOR QUASI-EQUATIONS OF UNARY ALGEBRAS WITH 0 October 15, 2014 EXISTENCE OF FINITE BASES FOR QUASI-EQUATIONS OF UNARY ALGEBRAS WITH 0 D. CASPERSON, J. HYNDMAN, J. MASON, J.B. NATION, AND B. SCHAAN Abstract. A finite unary algebra of finite type with

More information

Walker Ray Econ 204 Problem Set 3 Suggested Solutions August 6, 2015

Walker Ray Econ 204 Problem Set 3 Suggested Solutions August 6, 2015 Problem 1. Take any mapping f from a metric space X into a metric space Y. Prove that f is continuous if and only if f(a) f(a). (Hint: use the closed set characterization of continuity). I make use of

More information

Notes on ordinals and cardinals

Notes on ordinals and cardinals Notes on ordinals and cardinals Reed Solomon 1 Background Terminology We will use the following notation for the common number systems: N = {0, 1, 2,...} = the natural numbers Z = {..., 2, 1, 0, 1, 2,...}

More information

Clones (3&4) Martin Goldstern. TACL Olomouc, June Discrete Mathematics and Geometry, TU Wien

Clones (3&4) Martin Goldstern. TACL Olomouc, June Discrete Mathematics and Geometry, TU Wien Martin Goldstern Discrete Mathematics and Geometry, TU Wien TACL Olomouc, June 2017 Galois connections Let A, B be sets, R A B. For any S A and any T B let S u := {b B a S : arb} T l := {a A b T : arb}.

More information

Earlier this week we defined Boolean atom: A Boolean atom a is a nonzero element of a Boolean algebra, such that ax = a or ax = 0 for all x.

Earlier this week we defined Boolean atom: A Boolean atom a is a nonzero element of a Boolean algebra, such that ax = a or ax = 0 for all x. Friday, April 20 Today we will continue in Course Notes 3.3: Abstract Boolean Algebras. Earlier this week we defined Boolean atom: A Boolean atom a is a nonzero element of a Boolean algebra, such that

More information

Subdirectly Irreducible Modes

Subdirectly Irreducible Modes Subdirectly Irreducible Modes Keith A. Kearnes Abstract We prove that subdirectly irreducible modes come in three very different types. From the description of the three types we derive the results that

More information

STRICTLY ORDER PRIMAL ALGEBRAS

STRICTLY ORDER PRIMAL ALGEBRAS Acta Math. Univ. Comenianae Vol. LXIII, 2(1994), pp. 275 284 275 STRICTLY ORDER PRIMAL ALGEBRAS O. LÜDERS and D. SCHWEIGERT Partial orders and the clones of functions preserving them have been thoroughly

More information

Class Notes on Poset Theory Johan G. Belinfante Revised 1995 May 21

Class Notes on Poset Theory Johan G. Belinfante Revised 1995 May 21 Class Notes on Poset Theory Johan G Belinfante Revised 1995 May 21 Introduction These notes were originally prepared in July 1972 as a handout for a class in modern algebra taught at the Carnegie-Mellon

More information

MATH 409 Advanced Calculus I Lecture 10: Continuity. Properties of continuous functions.

MATH 409 Advanced Calculus I Lecture 10: Continuity. Properties of continuous functions. MATH 409 Advanced Calculus I Lecture 10: Continuity. Properties of continuous functions. Continuity Definition. Given a set E R, a function f : E R, and a point c E, the function f is continuous at c if

More information

MATH 3300 Test 1. Name: Student Id:

MATH 3300 Test 1. Name: Student Id: Name: Student Id: There are nine problems (check that you have 9 pages). Solutions are expected to be short. In the case of proofs, one or two short paragraphs should be the average length. Write your

More information

COLLAPSING PERMUTATION GROUPS

COLLAPSING PERMUTATION GROUPS COLLAPSING PERMUTATION GROUPS KEITH A. KEARNES AND ÁGNES SZENDREI Abstract. It is shown in [3] that any nonregular quasiprimitive permutation group is collapsing. In this paper we describe a wider class

More information

The following techniques for methods of proofs are discussed in our text: - Vacuous proof - Trivial proof

The following techniques for methods of proofs are discussed in our text: - Vacuous proof - Trivial proof Ch. 1.6 Introduction to Proofs The following techniques for methods of proofs are discussed in our text - Vacuous proof - Trivial proof - Direct proof - Indirect proof (our book calls this by contraposition)

More information

COM S 330 Homework 05 Solutions. Type your answers to the following questions and submit a PDF file to Blackboard. One page per problem.

COM S 330 Homework 05 Solutions. Type your answers to the following questions and submit a PDF file to Blackboard. One page per problem. Type your answers to the following questions and submit a PDF file to Blackboard. One page per problem. Problem 1. [5pts] Consider our definitions of Z, Q, R, and C. Recall that A B means A is a subset

More information

Chapter 1. Sets and Mappings

Chapter 1. Sets and Mappings Chapter 1. Sets and Mappings 1. Sets A set is considered to be a collection of objects (elements). If A is a set and x is an element of the set A, we say x is a member of A or x belongs to A, and we write

More information

Stipulations, multivalued logic, and De Morgan algebras

Stipulations, multivalued logic, and De Morgan algebras Stipulations, multivalued logic, and De Morgan algebras J. Berman and W. J. Blok Department of Mathematics, Statistics, and Computer Science University of Illinois at Chicago Chicago, IL 60607 U.S.A. Dedicated

More information

Finite Simple Abelian Algebras are Strictly Simple

Finite Simple Abelian Algebras are Strictly Simple Finite Simple Abelian Algebras are Strictly Simple Matthew A. Valeriote Abstract A finite universal algebra is called strictly simple if it is simple and has no nontrivial subalgebras. An algebra is said

More information

Supremum and Infimum

Supremum and Infimum Supremum and Infimum UBC M0 Lecture Notes by Philip D. Loewen The Real Number System. Work hard to construct from the axioms a set R with special elements O and I, and a subset P R, and mappings A: R R

More information

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska LECTURE 1 Course Web Page www3.cs.stonybrook.edu/ cse303 The webpage contains: lectures notes slides; very detailed solutions to

More information

Axioms of separation

Axioms of separation Axioms of separation These notes discuss the same topic as Sections 31, 32, 33, 34, 35, and also 7, 10 of Munkres book. Some notions (hereditarily normal, perfectly normal, collectionwise normal, monotonically

More information

2.2 Lowenheim-Skolem-Tarski theorems

2.2 Lowenheim-Skolem-Tarski theorems Logic SEP: Day 1 July 15, 2013 1 Some references Syllabus: http://www.math.wisc.edu/graduate/guide-qe Previous years qualifying exams: http://www.math.wisc.edu/ miller/old/qual/index.html Miller s Moore

More information

EXISTENCE OF FINITE BASES FOR QUASI-EQUATIONS OF UNARY ALGEBRAS WITH 0

EXISTENCE OF FINITE BASES FOR QUASI-EQUATIONS OF UNARY ALGEBRAS WITH 0 EXISTENCE OF FINITE BASES FOR QUASI-EQUATIONS OF UNARY ALGEBRAS WITH 0 D. CASPERSON, J. HYNDMAN, J. MASON, J.B. NATION, AND B. SCHAAN Abstract. A finite unary algebra of finite type with a constant function

More information

Math 541 Fall 2008 Connectivity Transition from Math 453/503 to Math 541 Ross E. Staffeldt-August 2008

Math 541 Fall 2008 Connectivity Transition from Math 453/503 to Math 541 Ross E. Staffeldt-August 2008 Math 541 Fall 2008 Connectivity Transition from Math 453/503 to Math 541 Ross E. Staffeldt-August 2008 Closed sets We have been operating at a fundamental level at which a topological space is a set together

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter The Real Numbers.. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {, 2, 3, }. In N we can do addition, but in order to do subtraction we need to extend

More information

An Algebraic View of the Relation between Largest Common Subtrees and Smallest Common Supertrees

An Algebraic View of the Relation between Largest Common Subtrees and Smallest Common Supertrees An Algebraic View of the Relation between Largest Common Subtrees and Smallest Common Supertrees Francesc Rosselló 1, Gabriel Valiente 2 1 Department of Mathematics and Computer Science, Research Institute

More information

arxiv: v1 [cs.pl] 19 May 2016

arxiv: v1 [cs.pl] 19 May 2016 arxiv:1605.05858v1 [cs.pl] 19 May 2016 Domain Theory: An Introduction Robert Cartwright Rice University Rebecca Parsons ThoughtWorks, Inc. Moez AbdelGawad SRTA-City Hunan University This monograph is an

More information

MATH 131A: REAL ANALYSIS (BIG IDEAS)

MATH 131A: REAL ANALYSIS (BIG IDEAS) MATH 131A: REAL ANALYSIS (BIG IDEAS) Theorem 1 (The Triangle Inequality). For all x, y R we have x + y x + y. Proposition 2 (The Archimedean property). For each x R there exists an n N such that n > x.

More information

Chapter Summary. Sets The Language of Sets Set Operations Set Identities Functions Types of Functions Operations on Functions Computability

Chapter Summary. Sets The Language of Sets Set Operations Set Identities Functions Types of Functions Operations on Functions Computability Chapter 2 1 Chapter Summary Sets The Language of Sets Set Operations Set Identities Functions Types of Functions Operations on Functions Computability Sequences and Summations Types of Sequences Summation

More information

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4 Do the following exercises from the text: Chapter (Section 3):, 1, 17(a)-(b), 3 Prove that 1 3 + 3 + + n 3 n (n + 1) for all n N Proof The proof is by induction on n For n N, let S(n) be the statement

More information

Mathematical Foundations of Logic and Functional Programming

Mathematical Foundations of Logic and Functional Programming Mathematical Foundations of Logic and Functional Programming lecture notes The aim of the course is to grasp the mathematical definition of the meaning (or, as we say, the semantics) of programs in two

More information

Chapter 3. Rings. The basic commutative rings in mathematics are the integers Z, the. Examples

Chapter 3. Rings. The basic commutative rings in mathematics are the integers Z, the. Examples Chapter 3 Rings Rings are additive abelian groups with a second operation called multiplication. The connection between the two operations is provided by the distributive law. Assuming the results of Chapter

More information

Cartesian Products and Relations

Cartesian Products and Relations Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) : (a A) and (b B)}. The following points are worth special

More information

Review CHAPTER. 2.1 Definitions in Chapter Sample Exam Questions. 2.1 Set; Element; Member; Universal Set Partition. 2.

Review CHAPTER. 2.1 Definitions in Chapter Sample Exam Questions. 2.1 Set; Element; Member; Universal Set Partition. 2. CHAPTER 2 Review 2.1 Definitions in Chapter 2 2.1 Set; Element; Member; Universal Set 2.2 Subset 2.3 Proper Subset 2.4 The Empty Set, 2.5 Set Equality 2.6 Cardinality; Infinite Set 2.7 Complement 2.8 Intersection

More information

Foundations of Mathematics

Foundations of Mathematics Foundations of Mathematics L. Pedro Poitevin 1. Preliminaries 1.1. Sets We will naively think of a set as a collection of mathematical objects, called its elements or members. To indicate that an object

More information

ON THE RELATIONSHIP BETWEEN SETS AND GROUPS

ON THE RELATIONSHIP BETWEEN SETS AND GROUPS ON THE RELATIONSHIP BETWEEN SETS AND GROUPS ROSE DONG Abstract. This paper is an introduction to basic properties of sets and groups. After introducing the notion of cardinal arithmetic, it proves the

More information

CLASSIFYING THE COMPLEXITY OF CONSTRAINTS USING FINITE ALGEBRAS

CLASSIFYING THE COMPLEXITY OF CONSTRAINTS USING FINITE ALGEBRAS CLASSIFYING THE COMPLEXITY OF CONSTRAINTS USING FINITE ALGEBRAS ANDREI BULATOV, PETER JEAVONS, AND ANDREI KROKHIN Abstract. Many natural combinatorial problems can be expressed as constraint satisfaction

More information

ANNIHILATOR IDEALS IN ALMOST SEMILATTICE

ANNIHILATOR IDEALS IN ALMOST SEMILATTICE BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 7(2017), 339-352 DOI: 10.7251/BIMVI1702339R Former BULLETIN

More information

THE JOIN OF TWO MINIMAL CLONES AND THE MEET OF TWO MAXIMAL CLONES. Gábor Czédli, Radomír Halaš, Keith A. Kearnes, Péter P. Pálfy, and Ágnes Szendrei

THE JOIN OF TWO MINIMAL CLONES AND THE MEET OF TWO MAXIMAL CLONES. Gábor Czédli, Radomír Halaš, Keith A. Kearnes, Péter P. Pálfy, and Ágnes Szendrei THE JOIN OF TWO MINIMAL CLONES AND THE MEET OF TWO MAXIMAL CLONES Gábor Czédli, Radomír Halaš, Keith A. Kearnes, Péter P. Pálfy, and Ágnes Szendrei Dedicated to László Szabó on his 50th birthday Abstract.

More information

Recall that the expression x > 3 is not a proposition. Why?

Recall that the expression x > 3 is not a proposition. Why? Predicates and Quantifiers Predicates and Quantifiers 1 Recall that the expression x > 3 is not a proposition. Why? Notation: We will use the propositional function notation to denote the expression "

More information

A CHARACTERIZATION OF LOCALLY FINITE VARIETIES THAT SATISFY A NONTRIVIAL CONGRUENCE IDENTITY

A CHARACTERIZATION OF LOCALLY FINITE VARIETIES THAT SATISFY A NONTRIVIAL CONGRUENCE IDENTITY A CHARACTERIZATION OF LOCALLY FINITE VARIETIES THAT SATISFY A NONTRIVIAL CONGRUENCE IDENTITY KEITH A. KEARNES Abstract. We show that a locally finite variety satisfies a nontrivial congruence identity

More information

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9 MAT 570 REAL ANALYSIS LECTURE NOTES PROFESSOR: JOHN QUIGG SEMESTER: FALL 204 Contents. Sets 2 2. Functions 5 3. Countability 7 4. Axiom of choice 8 5. Equivalence relations 9 6. Real numbers 9 7. Extended

More information

Week Some Warm-up Questions

Week Some Warm-up Questions 1 Some Warm-up Questions Week 1-2 Abstraction: The process going from specific cases to general problem. Proof: A sequence of arguments to show certain conclusion to be true. If... then... : The part after

More information

Caculus 221. Possible questions for Exam II. March 19, 2002

Caculus 221. Possible questions for Exam II. March 19, 2002 Caculus 221 Possible questions for Exam II March 19, 2002 These notes cover the recent material in a style more like the lecture than the book. The proofs in the book are in section 1-11. At the end there

More information

MATH FINAL EXAM REVIEW HINTS

MATH FINAL EXAM REVIEW HINTS MATH 109 - FINAL EXAM REVIEW HINTS Answer: Answer: 1. Cardinality (1) Let a < b be two real numbers and define f : (0, 1) (a, b) by f(t) = (1 t)a + tb. (a) Prove that f is a bijection. (b) Prove that any

More information

0 Sets and Induction. Sets

0 Sets and Induction. Sets 0 Sets and Induction Sets A set is an unordered collection of objects, called elements or members of the set. A set is said to contain its elements. We write a A to denote that a is an element of the set

More information

Iowa State University. Instructor: Alex Roitershtein Summer Homework #5. Solutions

Iowa State University. Instructor: Alex Roitershtein Summer Homework #5. Solutions Math 50 Iowa State University Introduction to Real Analysis Department of Mathematics Instructor: Alex Roitershtein Summer 205 Homework #5 Solutions. Let α and c be real numbers, c > 0, and f is defined

More information

Filters on posets and generalizations

Filters on posets and generalizations Filters on posets and generalizations Victor Porton 78640, Shay Agnon 32-29, Ashkelon, Israel Abstract They are studied in details properties of filters on lattices, filters on posets, and certain generalizations

More information

TESTING FOR A SEMILATTICE TERM

TESTING FOR A SEMILATTICE TERM TESTING FOR A SEMILATTICE TERM RALPH FREESE, J.B. NATION, AND MATT VALERIOTE Abstract. This paper investigates the computational complexity of deciding if a given finite algebra is an expansion of a semilattice.

More information

Denability of Boolean function classes by linear equations

Denability of Boolean function classes by linear equations Discrete Applied Mathematics 142 (2004) 29 34 www.elsevier.com/locate/dam Denability of Boolean function classes by linear equations over GF(2) Miguel Couceiro a;b, Stephan Foldes a a Institute of Mathematics,

More information

Averaging Operators on the Unit Interval

Averaging Operators on the Unit Interval Averaging Operators on the Unit Interval Mai Gehrke Carol Walker Elbert Walker New Mexico State University Las Cruces, New Mexico Abstract In working with negations and t-norms, it is not uncommon to call

More information

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS 1. Cardinal number of a set The cardinal number (or simply cardinal) of a set is a generalization of the concept of the number of elements

More information

Clones containing all almost unary functions

Clones containing all almost unary functions Clones containing all almost unary functions Michael Pinsker Abstract. Let X be an infinite set of regular cardinality. We determine all clones on X which contain all almost unary functions. It turns out

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter 1 The Real Numbers 1.1. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {1, 2, 3, }. In N we can do addition, but in order to do subtraction we need

More information

Qualifying Exam Logic August 2005

Qualifying Exam Logic August 2005 Instructions: Qualifying Exam Logic August 2005 If you signed up for Computability Theory, do two E and two C problems. If you signed up for Model Theory, do two E and two M problems. If you signed up

More information

Economics 204 Summer/Fall 2017 Lecture 1 Monday July 17, 2017

Economics 204 Summer/Fall 2017 Lecture 1 Monday July 17, 2017 Economics 04 Summer/Fall 07 Lecture Monday July 7, 07 Section.. Methods of Proof We begin by looking at the notion of proof. What is a proof? Proof has a formal definition in mathematical logic, and a

More information

A Complete Proof of the Robbins Conjecture

A Complete Proof of the Robbins Conjecture A Complete Proof of the Robbins Conjecture Allen L. Mann May 25, 2003 1 Boolean algebra The language of Boolean algebra consists of two binary function symbols and, one unary function symbol, and two constants

More information

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi Real Analysis Math 3AH Rudin, Chapter # Dominique Abdi.. If r is rational (r 0) and x is irrational, prove that r + x and rx are irrational. Solution. Assume the contrary, that r+x and rx are rational.

More information

Set theory. Peter J. Kahn

Set theory. Peter J. Kahn Math 3040 Spring 2009 Set theory Peter J. Kahn Contents 1. Sets 2 1.1. Objects and set formation 2 1.2. Intersections and Unions 3 1.3. Differences 4 1.4. Power sets 5 1.5. Ordered pairs and binary cartesian

More information

Math 210B: Algebra, Homework 4

Math 210B: Algebra, Homework 4 Math 210B: Algebra, Homework 4 Ian Coley February 5, 2014 Problem 1. Let S be a multiplicative subset in a commutative ring R. Show that the localisation functor R-Mod S 1 R-Mod, M S 1 M, is exact. First,

More information

Logic Synthesis and Verification

Logic Synthesis and Verification Logic Synthesis and Verification Boolean Algebra Jie-Hong Roland Jiang 江介宏 Department of Electrical Engineering National Taiwan University Fall 2014 1 2 Boolean Algebra Reading F. M. Brown. Boolean Reasoning:

More information

BASICS OF CLONE THEORY DRAFT. Contents

BASICS OF CLONE THEORY DRAFT. Contents BASICS OF CLONE THEORY DRAFT ERHARD AICHINGER Abstract. Some well known facts on clones are collected (cf. [PK79, Sze86, Maš10]). Contents 1. Definition of clones 1 2. Polymorphisms and invariant relations

More information

Math 3361-Modern Algebra Lecture 08 9/26/ Cardinality

Math 3361-Modern Algebra Lecture 08 9/26/ Cardinality Math 336-Modern Algebra Lecture 08 9/26/4. Cardinality I started talking about cardinality last time, and you did some stuff with it in the Homework, so let s continue. I said that two sets have the same

More information

Supermodular Functions and the Complexity of Max CSP

Supermodular Functions and the Complexity of Max CSP Supermodular Functions and the Complexity of Max CSP David Cohen a, Martin Cooper b, Peter Jeavons c, Andrei Krokhin d, a Department of Computer Science, Royal Holloway, University of London, Egham, Surrey,

More information

2.1 Sets. Definition 1 A set is an unordered collection of objects. Important sets: N, Z, Z +, Q, R.

2.1 Sets. Definition 1 A set is an unordered collection of objects. Important sets: N, Z, Z +, Q, R. 2. Basic Structures 2.1 Sets Definition 1 A set is an unordered collection of objects. Important sets: N, Z, Z +, Q, R. Definition 2 Objects in a set are called elements or members of the set. A set is

More information

REVIEW FOR THIRD 3200 MIDTERM

REVIEW FOR THIRD 3200 MIDTERM REVIEW FOR THIRD 3200 MIDTERM PETE L. CLARK 1) Show that for all integers n 2 we have 1 3 +... + (n 1) 3 < 1 n < 1 3 +... + n 3. Solution: We go by induction on n. Base Case (n = 2): We have (2 1) 3 =

More information

Recitation 7: Existence Proofs and Mathematical Induction

Recitation 7: Existence Proofs and Mathematical Induction Math 299 Recitation 7: Existence Proofs and Mathematical Induction Existence proofs: To prove a statement of the form x S, P (x), we give either a constructive or a non-contructive proof. In a constructive

More information

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 8 Solutions Please write neatly, and in complete sentences when possible.

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 8 Solutions Please write neatly, and in complete sentences when possible. Math 320: Real Analysis MWF pm, Campion Hall 302 Homework 8 Solutions Please write neatly, and in complete sentences when possible. Do the following problems from the book: 4.3.5, 4.3.7, 4.3.8, 4.3.9,

More information

1 The Well Ordering Principle, Induction, and Equivalence Relations

1 The Well Ordering Principle, Induction, and Equivalence Relations 1 The Well Ordering Principle, Induction, and Equivalence Relations The set of natural numbers is the set N = f1; 2; 3; : : :g. (Some authors also include the number 0 in the natural numbers, but number

More information

Tense Operators on Basic Algebras

Tense Operators on Basic Algebras Int J Theor Phys (2011) 50:3737 3749 DOI 10.1007/s10773-011-0748-4 Tense Operators on Basic Algebras M. Botur I. Chajda R. Halaš M. Kolařík Received: 10 November 2010 / Accepted: 2 March 2011 / Published

More information

4.4 Noetherian Rings

4.4 Noetherian Rings 4.4 Noetherian Rings Recall that a ring A is Noetherian if it satisfies the following three equivalent conditions: (1) Every nonempty set of ideals of A has a maximal element (the maximal condition); (2)

More information

On the interval of strong partial clones of Boolean functions containing Pol((0,0),(0,1),(1,0))

On the interval of strong partial clones of Boolean functions containing Pol((0,0),(0,1),(1,0)) On the interval of strong partial clones of Boolean functions containing Pol((0,0),(0,1),(1,0)) Miguel Couceiro, Lucien Haddad, Karsten Schölzel, Tamas Waldhauser To cite this version: Miguel Couceiro,

More information

Π 0 1-presentations of algebras

Π 0 1-presentations of algebras Π 0 1-presentations of algebras Bakhadyr Khoussainov Department of Computer Science, the University of Auckland, New Zealand bmk@cs.auckland.ac.nz Theodore Slaman Department of Mathematics, The University

More information

CIS 375 Intro to Discrete Mathematics Exam 3 (Section M004: Blue) 6 December Points Possible

CIS 375 Intro to Discrete Mathematics Exam 3 (Section M004: Blue) 6 December Points Possible Name: CIS 375 Intro to Discrete Mathematics Exam 3 (Section M004: Blue) 6 December 2016 Question Points Possible Points Received 1 12 2 14 3 14 4 12 5 16 6 16 7 16 Total 100 Instructions: 1. This exam

More information

EQUIVALENCE RELATIONS AND OPERATORS ON ORDERED ALGEBRAIC STRUCTURES. UNIVERSITÀ DEGLI STUDI DELL'INSUBRIA Via Ravasi 2, Varese, Italy

EQUIVALENCE RELATIONS AND OPERATORS ON ORDERED ALGEBRAIC STRUCTURES. UNIVERSITÀ DEGLI STUDI DELL'INSUBRIA Via Ravasi 2, Varese, Italy UNIVERSITÀ DEGLI STUDI DELL'INSUBRIA Via Ravasi 2, 21100 Varese, Italy Dipartimento di Scienze Teoriche e Applicate Di.S.T.A. Dipartimento di Scienza e Alta Tecnologia Di.S.A.T. PH.D. DEGREE PROGRAM IN

More information

Immerse Metric Space Homework

Immerse Metric Space Homework Immerse Metric Space Homework (Exercises -2). In R n, define d(x, y) = x y +... + x n y n. Show that d is a metric that induces the usual topology. Sketch the basis elements when n = 2. Solution: Steps

More information

Convexity and unique minimum points

Convexity and unique minimum points Convexity and unique minimum points Josef Berger and Gregor Svindland February 17, 2018 Abstract We show constructively that every quasi-convex, uniformly continuous function f : C R with at most one minimum

More information

Math 10850, fall 2017, University of Notre Dame

Math 10850, fall 2017, University of Notre Dame Math 10850, fall 2017, University of Notre Dame Notes on first exam September 22, 2017 The key facts The first midterm will be on Thursday, September 28, 6.15pm-7.45pm in Hayes-Healy 127. What you need

More information

HOMEWORK ASSIGNMENT 6

HOMEWORK ASSIGNMENT 6 HOMEWORK ASSIGNMENT 6 DUE 15 MARCH, 2016 1) Suppose f, g : A R are uniformly continuous on A. Show that f + g is uniformly continuous on A. Solution First we note: In order to show that f + g is uniformly

More information

Problem 1: Suppose A, B, C and D are finite sets such that A B = C D and C = D. Prove or disprove: A = B.

Problem 1: Suppose A, B, C and D are finite sets such that A B = C D and C = D. Prove or disprove: A = B. Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination III (Spring 2007) Problem 1: Suppose A, B, C and D are finite sets

More information

Discrete Mathematics. CS204: Spring, Jong C. Park Computer Science Department KAIST

Discrete Mathematics. CS204: Spring, Jong C. Park Computer Science Department KAIST Discrete Mathematics CS204: Spring, 2008 Jong C. Park Computer Science Department KAIST Today s Topics Combinatorial Circuits Properties of Combinatorial Circuits Boolean Algebras Boolean Functions and

More information

Introduction to Proofs

Introduction to Proofs Introduction to Proofs Notes by Dr. Lynne H. Walling and Dr. Steffi Zegowitz September 018 The Introduction to Proofs course is organised into the following nine sections. 1. Introduction: sets and functions

More information

Stable embeddedness and N IP

Stable embeddedness and N IP Stable embeddedness and N IP Anand Pillay University of Leeds January 14, 2010 Abstract We give some sufficient conditions for a predicate P in a complete theory T to be stably embedded. Let P be P with

More information

A SIMPLE PROOF OF THE MARKER-STEINHORN THEOREM FOR EXPANSIONS OF ORDERED ABELIAN GROUPS

A SIMPLE PROOF OF THE MARKER-STEINHORN THEOREM FOR EXPANSIONS OF ORDERED ABELIAN GROUPS A SIMPLE PROOF OF THE MARKER-STEINHORN THEOREM FOR EXPANSIONS OF ORDERED ABELIAN GROUPS ERIK WALSBERG Abstract. We give a short and self-contained proof of the Marker- Steinhorn Theorem for o-minimal expansions

More information

Real Analysis. Joe Patten August 12, 2018

Real Analysis. Joe Patten August 12, 2018 Real Analysis Joe Patten August 12, 2018 1 Relations and Functions 1.1 Relations A (binary) relation, R, from set A to set B is a subset of A B. Since R is a subset of A B, it is a set of ordered pairs.

More information

5 Set Operations, Functions, and Counting

5 Set Operations, Functions, and Counting 5 Set Operations, Functions, and Counting Let N denote the positive integers, N 0 := N {0} be the non-negative integers and Z = N 0 ( N) the positive and negative integers including 0, Q the rational numbers,

More information

Group construction in geometric C-minimal non-trivial structures.

Group construction in geometric C-minimal non-trivial structures. Group construction in geometric C-minimal non-trivial structures. Françoise Delon, Fares Maalouf January 14, 2013 Abstract We show for some geometric C-minimal structures that they define infinite C-minimal

More information

Semilattice Modes II: the amalgamation property

Semilattice Modes II: the amalgamation property Semilattice Modes II: the amalgamation property Keith A. Kearnes Abstract Let V be a variety of semilattice modes with associated semiring R. We prove that if R is a bounded distributive lattice, then

More information

Congruence Boolean Lifting Property

Congruence Boolean Lifting Property Congruence Boolean Lifting Property George GEORGESCU and Claudia MUREŞAN University of Bucharest Faculty of Mathematics and Computer Science Academiei 14, RO 010014, Bucharest, Romania Emails: georgescu.capreni@yahoo.com;

More information