A NEW COMPACT HEAT ENGINE

Size: px
Start display at page:

Download "A NEW COMPACT HEAT ENGINE"

Transcription

1 A NEW COMPACT HEAT ENGINE by Miodrag NOVAKOVI] Original scientific aer UDC: 536.8:621.4 BIBLID: , 6 (2002), 1, The Differential Cylinder Heat Engine (DCHE) reorted consists of two different size cylinders with istons where four assages (channels) enable fluid communications between cylinders. The istons are connected in oosition to share the wor. As the channels are oen and closed by movement of istons the woring fluid assing through the adequate channel is heated, cooled or let adiabaticaly flown from one cylinder to the other. The arrangement enables different thermodynamic cycles to be erformed. Here the Brayton cycle is chosen by adequate choice of volume ratio and by ositioning the channel aertures. During isobaric arts of the cycle the gas is adequately heated or cooled when assing through corresonding channel. During these rocess temeratures remain constant (and different) in each cylinder. The erformance of the engine is analyzed and the arameters and efficiency determined. Introduction The concet of Stirling engine and Stirling cycle aears to attract the interest of researchers and inventors although it aroaches to its bycentenary 1. The Stirling engine is still further develoed and succesfully alied 2. The concet of external combustion engine is more and more attractive for develoing countries as it allows free choice of inexoensive and not olluting fuels, including agricultural waste. The roosed concet may be characterized as further develoment of external combustion engine at mechanical simification. Basic concet of DCHE The basic DCHE engine consists of two different size cylinder where the woring fluid by movement of istons is transferred from one to the other cylinder adiabatic or with the external heat exchange during the fluid transfer. Several ossible arragments of differential cylinder are ossible. Differential Cylinder Heat Engine 45

2 THERMAL SCIENCE: Vol. 6 (2002), No. 1, (DCHE) with two coaxial cylinders is chosen for easy exlanation of erformance (Fig. 1). It can be seen that the volume of one cylinder increases while the other decreases (left large cylinder, right small cylinder). One should note that when the istons move in such a way as to increase the volume in the large cylinder (to right) the woring fluid is in exansion. The movement in oosite direction is comression. Figure 1. Variable differential cylinder arrangement The thermodynamic sys tem such as this one con sist ing of fluid (gas) in two arts of same res sure P which arts could have dif fer ent tem er a tures is a com os ite one. One should have in mind that due to the lin ear na ture of the ideal gas equa tion, all ideal gas laws are valid for this comosit sys tem. If M re re sents the to tal mass (M l + M s ), vol ume V reresents total volume (V l + V s ) and temerature T re re sents av er age tem er a ture (T l M l /M + T s M s /M)in the P, V, T, M re la tions. The four chan nels are fit ted with one-way valve, er mit ting only one way flow of gas. It should be noted that for ev ery o si tion of cou led is tons and the sense of their move ments there is al ways one chan nel oen for as sage of gas from one cyl in der to the other. When the is tons moves to ward right, the fluid flows from small cyl in der to the large one in ex an sion as more sace is ro vided in the large one in ex an sion as more sace is ro vided in the large cyl in der then lost in small cyl in der. 46

3 Novaovi}, M.: A New Comact Heat Engine De ending on the o si tion of is tons and the sense of move ments the flow is achieved through a articular channel, heated, cooled or adi a batic channel. If, during exansion it flows through non-heated chan - nel C 2 (Fig. 2) we have an adi a - batic ex an sion and the tem er - a tures in cyl in ders and the res - sure will fall. If it flows through heated chan nel C 1 then the joint res sure may dro, rise or re - main con stant de end ing on the tem er a ture in crease. The heat ing can be ad justed that the res sure does not change nor the tem er a tures in the cyl in ders. Dur ing such heat - ing ro cess tem er a tures in both cyl in ders re main con stant but the av er age tem er a ture rises as amount of hot gas in the large cyl in der is in creas ing. The res sure of both arts is rac ti cally the same, as the res sure dro due flow ing fluid may be very small. Trans ferring all the gas from small cyl in der to the large one in creases its vol ume r times (the vol ume ra tio). In creasing its tem er a ture in heated as sage at same ra tio r times the ideal gas res - sure re mains same be ing roortional to temera - ture. Sim i lar rea son ing a lies for flow in cooled channel. It should be noted that the DCHE ro - cesses of fluid ass ing the each four chan nels, cor - re sond to four ro - cesses in a Brayton cy cle energy lant comonents (Fig. 3) 3, 4. Figure 2. The heat engine with differential cylinder Figure 3. The Brayton cycle (1) Flow in heated channel C 1 (see Fig. 2) Exansion in the boiler; (2) Flow in adiabatic channel C 2 (see Fig. 2) Exansion in the turbine; (3) Flow in cooled channel C 3 (see Fig. 2) Comression in the condenser; (4) Flow in adiabatic channel C 4 (see Fig. 2) Comression in the comressor 47

4 THERMAL SCIENCE: Vol. 6 (2002), No. 1, Thermodynamic roerties of the DCHE The erformance of the DCHE is reresented on P-V diagram in Fig The hihghest temerature required for rocess T HS is the heat source (reservoir) temerature. It can be deduced from a comeat isobaric rocess P 1 = const, assuming that whole gas is heated to T HS. The T is the heat sin temerature and can be found from isobaric rocess P 3 = const, assuming that the whole gas is cooled to T. In analysis of the DCHE s erformance it is useful to use the following dimensionless arameters: T t HS PH V r T P V L H L (1) Substituting the exressions for V H (V 3 ) and V L (V 1 ) in deffinition of the dimensionless arameter r we have D d r (2) Figure 4. The DCHE on P-V diagram where D and d are the diameters of the large and the small cylinder resectively. Alying adequate equations T/V = = const, and PV = const for isobaric and adiabatic rocesses of the cycle resectively, all the P, V, T data for oints 1, 2, 3 are exressed as function P L, V L, T l and dimensionless arameters and r (see Table 1). The temerature of cold and hot source, T, T HS are also determined (oints 6 and 5 resectively in Fig. 4) T T l 1 (3) T HS T r l 1 (4) It should be noted that there is no fluid with temerature T 2 and T 4, these temeratures corresond to mixed temerature of the fluid in large and small cylinder (V l and V s ). Using the eq. (3) the temeratures of oints 1, 2, 3, 4 are also exressed by T (see Table 1). It is useful to find the relation between the arameters. Combining the eq. (1a) with the exressions for T HS and T one can get the following relation t = r (5) 48

5 Novaovi}, M.: A New Comact Heat Engine Ther mal ef fi ciency of the Brayton cy cle is 6, 7 h 1 1 (6) from eq. (6) it is clear that the 3 P L V L r T l r 1/ T r thermal efficiency of the Brayton 4 P L V L 1/ T l T 1/ cycle increases with the cycle s 5 P L V L r T l 1/ T ressure ratio. The DCHE has 6 P limitation that deends on the L V L T l r ( 1)/ T temerature ratio T HS /T. T HS is the temerature of the heat reservoir and deends on the used fuel. T is the lowest available temerature, i. e. The temerature of the surrounding. So, for the given temerature ration t the DCHE has a maximum heat efficiency when the ressure ratio has a maximum value. It is obvious that the lowest ossible volume ratio r min will be when V 2 V 1 and V 3 V 4, whence V r P min V 1 1 P 3 4 combining with eq. (5) one can get Table 1. The DCHE s state roerties max P V T T 1 P L V L T l ( 1)/ T 2 P L V L r 1/ T l r ( 2)/ T r ( 1)/ 1 1 t (7) The DCHE s maximum useful wor of a cycle er unit mass The useful wor er unit mass in a cycle is W = q ex q comr having in mind q ex = C (T 2 T 3 ) and q comr = C (T 1 T 4 ) substituting for T 1, T 2, T 3 and T 4 from Table 1 (last column): W * m W ( r r ) C T 1 1 (8) whence, with eq. (5) and 1 = 1/, we have 49

6 THERMAL SCIENCE: Vol. 6 (2002), No. 1, W * W m r t r t r r t (9) C T Where W m * is a the dimensionless useful wor er unit mass. The maximum value of W m * at given the occures when the first derivative with resect to r is zero: * ( Wm ) tconst 1 r t 1 r t 1 r t 0 (10) r The nonlinear eq. (10) is solved by Newton-Rhason iteration technique. Results and discussion Figure 5 shows a lot of thermal efficiency of the DCHE vs. temerature ratio t. The curve ETHAMAX reresent the case of the theoretical maximum ossible h for the given t. The other curve (WMMAX) reresents the values of h for the given t when the maximum useful wor is achieved er unit mass. The following Fig. 6 gives us the value of D/d vs. t. Finally in Fig. 7 the values of dimensionless useful wor er unit mass (eq. 9) vs. t is given, with arameters of WMMAX (eq. 10) and with T = 300 K. Figure 5. Thermal efficiency of the DCHE vs.t Figure 6. The DCHE s cylinders ratio vs. t Figure 7. Dimensionless wor of the DCHE vs. t 50

7 Novaovi}, M.: A New Comact Heat Engine Nomenclature C J/gK secific heat caacity at constant nnressure C v [J/gK] secific heat caacity of constant nnvolume D m diameter of the large cylinder d m diameter of the small cylinder secific heat ratio = C /C V M [g] total mass of woring fluid M l [g] mass of woring fluid in large cylinder M s [g] mass of woring fluid in small nncylinder P Pa ressure P H [Pa] high ressure P L [Pa] low ressure Q H J total heat given to the cycle nnat high temerature Q C J total heat extracted from the nncycle in condenser Gree symbols q J/g heat exchanged er 1 g of iworing fluid r volume ratio r min theoretical minimal volume ratio of DCHE s J/g Enthroy T K absolute temerature T K temerature of cold source sin T HS K temerature of hot source Te [K] temerature of woring fluid in large cylinder V L [m 3 ] volume of woring fluid after comresion V H [m 3 ] volume of woring fluid after exansion V l m 3 volume of large cylinder V s volume of small cylinder W J/g useful wor dimensionless useful wor W m * t h Pressure ratio Temerature ratio Thermal efficiency References 1 Organ, A. J., Analysis of the Gas Turbine Rotary Regenerator, Proc. Instn. Mech. Engs., Vol. 211 (1977), Part D, SIGMA Eletrotenis A.S. N-1550 Helen, Norway 3 Chicurel, R., A Modified Otto Engine for Fuel Economy, Alied Energy, 38 (1988), Aly, S. E., Diesel Engine Waste Heat Power Cycle, Alied Energy, 29 (1988), Šarenac, R. Z., MSc thesis, Deartment of Mechanical Engineering, University of Novi Sad, Novi Sad, Yugoslavia (1980) 6 Van Wylen, G. J., Thermodynamics, John Wiley and Sons, New Yor, Novaovi}, M., Djuri}, M., Technical Thermodynamics, Faculty of Technology, University of Novi Sad, Novi Sad, Yugoslavia, 1998 Author s address: M. Novaovi} Faculty of Technology, University of Novi Sad Bul. Cara Lazara 1, Novi Sad, Yugoslavia Paer submited: May 15, 2002 Pare revised: July 1, 2002 Paer acceted: Setember 1,

Chapter 1 Fundamentals

Chapter 1 Fundamentals Chater Fundamentals. Overview of Thermodynamics Industrial Revolution brought in large scale automation of many tedious tasks which were earlier being erformed through manual or animal labour. Inventors

More information

02. Equilibrium Thermodynamics II: Engines

02. Equilibrium Thermodynamics II: Engines University of Rhode Island DigitalCommons@URI Equilibrium Statistical Physics Physics Course Materials 205 02. Equilibrium Thermodynamics II: Engines Gerhard Müller University of Rhode Island, gmuller@uri.edu

More information

Efficiencies. Damian Vogt Course MJ2429. Nomenclature. Symbol Denotation Unit c Flow speed m/s c p. pressure c v. Specific heat at constant J/kgK

Efficiencies. Damian Vogt Course MJ2429. Nomenclature. Symbol Denotation Unit c Flow speed m/s c p. pressure c v. Specific heat at constant J/kgK Turbomachinery Lecture Notes 1 7-9-1 Efficiencies Damian Vogt Course MJ49 Nomenclature Subscrits Symbol Denotation Unit c Flow seed m/s c Secific heat at constant J/kgK ressure c v Secific heat at constant

More information

Determination of Pressure Losses in Hydraulic Pipeline Systems by Considering Temperature and Pressure

Determination of Pressure Losses in Hydraulic Pipeline Systems by Considering Temperature and Pressure Paer received: 7.10.008 UDC 61.64 Paer acceted: 0.04.009 Determination of Pressure Losses in Hydraulic Pieline Systems by Considering Temerature and Pressure Vladimir Savi 1,* - Darko Kneževi - Darko Lovrec

More information

Actual exergy intake to perform the same task

Actual exergy intake to perform the same task CHAPER : PRINCIPLES OF ENERGY CONSERVAION INRODUCION Energy conservation rinciles are based on thermodynamics If we look into the simle and most direct statement of the first law of thermodynamics, we

More information

FINITE TIME THERMODYNAMIC MODELING AND ANALYSIS FOR AN IRREVERSIBLE ATKINSON CYCLE. By Yanlin GE, Lingen CHEN, and Fengrui SUN

FINITE TIME THERMODYNAMIC MODELING AND ANALYSIS FOR AN IRREVERSIBLE ATKINSON CYCLE. By Yanlin GE, Lingen CHEN, and Fengrui SUN FINIE IME HERMODYNAMIC MODELING AND ANALYSIS FOR AN IRREVERSIBLE AKINSON CYCLE By Yanlin GE, Lingen CHEN, and Fengrui SUN Performance of an air-standard Atkinson cycle is analyzed by using finite-time

More information

δq T = nr ln(v B/V A )

δq T = nr ln(v B/V A ) hysical Chemistry 007 Homework assignment, solutions roblem 1: An ideal gas undergoes the following reversible, cyclic rocess It first exands isothermally from state A to state B It is then comressed adiabatically

More information

Homework #11. (Due December 5 at the beginning of the class.) Numerical Method Series #6: Engineering applications of Newton-Raphson Method to

Homework #11. (Due December 5 at the beginning of the class.) Numerical Method Series #6: Engineering applications of Newton-Raphson Method to Homework #11 (Due December 5 at the beginning of the class.) Numerical Method Series #6: Engineering alications of Newton-Rahson Method to solving systems of nonlinear equations Goals: 1. Understanding

More information

Chapter 9 Practical cycles

Chapter 9 Practical cycles Prof.. undararajan Chater 9 Practical cycles 9. Introduction In Chaters 7 and 8, it was shown that a reversible engine based on the Carnot cycle (two reversible isothermal heat transfers and two reversible

More information

PHYS1001 PHYSICS 1 REGULAR Module 2 Thermal Physics Chapter 17 First Law of Thermodynamics

PHYS1001 PHYSICS 1 REGULAR Module 2 Thermal Physics Chapter 17 First Law of Thermodynamics PHYS1001 PHYSICS 1 REGULAR Module Thermal Physics Chater 17 First Law of Thermodynamics References: 17.1 to 17.9 Examles: 17.1 to 17.7 Checklist Thermodynamic system collection of objects and fields. If

More information

The Second Law of Thermodynamics. (Second Law of Thermodynamics)

The Second Law of Thermodynamics. (Second Law of Thermodynamics) he Second aw of hermodynamics For the free exansion, we have >. It is an irreversible rocess in a closed system. For the reversible isothermal rocess, for the gas > for exansion and < for comression. owever,

More information

JJMIE Jordan Journal of Mechanical and Industrial Engineering

JJMIE Jordan Journal of Mechanical and Industrial Engineering JJMIE Jordan Journal of Mechanical and Industrial Engineering Volume, Number, Jun. 8 ISSN 995-6665 Pages 7-75 Efficiency of Atkinson Engine at Maximum Power Density using emerature Deendent Secific Heats

More information

Lecture 13. Heat Engines. Thermodynamic processes and entropy Thermodynamic cycles Extracting work from heat

Lecture 13. Heat Engines. Thermodynamic processes and entropy Thermodynamic cycles Extracting work from heat Lecture 3 Heat Engines hermodynamic rocesses and entroy hermodynamic cycles Extracting work from heat - How do we define engine efficiency? - Carnot cycle: the best ossible efficiency Reading for this

More information

Phase transition. Asaf Pe er Background

Phase transition. Asaf Pe er Background Phase transition Asaf Pe er 1 November 18, 2013 1. Background A hase is a region of sace, throughout which all hysical roerties (density, magnetization, etc.) of a material (or thermodynamic system) are

More information

Homogeneous and Inhomogeneous Model for Flow and Heat Transfer in Porous Materials as High Temperature Solar Air Receivers

Homogeneous and Inhomogeneous Model for Flow and Heat Transfer in Porous Materials as High Temperature Solar Air Receivers Excert from the roceedings of the COMSOL Conference 1 aris Homogeneous and Inhomogeneous Model for Flow and Heat ransfer in orous Materials as High emerature Solar Air Receivers Olena Smirnova 1 *, homas

More information

Lecture 13 Heat Engines

Lecture 13 Heat Engines Lecture 3 Heat Engines hermodynamic rocesses and entroy hermodynamic cycles Extracting work from heat - How do we define engine efficiency? - Carnot cycle: the best ossible efficiency Reading for this

More information

THE FIRST LAW OF THERMODYNAMICS

THE FIRST LAW OF THERMODYNAMICS THE FIRST LA OF THERMODYNAMIS 9 9 (a) IDENTIFY and SET UP: The ressure is constant and the volume increases (b) = d Figure 9 Since is constant, = d = ( ) The -diagram is sketched in Figure 9 The roblem

More information

Engineering Services Examination - UPSC MECHANICAL ENGINEERING. Topic-wise Conventional Papers I & II (Last 30 Years Questions)

Engineering Services Examination - UPSC MECHANICAL ENGINEERING. Topic-wise Conventional Papers I & II (Last 30 Years Questions) Engineering Services Examination - UPSC MECHANICAL ENGINEERING Toic-wise Conventional Paers I & II (Last 0 Years Questions) Dedicated to Mechanical Engineers and Engineering Services asirants. 04 by Engineers

More information

4. Energy balances Partly based on Chapter 4 of the De Nevers textbook.

4. Energy balances Partly based on Chapter 4 of the De Nevers textbook. Lecture Notes CHE 31 Fluid Mechanics (Fall 010) 4 Energy balances Partly based on Chater 4 of the De Nevers textbook Energy fluid mechanics As for any quantity, we can set u an energy balance for a secific

More information

The Numerical Simulation of Gas Turbine Inlet-Volute Flow Field

The Numerical Simulation of Gas Turbine Inlet-Volute Flow Field World Journal of Mechanics, 013, 3, 30-35 doi:10.436/wjm.013.3403 Published Online July 013 (htt://www.scir.org/journal/wjm) The Numerical Simulation of Gas Turbine Inlet-Volute Flow Field Tao Jiang 1,

More information

Unit code: H/ QCF level: 5 Credit value: 15 OUTCOME 1 - THERMODYNAMIC SYSTEMS TUTORIAL 2

Unit code: H/ QCF level: 5 Credit value: 15 OUTCOME 1 - THERMODYNAMIC SYSTEMS TUTORIAL 2 Unit 43: Plant and Process Princiles Unit code: H/60 44 QCF level: 5 Credit value: 5 OUCOME - HERMODYNAMIC SYSEMS UORIAL Understand thermodynamic systems as alied to lant engineering rocesses hermodynamic

More information

ANALYTICAL MODEL FOR THE BYPASS VALVE IN A LOOP HEAT PIPE

ANALYTICAL MODEL FOR THE BYPASS VALVE IN A LOOP HEAT PIPE ANALYTICAL MODEL FOR THE BYPASS ALE IN A LOOP HEAT PIPE Michel Seetjens & Camilo Rindt Laboratory for Energy Technology Mechanical Engineering Deartment Eindhoven University of Technology The Netherlands

More information

Analysis of Pressure Transient Response for an Injector under Hydraulic Stimulation at the Salak Geothermal Field, Indonesia

Analysis of Pressure Transient Response for an Injector under Hydraulic Stimulation at the Salak Geothermal Field, Indonesia roceedings World Geothermal Congress 00 Bali, Indonesia, 5-9 Aril 00 Analysis of ressure Transient Resonse for an Injector under Hydraulic Stimulation at the Salak Geothermal Field, Indonesia Jorge A.

More information

A short note on Reitlinger thermodynamic cycles

A short note on Reitlinger thermodynamic cycles short note on Reitlinger thermodynamic cycles melia arolina Saravigna eartment of lied Science and echnology, Politecnico di orino, orino, Italy bstract: It is well known that arnot cycle is the thermodynamic

More information

Wolfgang POESSNECKER and Ulrich GROSS*

Wolfgang POESSNECKER and Ulrich GROSS* Proceedings of the Asian Thermohysical Proerties onference -4 August, 007, Fukuoka, Jaan Paer No. 0 A QUASI-STEADY YLINDER METHOD FOR THE SIMULTANEOUS DETERMINATION OF HEAT APAITY, THERMAL ONDUTIVITY AND

More information

Session 12 : Monopropellant Thrusters

Session 12 : Monopropellant Thrusters Session 12 : Monoroellant Thrusters Electrothermal augmentation of chemical rockets was the first form of electric roulsion alied in sace vehicles. In its original imlementation, resistojets were used

More information

Paper C Exact Volume Balance Versus Exact Mass Balance in Compositional Reservoir Simulation

Paper C Exact Volume Balance Versus Exact Mass Balance in Compositional Reservoir Simulation Paer C Exact Volume Balance Versus Exact Mass Balance in Comositional Reservoir Simulation Submitted to Comutational Geosciences, December 2005. Exact Volume Balance Versus Exact Mass Balance in Comositional

More information

Theory of turbomachinery. Chapter 1

Theory of turbomachinery. Chapter 1 Theory of turbomachinery Chater Introduction: Basic Princiles Take your choice of those that can best aid your action. (Shakeseare, Coriolanus) Introduction Definition Turbomachinery describes machines

More information

A New Method for Simultaneous Determination of the TDC Offset and the Pressure Offset in Fired Cylinders of an Internal Combustion Engine

A New Method for Simultaneous Determination of the TDC Offset and the Pressure Offset in Fired Cylinders of an Internal Combustion Engine energies Article A New Method for Simultaneous Determination of the Offset and the Pressure Offset in Fired Cylinders of an Internal Combustion Engine Urban Žvar Baškovič *, Rok Vihar, Igor Mele and Tomaž

More information

ATMOS Lecture 7. The First Law and Its Consequences Pressure-Volume Work Internal Energy Heat Capacity Special Cases of the First Law

ATMOS Lecture 7. The First Law and Its Consequences Pressure-Volume Work Internal Energy Heat Capacity Special Cases of the First Law TMOS 5130 Lecture 7 The First Law and Its Consequences Pressure-Volume Work Internal Energy Heat Caacity Secial Cases of the First Law Pressure-Volume Work Exanding Volume Pressure δw = f & dx δw = F ds

More information

OPTIMAL PATHS OF PISTON MOTION OF IRREVERSIBLE DIESEL CYCLE FOR MINIMUM ENTROPY GENERATION. By Yanlin GE, Lingen CHEN *, and Fengrui SUN

OPTIMAL PATHS OF PISTON MOTION OF IRREVERSIBLE DIESEL CYCLE FOR MINIMUM ENTROPY GENERATION. By Yanlin GE, Lingen CHEN *, and Fengrui SUN OPTIMAL PATHS OF PISTON MOTION OF IRREVERSIBLE DIESEL CYCLE FOR MINIMUM ENTROPY GENERATION By Yanlin GE, Lingen CHEN *, and Fengrui SUN A Diesel cycle heat engine with internal and external irreversibilities

More information

The extreme case of the anisothermal calorimeter when there is no heat exchange is the adiabatic calorimeter.

The extreme case of the anisothermal calorimeter when there is no heat exchange is the adiabatic calorimeter. .4. Determination of the enthaly of solution of anhydrous and hydrous sodium acetate by anisothermal calorimeter, and the enthaly of melting of ice by isothermal heat flow calorimeter Theoretical background

More information

Multivariable Generalized Predictive Scheme for Gas Turbine Control in Combined Cycle Power Plant

Multivariable Generalized Predictive Scheme for Gas Turbine Control in Combined Cycle Power Plant Multivariable Generalized Predictive Scheme for Gas urbine Control in Combined Cycle Power Plant L.X.Niu and X.J.Liu Deartment of Automation North China Electric Power University Beiing, China, 006 e-mail

More information

THERMODYNAMICS. Prepared by Sibaprasad Maity Asst. Prof. in Chemistry For any queries contact at

THERMODYNAMICS. Prepared by Sibaprasad Maity Asst. Prof. in Chemistry For any queries contact at HERMODYNAMIS reared by Sibarasad Maity Asst. rof. in hemistry For any queries contact at 943445393 he word thermo-dynamic, used first by illiam homson (later Lord Kelvin), has Greek origin, and is translated

More information

4. A Brief Review of Thermodynamics, Part 2

4. A Brief Review of Thermodynamics, Part 2 ATMOSPHERE OCEAN INTERACTIONS :: LECTURE NOTES 4. A Brief Review of Thermodynamics, Part 2 J. S. Wright jswright@tsinghua.edu.cn 4.1 OVERVIEW This chater continues our review of the key thermodynamics

More information

Entransy analysis of open thermodynamic systems

Entransy analysis of open thermodynamic systems Article Engineering hermohysics August 0 Vol.57 No.: 934940 doi: 0.007/s434-0-54-x Entransy analysis of oen thermodynamic systems CHENG Xueao, WANG WenHua & LIANG XinGang * Key Laboratory for hermal Science

More information

ANALYTIC APPROXIMATE SOLUTIONS FOR FLUID-FLOW IN THE PRESENCE OF HEAT AND MASS TRANSFER

ANALYTIC APPROXIMATE SOLUTIONS FOR FLUID-FLOW IN THE PRESENCE OF HEAT AND MASS TRANSFER Kilicman, A., et al.: Analytic Aroximate Solutions for Fluid-Flow in the Presence... THERMAL SCIENCE: Year 8, Vol., Sul.,. S59-S64 S59 ANALYTIC APPROXIMATE SOLUTIONS FOR FLUID-FLOW IN THE PRESENCE OF HEAT

More information

MODEL-BASED MULTIPLE FAULT DETECTION AND ISOLATION FOR NONLINEAR SYSTEMS

MODEL-BASED MULTIPLE FAULT DETECTION AND ISOLATION FOR NONLINEAR SYSTEMS MODEL-BASED MULIPLE FAUL DEECION AND ISOLAION FOR NONLINEAR SYSEMS Ivan Castillo, and homas F. Edgar he University of exas at Austin Austin, X 78712 David Hill Chemstations Houston, X 77009 Abstract A

More information

Uniform Law on the Unit Sphere of a Banach Space

Uniform Law on the Unit Sphere of a Banach Space Uniform Law on the Unit Shere of a Banach Sace by Bernard Beauzamy Société de Calcul Mathématique SA Faubourg Saint Honoré 75008 Paris France Setember 008 Abstract We investigate the construction of a

More information

dn i where we have used the Gibbs equation for the Gibbs energy and the definition of chemical potential

dn i where we have used the Gibbs equation for the Gibbs energy and the definition of chemical potential Chem 467 Sulement to Lectures 33 Phase Equilibrium Chemical Potential Revisited We introduced the chemical otential as the conjugate variable to amount. Briefly reviewing, the total Gibbs energy of a system

More information

The International Association for the Properties of Water and Steam

The International Association for the Properties of Water and Steam IAPWS SR5-05(2016) he International Association for the Proerties of Water and Steam Moscow, Russia June 2014 Revised Sulementary Release on Backward Equations for Secific Volume as a Function of Pressure

More information

Chapter 20: Exercises: 3, 7, 11, 22, 28, 34 EOC: 40, 43, 46, 58

Chapter 20: Exercises: 3, 7, 11, 22, 28, 34 EOC: 40, 43, 46, 58 Chater 0: Exercises:, 7,,, 8, 4 EOC: 40, 4, 46, 8 E: A gasoline engine takes in.80 0 4 and delivers 800 of work er cycle. The heat is obtained by burning gasoline with a heat of combustion of 4.60 0 4.

More information

16. CHARACTERISTICS OF SHOCK-WAVE UNDER LORENTZ FORCE AND ENERGY EXCHANGE

16. CHARACTERISTICS OF SHOCK-WAVE UNDER LORENTZ FORCE AND ENERGY EXCHANGE 16. CHARACTERISTICS OF SHOCK-WAVE UNDER LORENTZ FORCE AND ENERGY EXCHANGE H. Yamasaki, M. Abe and Y. Okuno Graduate School at Nagatsuta, Tokyo Institute of Technology 459, Nagatsuta, Midori-ku, Yokohama,

More information

1 Entropy 1. 3 Extensivity 4. 5 Convexity 5

1 Entropy 1. 3 Extensivity 4. 5 Convexity 5 Contents CONEX FUNCIONS AND HERMODYNAMIC POENIALS 1 Entroy 1 2 Energy Reresentation 2 3 Etensivity 4 4 Fundamental Equations 4 5 Conveity 5 6 Legendre transforms 6 7 Reservoirs and Legendre transforms

More information

INTRODUCING THE SHEAR-CAP MATERIAL CRITERION TO AN ICE RUBBLE LOAD MODEL

INTRODUCING THE SHEAR-CAP MATERIAL CRITERION TO AN ICE RUBBLE LOAD MODEL Symosium on Ice (26) INTRODUCING THE SHEAR-CAP MATERIAL CRITERION TO AN ICE RUBBLE LOAD MODEL Mohamed O. ElSeify and Thomas G. Brown University of Calgary, Calgary, Canada ABSTRACT Current ice rubble load

More information

Passive Mechanical Device for Phase Shifting in a Pulse Tube Cryocooler

Passive Mechanical Device for Phase Shifting in a Pulse Tube Cryocooler C19_018 1 Passive Mechanical Device for Phase Shifting in a Pulse Tube Cryocooler D. Radchenko 1, G. Grossman Ricor Cryogenic and Vacuum Systems, Ein Harod Ihud, Israel Technion Israel Institute of Technology,

More information

VI. Electrokinetics. Lecture 31: Electrokinetic Energy Conversion

VI. Electrokinetics. Lecture 31: Electrokinetic Energy Conversion VI. Electrokinetics Lecture 31: Electrokinetic Energy Conversion MIT Student 1 Princiles 1.1 General Theory We have the following equation for the linear electrokinetic resonse of a nanochannel: ( ) (

More information

5 Diagnosis of diesel engines

5 Diagnosis of diesel engines 5 Diagnosis of diesel engines In order to develo advanced fault-detection and diagnosis systems for diesel engines a modular structure is used, which is based on the available inut and outut signals from

More information

GEF2200 vår 2017 Løsningsforslag sett 1

GEF2200 vår 2017 Løsningsforslag sett 1 GEF2200 vår 2017 Løsningsforslag sett 1 A.1.T R is the universal gas constant, with value 8.3143JK 1 mol 1. R is the gas constant for a secic gas, given by R R M (1) where M is the molecular weight of

More information

Modeling Volume Changes in Porous Electrodes

Modeling Volume Changes in Porous Electrodes Journal of The Electrochemical Society, 53 A79-A86 2006 003-465/2005/53/A79/8/$20.00 The Electrochemical Society, Inc. Modeling olume Changes in Porous Electrodes Parthasarathy M. Gomadam*,a,z John W.

More information

SELF-SIMILAR FLOW OF A MIXTURE OF A NON-IDEAL GAS AND SMALL SOLID PARTICLES WITH INCREASING ENERGY BEHIND A SHOCK WAVE UNDER A GRAVITATIONAL FIELD

SELF-SIMILAR FLOW OF A MIXTURE OF A NON-IDEAL GAS AND SMALL SOLID PARTICLES WITH INCREASING ENERGY BEHIND A SHOCK WAVE UNDER A GRAVITATIONAL FIELD SELF-SIMILAR FLOW OF A MIXTURE OF A NON-IDEAL GAS AND SMALL SOLID PARTICLES WITH INCREASING ENERGY BEHIND A SHOCK WAVE UNDER A GRAVITATIONAL FIELD Vishwakarma J.P. and Prerana Pathak 1 Deartment of Mathematics

More information

I have not proofread these notes; so please watch out for typos, anything misleading or just plain wrong.

I have not proofread these notes; so please watch out for typos, anything misleading or just plain wrong. hermodynamics I have not roofread these notes; so lease watch out for tyos, anything misleading or just lain wrong. Please read ages 227 246 in Chater 8 of Kittel and Kroemer and ay attention to the first

More information

Nonlinear superheat and capacity control of a refrigeration plant

Nonlinear superheat and capacity control of a refrigeration plant Nonlinear suerheat and caacity control of a refrigeration lant Henrik Rasmussen Deartment of Electronic Systems Aalborg University DK-92 Aalborg, Denmark Email: hr@es.aau.dk Lars F. S. Larsen Danfoss A/S,

More information

Research of power plant parameter based on the Principal Component Analysis method

Research of power plant parameter based on the Principal Component Analysis method Research of ower lant arameter based on the Princial Comonent Analysis method Yang Yang *a, Di Zhang b a b School of Engineering, Bohai University, Liaoning Jinzhou, 3; Liaoning Datang international Jinzhou

More information

FUGACITY. It is simply a measure of molar Gibbs energy of a real gas.

FUGACITY. It is simply a measure of molar Gibbs energy of a real gas. FUGACITY It is simly a measure of molar Gibbs energy of a real gas. Modifying the simle equation for the chemical otential of an ideal gas by introducing the concet of a fugacity (f). The fugacity is an

More information

Phase Equilibrium Calculations by Equation of State v2

Phase Equilibrium Calculations by Equation of State v2 Bulletin of Research Center for Comuting and Multimedia Studies, Hosei University, 7 (3) Published online (htt://hdl.handle.net/4/89) Phase Equilibrium Calculations by Equation of State v Yosuke KATAOKA

More information

The Second Law: The Machinery

The Second Law: The Machinery The Second Law: The Machinery Chater 5 of Atkins: The Second Law: The Concets Sections 3.7-3.9 8th Ed, 3.3 9th Ed; 3.4 10 Ed.; 3E 11th Ed. Combining First and Second Laws Proerties of the Internal Energy

More information

Heat Transfer Analysis in the Cylinder of Reciprocating Compressor

Heat Transfer Analysis in the Cylinder of Reciprocating Compressor Purdue University Purdue e-pubs International Comressor Engineering Conference School of Mechanical Engineering 2016 Heat Transfer Analysis in the Cylinder of Recirocating Comressor Ján Tuhovcák Brno University

More information

Physics 2A (Fall 2012) Chapters 11:Using Energy and 12: Thermal Properties of Matter

Physics 2A (Fall 2012) Chapters 11:Using Energy and 12: Thermal Properties of Matter Physics 2A (Fall 2012) Chaters 11:Using Energy and 12: Thermal Proerties of Matter "Kee in mind that neither success nor failure is ever final." Roger Ward Babson Our greatest glory is not in never failing,

More information

PV/T = k or PV = kt Describe the difference between an ideal gas and a real gas.

PV/T = k or PV = kt Describe the difference between an ideal gas and a real gas. 10.1 Thermodynamics 10.2 Processes 10 10.3 The second law of thermodynamics and entroy 10.1 Thermodynamics From the combined gas laws, we determined that: P/T = k or P = kt 10.1.1 State the equation of

More information

/ p) TA,. Returning to the

/ p) TA,. Returning to the Toic2610 Proerties; Equilibrium and Frozen A given closed system having Gibbs energy G at temerature T, ressure, molecular comosition (organisation ) and affinity for sontaneous change A is described by

More information

MODELLING, SIMULATION AND ROBUST ANALYSIS OF THE TEMPERATURE PROCESS CONTROL

MODELLING, SIMULATION AND ROBUST ANALYSIS OF THE TEMPERATURE PROCESS CONTROL The 6 th edition of the Interdiscilinarity in Engineering International Conference Petru Maior University of Tîrgu Mureş, Romania, 2012 MODELLING, SIMULATION AND ROBUST ANALYSIS OF THE TEMPERATURE PROCESS

More information

Pressure-sensitivity Effects on Toughness Measurements of Compact Tension Specimens for Strain-hardening Solids

Pressure-sensitivity Effects on Toughness Measurements of Compact Tension Specimens for Strain-hardening Solids American Journal of Alied Sciences (9): 19-195, 5 ISSN 1546-939 5 Science Publications Pressure-sensitivity Effects on Toughness Measurements of Comact Tension Secimens for Strain-hardening Solids Abdulhamid

More information

HEAT, WORK, AND THE FIRST LAW OF THERMODYNAMICS

HEAT, WORK, AND THE FIRST LAW OF THERMODYNAMICS HET, ORK, ND THE FIRST L OF THERMODYNMIS 8 EXERISES Section 8. The First Law of Thermodynamics 5. INTERPRET e identify the system as the water in the insulated container. The roblem involves calculating

More information

CHEE 221: Chemical Processes and Systems

CHEE 221: Chemical Processes and Systems CH 221: Chemical Processes and Systems Module 4. nergy Balances without Reaction Part a: Introduction to nergy Balances (Felder & Rousseau Ch 7.0 7.4 nergy and nergy Balances: very chemical rocess volves

More information

Mixture Homogeneous Mixtures (air, sea water ) same composition, no chemical bond components are NOT distinguishable

Mixture Homogeneous Mixtures (air, sea water ) same composition, no chemical bond components are NOT distinguishable BASIC CONCEPTAND DEFINITIONS1 2 THERMODYNAMICS CHAPTER 2 Thermodynamic Concets Lecturer Axel GRONIEWSKY, PhD 11 th of February2019 Thermodynamics study of energy and its transformation describes macroscoic

More information

Lecture 8, the outline

Lecture 8, the outline Lecture, the outline loose end: Debye theory of solids more remarks on the first order hase transition. Bose Einstein condensation as a first order hase transition 4He as Bose Einstein liquid Lecturer:

More information

ME scope Application Note 16

ME scope Application Note 16 ME scoe Alication Note 16 Integration & Differentiation of FFs and Mode Shaes NOTE: The stes used in this Alication Note can be dulicated using any Package that includes the VES-36 Advanced Signal Processing

More information

ANALYSIS OF ENTROPY GENERATION IN A CIRCULAR TUBE WITH SHORT LENGTH TWISTED TAPE INSERTS

ANALYSIS OF ENTROPY GENERATION IN A CIRCULAR TUBE WITH SHORT LENGTH TWISTED TAPE INSERTS Proceedings of the th National and 11 th International ISHMT-ASME Heat and Mass Transfer Conference December 8-31, 013, IIT Kharagur, India HMTC13006 ANALYSIS OF ENTROPY GENERATION IN A CIRCULAR TUBE WITH

More information

SELF-SIMILAR FLOW UNDER THE ACTION OF MONOCHROMATIC RADIATION BEHIND A STRONG CYLINDRICAL SHOCK WAVE IN A NON-IDEAL GAS

SELF-SIMILAR FLOW UNDER THE ACTION OF MONOCHROMATIC RADIATION BEHIND A STRONG CYLINDRICAL SHOCK WAVE IN A NON-IDEAL GAS SELF-SIMILAR FLOW UNDER THE ACTION OF MONOCHROMATIC RADIATION BEHIND A STRONG CYLINDRICAL SHOCK WAVE IN A NON-IDEAL GAS *J. P. Vishwakarma and Vijay Kumar Pandey Deartment of Mathematics & Statistics,

More information

Combinatorics of topmost discs of multi-peg Tower of Hanoi problem

Combinatorics of topmost discs of multi-peg Tower of Hanoi problem Combinatorics of tomost discs of multi-eg Tower of Hanoi roblem Sandi Klavžar Deartment of Mathematics, PEF, Unversity of Maribor Koroška cesta 160, 000 Maribor, Slovenia Uroš Milutinović Deartment of

More information

df da df = force on one side of da due to pressure

df da df = force on one side of da due to pressure I. Review of Fundamental Fluid Mechanics and Thermodynamics 1. 1 Some fundamental aerodynamic variables htt://en.wikiedia.org/wiki/hurricane_ivan_(2004) 1) Pressure: the normal force er unit area exerted

More information

THERMAL ANALYSIS OF CHARRING MATERIALS BASED ON PYROLYSIS INTERFACE MODEL

THERMAL ANALYSIS OF CHARRING MATERIALS BASED ON PYROLYSIS INTERFACE MODEL THERMA SCIENCE, Year 14, Vol. 18, No. 5,. 1591-1596 1591 THERMA ANAYSIS OF CHARRING MATERIAS BASED ON PYROYSIS INTERFACE MODE by Hai-Ming HUANG *a, Wei-Jie I a, and Hai-ingYU b a Institute of Engineering

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI 6113 DEPARTMENT: CIVIL SUB.CODE/ NAME: CE6303/ MECHANICS OF FLUIDS SEMESTER: III UNIT-1 FLUID PROPERTIES TWO MARK QUESTIONS AND ANSWERS 1. Define fluid mechanics.(auc

More information

Numerical simulation of bird strike in aircraft leading edge structure using a new dynamic failure model

Numerical simulation of bird strike in aircraft leading edge structure using a new dynamic failure model Numerical simulation of bird strike in aircraft leading edge structure using a new dynamic failure model Q. Sun, Y.J. Liu, R.H, Jin School of Aeronautics, Northwestern Polytechnical University, Xi an 710072,

More information

FINITE TIME THERMODYNAMIC MODELING AND ANALYSIS FOR AN IRREVERSIBLE ATKINSON CYCLE

FINITE TIME THERMODYNAMIC MODELING AND ANALYSIS FOR AN IRREVERSIBLE ATKINSON CYCLE HERMAL SCIENCE: Year 2010, Vol. 14, No. 4, pp. 887-896 887 FINIE IME HERMODYNAMIC MODELING AND ANALYSIS FOR AN IRREVERSIBLE AKINSON CYCLE by Yanlin GE, Lingen CHEN *, and Fengrui SUN Postgraduate School,

More information

Maximum Power Output of Quantum Heat Engine. with Energy Bath

Maximum Power Output of Quantum Heat Engine. with Energy Bath Maximum Power Outut of Quantum Heat Engine with Energy Bath Shengnan Liu, Congjie Ou, College of Information Science and Engineering, Huaqiao University, Xiamen 360, China; 30008003@hqu.edu.cn Corresondence:

More information

Session 5: Review of Classical Astrodynamics

Session 5: Review of Classical Astrodynamics Session 5: Review of Classical Astrodynamics In revious lectures we described in detail the rocess to find the otimal secific imulse for a articular situation. Among the mission requirements that serve

More information

On Gravity Waves on the Surface of Tangential Discontinuity

On Gravity Waves on the Surface of Tangential Discontinuity Alied Physics Research; Vol. 6, No. ; 4 ISSN 96-9639 E-ISSN 96-9647 Published by anadian enter of Science and Education On Gravity Waves on the Surface of Tangential Discontinuity V. G. Kirtskhalia I.

More information

CFD AS A DESIGN TOOL FOR FLUID POWER COMPONENTS

CFD AS A DESIGN TOOL FOR FLUID POWER COMPONENTS CFD AS A DESIGN TOOL FOR FLUID POWER COMPONENTS M. BORGHI - M. MILANI Diartimento di Scienze dell Ingegneria Università degli Studi di Modena Via Cami, 213/b 41100 Modena E-mail: borghi@omero.dsi.unimo.it

More information

A Model for Randomly Correlated Deposition

A Model for Randomly Correlated Deposition A Model for Randomly Correlated Deosition B. Karadjov and A. Proykova Faculty of Physics, University of Sofia, 5 J. Bourchier Blvd. Sofia-116, Bulgaria ana@hys.uni-sofia.bg Abstract: A simle, discrete,

More information

Chapter 4 Practice Problems

Chapter 4 Practice Problems Chater 4 ractice roblems (4.) (a) the number of microstates is N (b) 3 articles total 3! {, } 3 number microstates of secific arrangement (macrostate)!*! robability = (# microstates of secific arrangement)/(total

More information

Aalborg Universitet. Nonlinear superheat and capacity control of a refrigeration plant Rasmussen, Henrik; Larsen, Lars F. S.

Aalborg Universitet. Nonlinear superheat and capacity control of a refrigeration plant Rasmussen, Henrik; Larsen, Lars F. S. Aalborg Universitet Nonlinear suerheat and caacity control of a refrigeration lant Rasmussen, Henrik; Larsen, Lars F. S. Published in: 17th Mediterranean Conference on Control and Automation DOI (link

More information

Chemistry 420/523 Chemical Thermodynamics (Spring ) Examination 1

Chemistry 420/523 Chemical Thermodynamics (Spring ) Examination 1 Chemistry 420/523 Chemical hermodynamics (Sring 2001-02) Examination 1 1 Boyle temerature is defined as the temerature at which the comression factor Z m /(R ) of a gas is exactly equal to 1 For a gas

More information

Ideal Gas Law. September 2, 2014

Ideal Gas Law. September 2, 2014 Ideal Gas Law Setember 2, 2014 Thermodynamics deals with internal transformations of the energy of a system and exchanges of energy between that system and its environment. A thermodynamic system refers

More information

Simulation of the PIR detector active function

Simulation of the PIR detector active function 04036 (016) DOI: 10.1051/ matecconf/0167604036 CSCC 016 Simulation of the PIR detector active function Rudolf Drga 1,a, Dagmar Janacova and Hana Charvatova 3 1 Tomas Bata University in Zlín, Faculty of

More information

Compressible Flow Introduction. Afshin J. Ghajar

Compressible Flow Introduction. Afshin J. Ghajar 36 Comressible Flow Afshin J. Ghajar Oklahoma State University 36. Introduction...36-36. he Mach Number and Flow Regimes...36-36.3 Ideal Gas Relations...36-36.4 Isentroic Flow Relations...36-4 36.5 Stagnation

More information

Flexible Pipes in Trenches with Stiff Clay Walls

Flexible Pipes in Trenches with Stiff Clay Walls Flexible Pies in Trenches with Stiff Clay Walls D. A. Cameron University of South Australia, South Australia, Australia J. P. Carter University of Sydney, New South Wales, Australia Keywords: flexible

More information

High speed wind tunnels 2.0 Definition of high speed. 2.1 Types of high speed wind tunnels

High speed wind tunnels 2.0 Definition of high speed. 2.1 Types of high speed wind tunnels Module Lectures 6 to 1 High Seed Wind Tunnels Keywords: Blow down wind tunnels, Indraft wind tunnels, suersonic wind tunnels, c-d nozzles, second throat diffuser, shocks, condensation in wind tunnels,

More information

State and equal-intrinsic energy curved surfaces of ideal gas

State and equal-intrinsic energy curved surfaces of ideal gas Interdiscilinary Journal of Chemistry esearch Article ISSN: 398-7537 State and equal-intrinsic energy curved surfaces of ideal gas Xiaowu Yao 1 and Haoyun An* 1 1 Zhengzhou Granlen Pharmaech Ltd 13 Eastern

More information

Application of Automated Ball Indentation for Property Measurement of Degraded Zr2.5Nb

Application of Automated Ball Indentation for Property Measurement of Degraded Zr2.5Nb Journal of Minerals & Materials Characterization & Engineering, Vol. 10, No.7,.661-669, 011 jmmce.org Printed in the USA. All rights reserved Alication of Automated Ball Indentation for Proerty Measurement

More information

NODIA AND COMPANY. GATE SOLVED PAPER Mechanical Engineering Thermodynamics. Copyright By NODIA & COMPANY

NODIA AND COMPANY. GATE SOLVED PAPER Mechanical Engineering Thermodynamics. Copyright By NODIA & COMPANY No art of this ublication may be reroduced or distributed in any form or any means, electronic, mechanical, hotocoying, or otherwise without the rior ermission of the author. GAE SOLVED PAPER Mechanical

More information

PHYSICAL REVIEW LETTERS

PHYSICAL REVIEW LETTERS PHYSICAL REVIEW LETTERS VOLUME 81 20 JULY 1998 NUMBER 3 Searated-Path Ramsey Atom Interferometer P. D. Featonby, G. S. Summy, C. L. Webb, R. M. Godun, M. K. Oberthaler, A. C. Wilson, C. J. Foot, and K.

More information

PERFORMANCE BASED DESIGN SYSTEM FOR CONCRETE MIXTURE WITH MULTI-OPTIMIZING GENETIC ALGORITHM

PERFORMANCE BASED DESIGN SYSTEM FOR CONCRETE MIXTURE WITH MULTI-OPTIMIZING GENETIC ALGORITHM PERFORMANCE BASED DESIGN SYSTEM FOR CONCRETE MIXTURE WITH MULTI-OPTIMIZING GENETIC ALGORITHM Takafumi Noguchi 1, Iei Maruyama 1 and Manabu Kanematsu 1 1 Deartment of Architecture, University of Tokyo,

More information

The thermal wind 1. v g

The thermal wind 1. v g The thermal win The thermal win Introuction The geostrohic win is etermine by the graient of the isobars (on a horizontal surface) or isohyses (on a ressure surface). On a ressure surface the graient of

More information

Statics and dynamics: some elementary concepts

Statics and dynamics: some elementary concepts 1 Statics and dynamics: some elementary concets Dynamics is the study of the movement through time of variables such as heartbeat, temerature, secies oulation, voltage, roduction, emloyment, rices and

More information

NOTICE: This is the author's version of a work that was accepted for publication in Chemical Engineering Research and Design. Changes resulting from

NOTICE: This is the author's version of a work that was accepted for publication in Chemical Engineering Research and Design. Changes resulting from NOTICE: This is the author's version of a work that was acceted for ublication in Chemical Engineering Research and Design. Changes resulting from the ublishing rocess, such as eer review, editing, corrections,

More information

Study of the circulation theory of the cooling system in vertical evaporative cooling generator

Study of the circulation theory of the cooling system in vertical evaporative cooling generator 358 Science in China: Series E Technological Sciences 006 Vol.49 No.3 358 364 DOI: 10.1007/s11431-006-0358-1 Study of the circulation theory of the cooling system in vertical evaorative cooling generator

More information

Inflation Playing by John Lagrangian

Inflation Playing by John Lagrangian Journal of Modern Physics, 013,, 160-16 htt://dx.doi.org/10.36/jm.013.8a015 Published Online August 013 (htt://www.scir.org/journal/jm) Inflation Playing by John Lagrangian Antonin Kanfon, Gaston Edah,

More information

International Journal of Mathematics Trends and Technology- Volume3 Issue4-2012

International Journal of Mathematics Trends and Technology- Volume3 Issue4-2012 Effect of Hall current on Unsteady Flow of a Dusty Conducting Fluid through orous medium between Parallel Porous Plates with Temerature Deendent Viscosity and Thermal Radiation Harshbardhan Singh and Dr.

More information