1.4 Linear Functions of Several Variables

Size: px
Start display at page:

Download "1.4 Linear Functions of Several Variables"

Transcription

1 .4 Linear Functions of Several Variables Question : What is a linear function of several independent variables? Question : What do the coefficients of the variables tell us? Question : How do you find cost, revenue and profit functions with several variables? In sections. through., we considered functions of one independent variable. The cost, revenue, and profit, were each a function of some quantity Q. If we knew the quantity Q produced and sold, we could use these functions to compute the corresponding cost, revenue and profit at those production levels. As long as we deal solely with one product and the cost, revenue, and profit involved with that product, a function of one variable is adequate. But the total cost, revenue, and profit for a business may come from many products. Each of these products may have its own costs and prices. Using this information we can formulate cost, revenue and profit functions of several variables. Each of these variables represents a quantity of a different product produced and sold by the business. In this section we ll learn how to extend what we have learned about a function of a single independent variable to functions of several independent variables.

2 Question : What is a linear function of several independent variables? In section., we introduced a linear function of one variable, y mx b. There was nothing special about the names of the variables, x and y, or the names of the constants, m and b. Another possible form for a linear function of x and y is y a0 ax. In this format, a0is the vertical intercept and a is the slope. When several independent variables are introduced, it is prudent to use names for the variables that make sense. If one variable is named x, we can extend this to n variables using subscripts. Subscripts are numbers that appear to the right of the variable and slightly lowered. The subscript is a part of the variable s name and is useful to show generically that there are many variables. For instance, if we wanted to define a function with three independent variables that describe the quantities of three different products, we might use Q, Q, and Q. In general, let x, x,, xn be the names of n independent variables. A linear function of n independent variables x, x, xn is any equation that can be written in the form y a0 axax anxn In this form, we say that y is a linear function of x, x,, xn. The letters a0, a,, an are real numbers corresponding to constants. Function notation applies to functions of several independent variables as well as functions of one independent variable. Recall that a linear function of one variable x named f would be written as f ( x) a0 ax. The independent variable for the function is placed in parentheses after the name to distinguish the variables from the constants. For a linear function of n independent variables, the n independent variables are placed in the parentheses after the name to give

3 f x, x,, xn a0 axax anxn Example Find Function Values If f ( x, x, x) 0 x x x, find the value of f (6,,). Solution Substitute x 6, x and x into the function to yield f (6,,) 0 6

4 Question : What do the coefficients of the variables tell us? For a linear function of one independent variable, the coefficient on the variable is the slope or rate of change. We can generalize this idea to linear functions of several variables. Let s consider the function gx (, x) x x. As we saw in Example, we can substitute values for the variables to obtain a value for the function. For instance, if we want to substitute 0 for x and for x we get g(0, ) 0 4 Now compare this value to the value obtained when we increase the value for x by unit, g(, ) 6 The difference between these values is g g, 0, 6 4. Since the coefficient on x is a, increasing the value for x increases the value from g by units. The coefficient on x tells us the amount the function will change when x increases by unit. In general, this applies for any value of x. If we fix x at some value and find the difference between the function at x and at x we get,, g x g x x x x 6x 6 We can also apply this reasoning to the coefficient of x. If we fix x at some value and find the difference between the function at x and x we get 4

5 g 0, x g 0, x 0 x 0 x 0 x 0 x The coefficient on x, -, indicates the amount the function will change when x grows by unit. This leads to the following generalization. If f x, x,, xn a0 axax anxn is a linear function of n independent variables, the coefficient a i for values of i from to n indicates the amount the function will change when the variable x i is increased by one unit and all other variables are fixed. Example Interpret Coefficients The function S( A, E) 05A 4E describes the monthly sales, in thousands of dollars, at a large dairy distributor with E employees and A thousand dollars of monthly advertising costs. a. What does the coefficient of E tell you about the monthly sales? Solution The coefficient of E, 4, relates the change in sales to the variable E when it is increased by unit. An increase of unit in E means an increase of employee. This leads to an increase in sales of 4 thousand dollars or $,4,000. b. What does the coefficient of A tell you about monthly sales? Solution The coefficient of A, 05, relates the change in sales to the variable A when it increases by unit. An increase of unit in A means 5

6 an increase of thousand dollars in advertising. This leads to an increase in sales of 05 thousand dollars or $05,000. We can now interpret what coefficients a through a n mean, but what about the constant a 0? The constant a0 is similar to the vertical intercept b for a linear function of one independent variable f ( x) mx b. In that case, b is the value of the function when the variable is set equal to zero, 0 0 f m b b. For a linear function of n independent variables, the corresponding process is to set all independent variables equal to zero. If f ( x, x,, x ) a0 ax a x, we can set each variable equal to zero to obtain n n n f (0,0,,0) a a 0 a 0 a 0 a 0 n 0 The only term that remains is the term containing the constant a 0. If f ( x, x,, xn) a0 ax anxn is a linear function of n independent variables, a 0 is the value of the function when all independent variables are set equal to zero. Example Fixed Costs for an Organic Dairy The daily cost function (in dollars) for an organic dairy is given by the linear function CQ (, Q, Q) Q.Q.5Q 0,000 where Q is the number of gallons of whole milk produced, Q is the number of gallons of % milk produced, and Q is the number of gallons of % milk produced. a. Find the fixed costs for the organic dairy based on this function. Solution The fixed costs are costs incurred when nothing is produced. We can find this cost by finding C (0,0,0) or by noting that the constant 6

7 gives the function s value when all variables are zero. Either way, the fixed costs are $0,000. b. How much does each additional gallon of % milk cost to produce? Solution The coefficient of Q gives the change in the cost when Q is increased by unit. In this case, the coefficient is.5 which tells us that another gallon of % milk will cost an additional $.5. We can calculate the amount it would cost to change production in Example by any amount by adding the amount to the appropriate independent variable and utilizing the cost function. If we want to find the additional cost incurred from increasing the production of % milk by 000 gallons, calculate,, 000,, C Q Q Q C Q Q Q Q Q Q Q Q Q Q.Q.5Q 50 Q.Q.5Q 50 The extra 000 gallons cost $50. This number is independent of the initial production level. If we start with no % milk and increase production to 000 gallons or increase production of % milk from 0,000 gallons to,000 gallons, the additional cost will be $50. For linear functions like this one, the increase is always independent of the production level. Another way of thinking about this is that the variable costs for % milk are $.5 per gallon. This is precisely the coefficient on the variable representing % milk, Q. 7

8 Question : How do you find cost, revenue and profit functions with several variables? In Example, we examined a cost function of several variables. This proved useful for modeling the total cost in a business that produces several different goods like milk. If the company receives revenue from several different products, we can utilize the fact that the revenue from each individual product by multiplying the price per unit times the number of units sold to get the revenue for that product. By summing the revenue for each of the products, we can form a model for the total revenue. In the next example, we ll continue working with the organic dairy from Example to model the total revenue from selling three types of milk. Example 4 Organic Dairy Revenue The organic dairy in Example charges $.49 per gallon for whole milk, $4.9 per gallon for % milk, and $4.59 per gallon for % milk. If the variables Q, Q, and Q represent the number of gallons of whole, % and % milk produced and sold respectively, find a linear function R( Q, Q, Q ) to model the total revenue. Solution We ll find a linear function of the variables Q, Q, and Q. The coefficients in this function correspond to the increase in revenue from increasing the number of gallons of each type by unit. These coefficients are simply the prices the dairy charges for one gallon of each type of milk. The linear function will have the form R( Q, Q, Q ) pq p Q p Q where p, p, and p are the price per gallon for each type of milk. Notice that there is no constant term in the sum since producing and selling no milk leads to no revenue. If we had included a positive constant, this would have been interpreted as revenue corresponding to 8

9 ,, 0,0,0 Q Q Q. With the prices in place, we get a linear model for total revenue in dollars, R Q, Q, Q.49Q 4.9Q 4.59Q It is very common for cost and revenue functions to have many variables. Each variable corresponds to a unique product or service that a business provides to consumers. The coefficients of the cost function represent the variable costs per unit for each product or service and the constant represents the fixed costs of production. The coefficients of the revenue function represent the unit price for each product or service. Example 5 Profit The cost function for the organic dairy is CQ (, Q, Q) Q.Q.5Q 0,000 and the revenue function is RQQ,, Q.49Q 4.9Q 4.59Q where Q is the number of gallons of whole milk, Q is the number of gallons of % milk, Q is the number of gallons of % milk that the dairy produces and sells. a. Find the profit function Profit( Q, Q, Q ). Solution Profit is the difference between revenue and costs, Profit( Q, Q, Q).49Q4.9Q 4.59Q Q.Q.5Q 0,000 R( Q, Q, Q) C( Q, Q, Q).49Q.09Q.9Q 0,000 9

10 b. Find the profit per unit for each type of milk. Solution The coefficients on the profit function correspond to the change in profit when the corresponding variable is increased by unit. Since the coefficient of Q is.49, the profit increases by $.49 when more gallon of whole milk is produced and sold. This is the profit per gallon for whole milk. The same reasoning for the other types of milk leads to a profit per unit for % milk of $.09 per gallon and $.9 per gallon for % milk. In real applications, the units are often modified to make the numbers more manageable. In Example, we examined the sales of a business in thousands of dollars given by S A, E 05A 4E where A is the amount spent on advertising in thousands of dollars and E is the number of employees. If we were to find a value for this function like S(0,5) We would interpret this as indicating that advertising expenses of $0,000 and using 5 employees would lead to sales of $8,0,000. The variable A is scaled in thousands of dollars. Scaling a variable means that the actual amount is divided by an amount to obtain the value for the variable. In this case, dividing $0,000 by $000 yields A 0. The dependent variable, sales, is also scaled in thousands of dollars. If we are given a value for this variable like 80, we need to multiply by $000 to get the actual amount. The value 80 thousand dollars is the same as 80 $000 or $8,0,000. When independent variables are scaled, the cost and revenue functions change. In Example, we found the revenue function for an organic dairy that charges $.49 per gallon for whole milk, $4.9 per gallon for % milk, and $4.59 per gallon for % milk. The function describing the revenue was R Q, Q, Q.49Q 4.9Q 4.59Q 0

11 where Q is the number of gallons of whole milk, Q is the number of gallons of % milk, Q is the number of gallons of % milk that the dairy produces and sells. Since an organic dairy might produce and sell thousands of gallons of each week, we could choose to scale the independent variables in thousands of gallons. Instead of inputting values like 000 into a variable, we would input instead. This introduces subtle changes into the revenue function since changes of unit in the scaled variable results in a change of 000 in gallons of milk. Let s look at how this will change the revenue function. R( Q, Q, Q ) pq p Q p Q represent the revenue for the organic dairy where Let Q, Q and Q are the amounts of whole, %, and % milk in thousands of gallons produced and sold respectively. As we found in Example, the coefficients p, p, and p are the unit prices of each type of milk. However, when the variables are scaled the meaning of one unit changes. Now the unit price corresponds to the price of thousand gallons of milk. A price of $.49 per gallon is equivalent to $490 per thousand gallons of milk. If we change each unit price to account for the scaling, we get The value R Q, Q, Q 490Q 490Q 4590Q R 0,, represents the revenue from producing and selling 000 gallons of % milk. If we were to calculate the same revenue from the function in Example, we would get R 0,000, The key part of each calculation is middle term, dollars dollars 490 thousand gallons thousand gallons versus 4.9 gallon 000 gallon

12 In each case, the units in red reduce to leading to a function value of 880 dollars. By examining the units carefully in each term, we can deduce the units on the revenue. The units on each term must be the same for the terms to add together properly. Another possibility is to scale the variables in thousands of gallons but use the unit prices in dollars per gallon. In this case the middle term would be 4.9 thousand gallon dollars gallon In this case, the numbers multiply to 8.8 and the units are thousands of dollars. To define the function with the revenue in thousands of dollars we would write the function as R Q, Q, Q.49Q 4.9Q 4.59Q with each of the variables scaled in thousands of gallons. Now the revenue from 000 gallons of % milk is calculated as R 0,, and the revenue is 8.8 thousand dollars or $880. Each of these models may be used to calculate the revenue for the organic dairy. However, the units you choose for the independent and dependent variables in the revenue and cost functions should match. If not, you might find yourself subtracting cost in dollars from revenue in thousands of dollars. This would lead to a value for profit that makes no sense.

3. Find the slope of the tangent line to the curve given by 3x y e x+y = 1 + ln x at (1, 1).

3. Find the slope of the tangent line to the curve given by 3x y e x+y = 1 + ln x at (1, 1). 1. Find the derivative of each of the following: (a) f(x) = 3 2x 1 (b) f(x) = log 4 (x 2 x) 2. Find the slope of the tangent line to f(x) = ln 2 ln x at x = e. 3. Find the slope of the tangent line to

More information

Chapter 1 Linear Equations and Graphs

Chapter 1 Linear Equations and Graphs Chapter 1 Linear Equations and Graphs Section R Linear Equations and Inequalities Important Terms, Symbols, Concepts 1.1. Linear Equations and Inequalities A first degree, or linear, equation in one variable

More information

Sect 2.4 Linear Functions

Sect 2.4 Linear Functions 36 Sect 2.4 Linear Functions Objective 1: Graphing Linear Functions Definition A linear function is a function in the form y = f(x) = mx + b where m and b are real numbers. If m 0, then the domain and

More information

SECTION 5.1: Polynomials

SECTION 5.1: Polynomials 1 SECTION 5.1: Polynomials Functions Definitions: Function, Independent Variable, Dependent Variable, Domain, and Range A function is a rule that assigns to each input value x exactly output value y =

More information

Review for Final Review

Review for Final Review Topics Review for Final Review 1. Functions and equations and graphing: linear, absolute value, quadratic, polynomials, rational (first 1/3 of semester) 2. Simple Interest, compounded interest, and continuously

More information

Section 4.2 Polynomial Functions of Higher Degree

Section 4.2 Polynomial Functions of Higher Degree Section 4.2 Polynomial Functions of Higher Degree Polynomial Function P(x) P(x) = a degree 0 P(x) = ax +b (degree 1) Graph Horizontal line through (0,a) line with y intercept (0,b) and slope a P(x) = ax

More information

MAC 2233, Survey of Calculus, Exam 3 Review This exam covers lectures 21 29,

MAC 2233, Survey of Calculus, Exam 3 Review This exam covers lectures 21 29, MAC 2233, Survey of Calculus, Exam 3 Review This exam covers lectures 21 29, This review includes typical exam problems. It is not designed to be comprehensive, but to be representative of topics covered

More information

Thou Shalt Not Distribute Powers or Radicals. Copyright c 2010 Jason Underdown Some rights reserved. Thou Shalt Not Split a Denominator

Thou Shalt Not Distribute Powers or Radicals. Copyright c 2010 Jason Underdown Some rights reserved. Thou Shalt Not Split a Denominator Copyright & License Review Copyright c 2010 Jason Underdown Some rights reserved. Thou Shalt Not Distribute Powers or Radicals Review Review Thou Shalt Not Split a Denominator Thou Shalt Not Cancel Terms

More information

MFM2P Foundations of Mathematics Unit 3 Lesson 11

MFM2P Foundations of Mathematics Unit 3 Lesson 11 The Line Lesson MFMP Foundations of Mathematics Unit Lesson Lesson Eleven Concepts Introduction to the line Using standard form of an equation Using y-intercept form of an equation x and y intercept Recognizing

More information

Study Guide - Part 2

Study Guide - Part 2 Math 116 Spring 2015 Study Guide - Part 2 1. Which of the following describes the derivative function f (x) of a quadratic function f(x)? (A) Cubic (B) Quadratic (C) Linear (D) Constant 2. Find the derivative

More information

5.1 - Polynomials. Ex: Let k(x) = x 2 +2x+1. Find (and completely simplify) the following: (a) k(1) (b) k( 2) (c) k(a)

5.1 - Polynomials. Ex: Let k(x) = x 2 +2x+1. Find (and completely simplify) the following: (a) k(1) (b) k( 2) (c) k(a) c Kathryn Bollinger, March 15, 2017 1 5.1 - Polynomials Def: A function is a rule (process) that assigns to each element in the domain (the set of independent variables, x) ONE AND ONLY ONE element in

More information

Homework 1. 3x 12, 61.P (x) = 3t 21 Section 1.2

Homework 1. 3x 12, 61.P (x) = 3t 21 Section 1.2 Section 1.1 Homework 1 (34, 36) Determine whether the equation defines y as a function of x. 34. x + h 2 = 1, 36. y = 3x 1 x + 2. (40, 44) Find the following for each function: (a) f(0) (b) f(1) (c) f(

More information

CHAPTER FIVE. g(t) = t, h(n) = n, v(z) = z, w(c) = c, u(k) = ( 0.003)k,

CHAPTER FIVE. g(t) = t, h(n) = n, v(z) = z, w(c) = c, u(k) = ( 0.003)k, CHAPTER FIVE 5.1 SOLUTIONS 121 Solutions for Section 5.1 EXERCISES 1. Since the distance is decreasing, the rate of change is negative. The initial value of D is 1000 and it decreases by 50 each day, so

More information

MATH150-E01 Test #2 Summer 2016 Show all work. Name 1. Find an equation in slope-intercept form for the line through (4, 2) and (1, 3).

MATH150-E01 Test #2 Summer 2016 Show all work. Name 1. Find an equation in slope-intercept form for the line through (4, 2) and (1, 3). 1. Find an equation in slope-intercept form for the line through (4, 2) and (1, 3). 2. Let the supply and demand functions for sugar be given by p = S(q) = 1.4q 0.6 and p = D(q) = 2q + 3.2 where p is the

More information

Name Period Date Ch. 5 Systems of Linear Equations Review Guide

Name Period Date Ch. 5 Systems of Linear Equations Review Guide Reteaching 5-1 Solving Systems by Graphing ** A system of equations is a set of two or more equations that have the same variables. ** The solution of a system is an ordered pair that satisfies all equations

More information

Graphing Systems of Linear Equations

Graphing Systems of Linear Equations Graphing Systems of Linear Equations Groups of equations, called systems, serve as a model for a wide variety of applications in science and business. In these notes, we will be concerned only with groups

More information

Average Rate of Change & Slope of a Line MATH 092

Average Rate of Change & Slope of a Line MATH 092 Average Rate of Change Average Rate of Change & Slope of a Line MATH 092 Functions are used to model the way one quantity changes with respect to another quantity. For instance, how does the distance traveled

More information

Practice Problems #1 Practice Problems #2

Practice Problems #1 Practice Problems #2 Practice Problems #1 Interpret the following equations where C is the cost, and Q is quantity produced by the firm a) C(Q) = 10 + Q Costs depend on quantity. If the firm produces nothing, costs are 10,

More information

Linear Systems and Matrices. Copyright Cengage Learning. All rights reserved.

Linear Systems and Matrices. Copyright Cengage Learning. All rights reserved. 7 Linear Systems and Matrices Copyright Cengage Learning. All rights reserved. 7.1 Solving Systems of Equations Copyright Cengage Learning. All rights reserved. What You Should Learn Use the methods of

More information

Modeling Linear Relationships In the Patterns of Change unit, you studied a variety of

Modeling Linear Relationships In the Patterns of Change unit, you studied a variety of LESSON 1 Modeling Linear Relationships In the Patterns of Change unit, you studied a variety of relationships between quantitative variables. Among the most common were linear functions those with straight-line

More information

Given the table of values, determine the equation

Given the table of values, determine the equation 3.1 Properties of Quadratic Functions Recall: Standard Form f(x) = ax 2 + bx + c Factored Form f(x) = a(x r)(x s) Vertex Form f(x) = a(x h) 2 + k Given the table of values, determine the equation x y 1

More information

Equations With Two or More Variables

Equations With Two or More Variables ! Equations With Two or More Variables You have done a lot of work with relationships involving two related variables. However, many real-world relationships involve three or more variables. For example,

More information

Chapter 6: Sections 6.1, 6.2.1, Chapter 8: Section 8.1, 8.2 and 8.5. In Business world the study of change important

Chapter 6: Sections 6.1, 6.2.1, Chapter 8: Section 8.1, 8.2 and 8.5. In Business world the study of change important Study Unit 5 : Calculus Chapter 6: Sections 6., 6.., 6.3. Chapter 8: Section 8., 8. and 8.5 In Business world the study of change important Example: change in the sales of a company; change in the value

More information

7.5 Solving Quadratic Equations

7.5 Solving Quadratic Equations 7.5 Solving Quadratic Equations by Factoring GOAL Solve quadratic equations by factoring. LEARN ABOUT the Math The entry to the main exhibit hall in an art gallery is a parabolic arch. The arch can be

More information

Finance Solutions to Problem Set #2: Optimization

Finance Solutions to Problem Set #2: Optimization Finance 300 Solutions to Problem Set #: Optimization ) According to a study by Niccie McKay, PhD., the average cost per patient day for nursing homes in the US is C A. 6X.0037X We want to minimize the

More information

ALGEBRA 1 END OF COURSE PRACTICE TEST

ALGEBRA 1 END OF COURSE PRACTICE TEST 1) (A1.FLQE.5) A satellite television company charges a one-time installation fee and a monthly service charge. The total cost is modeled by the function y = 40 + 90x. Which statement represents the meaning

More information

Exponential Functions

Exponential Functions CONDENSED LESSON 5.1 Exponential Functions In this lesson, you Write a recursive formula to model radioactive decay Find an exponential function that passes through the points of a geometric sequence Learn

More information

1.1 Linear Equations and Inequalities

1.1 Linear Equations and Inequalities 1.1 Linear Equations and Inequalities Linear Equation in 1 Variable Any equation that can be written in the following form: ax + b = 0 a,b R, a 0 and x is a variable Any equation has a solution, sometimes

More information

Integrated Math 10 Quadratic Functions Unit Test January 2013

Integrated Math 10 Quadratic Functions Unit Test January 2013 1. Answer the following question, which deal with general properties of quadratics. a. Solve the quadratic equation 0 x 9 (K) b. Fully factor the quadratic expression 3x 15x 18 (K) c. Determine the equation

More information

Math 101 Final Exam Review Solutions. Eric Schmutz

Math 101 Final Exam Review Solutions. Eric Schmutz Math 101 Final Exam Review Solutions Eric Schmutz Problem 1. Write an equation of the line passing through (,7) and (-1,1). Let (x 1, y 1 ) = (, 7) and (x, y ) = ( 1, 1). The slope is m = y y 1 x x 1 =

More information

MS Algebra A-F-IF-7 Ch. 6.3b Solving Real World Problems with the Point-Slope Form

MS Algebra A-F-IF-7 Ch. 6.3b Solving Real World Problems with the Point-Slope Form MS Algebra A-F-IF-7 Ch. 6.3b Solving Real World Problems with the Point-Slope Form ALGEBRA SUPPORT (Homework) Solving Problems by Writing Equations in Point-Slope Form Title: 6.3b Apply Point-Slope Form

More information

When they compared their results, they had an interesting discussion:

When they compared their results, they had an interesting discussion: 27 2.5 Making My Point A Solidify Understanding Task Zac and Sione were working on predicting the number of quilt blocks in this pattern: CC BY Camille King https://flic.kr/p/hrfp When they compared their

More information

Ex 1: Identify the open intervals for which each function is increasing or decreasing.

Ex 1: Identify the open intervals for which each function is increasing or decreasing. MATH 2040 Notes: Unit 4 Page 1 5.1/5.2 Increasing and Decreasing Functions Part a Relative Extrema Ex 1: Identify the open intervals for which each In algebra we defined increasing and decreasing behavior

More information

Math 116: Business Calculus Chapter 4 - Calculating Derivatives

Math 116: Business Calculus Chapter 4 - Calculating Derivatives Math 116: Business Calculus Chapter 4 - Calculating Derivatives Instructor: Colin Clark Spring 2017 Exam 2 - Thursday March 9. 4.1 Techniques for Finding Derivatives. 4.2 Derivatives of Products and Quotients.

More information

('')''* = 1- $302. It is common to include parentheses around negative numbers when they appear after an operation symbol.

('')''* = 1- $302. It is common to include parentheses around negative numbers when they appear after an operation symbol. 2.2 ADDING INTEGERS Adding Integers with the Same Sign We often associate the + and - symbols with positive and negative situations. We can find the sum of integers by considering the outcome of these

More information

12.1 The Extrema of a Function

12.1 The Extrema of a Function . The Etrema of a Function Question : What is the difference between a relative etremum and an absolute etremum? Question : What is a critical point of a function? Question : How do you find the relative

More information

MATH 2070 Test 3 (Sections , , & )

MATH 2070 Test 3 (Sections , , & ) Multiple Choice: Use a #2 pencil and completely fill in each bubble on your scantron to indicate the answer to each question. Each question has one correct answer. If you indicate more than one answer,

More information

Math Want to have fun with chapter 4? Find the derivative. 1) y = 5x2e3x. 2) y = 2xex - 2ex. 3) y = (x2-2x + 3) ex. 9ex 4) y = 2ex + 1

Math Want to have fun with chapter 4? Find the derivative. 1) y = 5x2e3x. 2) y = 2xex - 2ex. 3) y = (x2-2x + 3) ex. 9ex 4) y = 2ex + 1 Math 160 - Want to have fun with chapter 4? Name Find the derivative. 1) y = 52e3 2) y = 2e - 2e 3) y = (2-2 + 3) e 9e 4) y = 2e + 1 5) y = e - + 1 e e 6) y = 32 + 7 7) y = e3-1 5 Use calculus to find

More information

The Remainder and Factor Theorems

The Remainder and Factor Theorems Page 1 of 7 6.5 The Remainder and Factor Theorems What you should learn GOAL 1 Divide polynomials and relate the result to the remainder theorem and the factor theorem. GOAL 2 Use polynomial division in

More information

Unit #4 : Interpreting Derivatives, Local Linearity, Marginal Rates

Unit #4 : Interpreting Derivatives, Local Linearity, Marginal Rates Unit #4 : Interpreting Derivatives, Local Linearity, Marginal Rates Goals: Develop natural language interpretations of the derivative Create and use linearization/tangent line formulae Describe marginal

More information

Study Unit 2 : Linear functions Chapter 2 : Sections and 2.6

Study Unit 2 : Linear functions Chapter 2 : Sections and 2.6 1 Study Unit 2 : Linear functions Chapter 2 : Sections 2.1 2.4 and 2.6 1. Function Humans = relationships Function = mathematical form of a relationship Temperature and number of ice cream sold Independent

More information

M112 Short Course In Calculus V. J. Motto Spring 2013 Applications of Derivatives Worksheet

M112 Short Course In Calculus V. J. Motto Spring 2013 Applications of Derivatives Worksheet M11 Short Course In Calculus V. J. Motto Spring 01 Applications of Derivatives Worksheet 1. A tomato is thrown from the top of a tomato cart its distance from the ground in feet is modeled by the equation

More information

MATH 1113 Exam 1 Review

MATH 1113 Exam 1 Review MATH 1113 Exam 1 Review Topics Covered Section 1.1: Rectangular Coordinate System Section 1.3: Functions and Relations Section 1.4: Linear Equations in Two Variables and Linear Functions Section 1.5: Applications

More information

Algebra II. Note workbook. Chapter 2. Name

Algebra II. Note workbook. Chapter 2. Name Algebra II Note workbook Chapter 2 Name Algebra II: 2-1 Relations and Functions The table shows the average lifetime and maximum lifetime for some animals. This data can be written as. The ordered pairs

More information

MATH 2070 Test 3 (Sections , , & )

MATH 2070 Test 3 (Sections , , & ) Multiple Choice: Use a #2 pencil and completely fill in each bubble on your scantron to indicate the answer to each question. Each question has one correct answer. If you indicate more than one answer,

More information

Unit 1- Function Families Quadratic Functions

Unit 1- Function Families Quadratic Functions Unit 1- Function Families Quadratic Functions The graph of a quadratic function is called a. Use a table of values to graph y = x 2. x f(x) = x 2 y (x,y) -2-1 0 1 2 Verify your graph is correct by graphing

More information

1.2 Graphs and Lines. Cartesian Coordinate System

1.2 Graphs and Lines. Cartesian Coordinate System 1.2 Graphs and Lines Cartesian Coordinate System Note that there is a one-to-one correspondence between the points in a plane and the elements in the set of all ordered pairs (a, b) of real numbers. Graphs

More information

3-3 Using Tables and Equations of Lines

3-3 Using Tables and Equations of Lines 3-3 Using Tables and Equations of Lines Objectives Students will understand that linear models are appropriate when the situation has a constant increase/decrease. slope is the rate of change. the rate

More information

Lesson 3 - Linear Functions

Lesson 3 - Linear Functions Lesson 3 - Linear Functions Introduction As an overview for the course, in Lesson's 1 and 2 we discussed the importance of functions to represent relationships and the associated notation of these functions

More information

Units and Dimensional Analysis

Units and Dimensional Analysis LESSON Units and Dimensional Analysis UNDERSTAND When solving a problem, it is important to correctly identify the units being considered or measured. This may require converting a quantity given in one

More information

Example 2: The demand function for a popular make of 12-speed bicycle is given by

Example 2: The demand function for a popular make of 12-speed bicycle is given by Sometimes, the unit price will not be given. Instead, product will be sold at market price, and you ll be given both supply and demand equations. In this case, we can find the equilibrium point (Section

More information

Relations and Functions

Relations and Functions Lesson 5.1 Objectives Identify the domain and range of a relation. Write a rule for a sequence of numbers. Determine if a relation is a function. Relations and Functions You can estimate the distance of

More information

Systems of Equations. Red Company. Blue Company. cost. 30 minutes. Copyright 2003 Hanlonmath 1

Systems of Equations. Red Company. Blue Company. cost. 30 minutes. Copyright 2003 Hanlonmath 1 Chapter 6 Systems of Equations Sec. 1 Systems of Equations How many times have you watched a commercial on television touting a product or services as not only the best, but the cheapest? Let s say you

More information

Question 1. (8 points) The following diagram shows the graphs of eight equations.

Question 1. (8 points) The following diagram shows the graphs of eight equations. MAC 2233/-6 Business Calculus, Spring 2 Final Eam Name: Date: 5/3/2 Time: :am-2:nn Section: Show ALL steps. One hundred points equal % Question. (8 points) The following diagram shows the graphs of eight

More information

Marginal Propensity to Consume/Save

Marginal Propensity to Consume/Save Marginal Propensity to Consume/Save The marginal propensity to consume is the increase (or decrease) in consumption that an economy experiences when income increases (or decreases). The marginal propensity

More information

CHAPTER 6 Notes: Functions A mathematical model is an equation or formula in two variables that represents some real-world situation.

CHAPTER 6 Notes: Functions A mathematical model is an equation or formula in two variables that represents some real-world situation. CHAPTER 6 Notes: Functions A mathematical model is an equation or formula in two variables that represents some real-world situation. The key building blocks of mathematical models are functions and their

More information

Describe in words how the graph of each function below would differ from the graph of f (x).

Describe in words how the graph of each function below would differ from the graph of f (x). MATH 111 Exam # Review (4.1-4.4, 6.1, 6.) Describe in words how the graph of each function below would differ from the graph of f (. 1. f ( x 7). f (. f ( 5 4. f ( 5. 7 f ( 6. f ( x ) 9 7. f ( 8. f ( 9.

More information

Econ Slides from Lecture 10

Econ Slides from Lecture 10 Econ 205 Sobel Econ 205 - Slides from Lecture 10 Joel Sobel September 2, 2010 Example Find the tangent plane to {x x 1 x 2 x 2 3 = 6} R3 at x = (2, 5, 2). If you let f (x) = x 1 x 2 x3 2, then this is

More information

Unit 6: Say It with Symbols

Unit 6: Say It with Symbols Unit 6: Say It with Symbols I can solve linear and quadratic equations using symbolic reasoning. A problem often requires finding solutions to equations. In previous Units, you developed strategies for

More information

1 Functions And Change

1 Functions And Change 1 Functions And Change 1.1 What Is a Function? * Function A function is a rule that takes certain numbers as inputs and assigns to each a definite output number. The set of all input numbers is called

More information

Page Points Score Total: 100

Page Points Score Total: 100 Math 1130 Spring 2019 Sample Exam 1c 1/31/19 Name (Print): Username.#: Lecturer: Rec. Instructor: Rec. Time: This exam contains 8 pages (including this cover page) and 7 problems. Check to see if any pages

More information

Lesson 9.1 Skills Practice

Lesson 9.1 Skills Practice Lesson 9.1 Skills Practice Name Date Call to Order Inequalities Vocabulary Write the term that best completes each statement. 1. A(n) in one variable is the set of all points on a number line that makes

More information

Objectives for Linear Activity. Calculate average rate of change/slope Interpret intercepts and slope of linear function Linear regression

Objectives for Linear Activity. Calculate average rate of change/slope Interpret intercepts and slope of linear function Linear regression Objectives for Linear Activity Calculate average rate of change/slope Interpret intercepts and slope of linear function Linear regression 1 Average Rate of Change & Slope On a graph, average rate of change

More information

STATS DOESN T SUCK! ~ CHAPTER 16

STATS DOESN T SUCK! ~ CHAPTER 16 SIMPLE LINEAR REGRESSION: STATS DOESN T SUCK! ~ CHAPTER 6 The HR manager at ACME food services wants to examine the relationship between a workers income and their years of experience on the job. He randomly

More information

QUADRATIC FUNCTIONS. ( x 7)(5x 6) = 2. Exercises: 1 3x 5 Sum: 8. We ll expand it by using the distributive property; 9. Let s use the FOIL method;

QUADRATIC FUNCTIONS. ( x 7)(5x 6) = 2. Exercises: 1 3x 5 Sum: 8. We ll expand it by using the distributive property; 9. Let s use the FOIL method; QUADRATIC FUNCTIONS A. Eercises: 1.. 3. + = + = + + = +. ( 1)(3 5) (3 5) 1(3 5) 6 10 3 5 6 13 5 = = + = +. ( 7)(5 6) (5 6) 7(5 6) 5 6 35 4 5 41 4 3 5 6 10 1 3 5 Sum: 6 + 10+ 3 5 ( + 1)(3 5) = 6 + 13 5

More information

Math 142 Week-in-Review #11 (Final Exam Review: All previous sections as well as sections 6.6 and 6.7)

Math 142 Week-in-Review #11 (Final Exam Review: All previous sections as well as sections 6.6 and 6.7) Math 142 Week-in-Review #11 (Final Exam Review: All previous sections as well as sections 6.6 and 6.7) Note: This review is intended to highlight the topics covered on the Final Exam (with emphasis on

More information

Section K MATH 211 Homework Due Friday, 8/30/96 Professor J. Beachy Average: 15.1 / 20. ), and f(a + 1).

Section K MATH 211 Homework Due Friday, 8/30/96 Professor J. Beachy Average: 15.1 / 20. ), and f(a + 1). Section K MATH 211 Homework Due Friday, 8/30/96 Professor J. Beachy Average: 15.1 / 20 # 18, page 18: If f(x) = x2 x 2 1, find f( 1 2 ), f( 1 2 ), and f(a + 1). # 22, page 18: When a solution of acetylcholine

More information

Math 135 Intermediate Algebra. Homework 3 Solutions

Math 135 Intermediate Algebra. Homework 3 Solutions Math Intermediate Algebra Homework Solutions October 6, 007.: Problems,, 7-. On the coordinate plane, plot the following coordinates.. Next to each point, write its coordinates Clock-wise from upper left:

More information

MA 181 Lecture Chapter 7 College Algebra and Calculus by Larson/Hodgkins Limits and Derivatives

MA 181 Lecture Chapter 7 College Algebra and Calculus by Larson/Hodgkins Limits and Derivatives 7.5) Rates of Change: Velocity and Marginals MA 181 Lecture Chapter 7 College Algebra and Calculus by Larson/Hodgkins Limits and Derivatives Previously we learned two primary applications of derivatives.

More information

Solving Equations by Adding and Subtracting

Solving Equations by Adding and Subtracting SECTION 2.1 Solving Equations by Adding and Subtracting 2.1 OBJECTIVES 1. Determine whether a given number is a solution for an equation 2. Use the addition property to solve equations 3. Determine whether

More information

Answers. Investigation 2. ACE Assignment Choices. Applications. c. P = 350n (125n + 30n + 700) or P = 350n 125n 30n 700 or P = 195n 700. Problem 2.

Answers. Investigation 2. ACE Assignment Choices. Applications. c. P = 350n (125n + 30n + 700) or P = 350n 125n 30n 700 or P = 195n 700. Problem 2. Answers Investigation ACE Assignment Choices Problem.1 Core, 5, 1 15 Other Applications 1, Connections 1 18, Extensions 8 Problem. Core 8, 19 0 Other Applications 9, Connections 1 ; and unassigned choices

More information

Mathematics Level D: Lesson 2 Representations of a Line

Mathematics Level D: Lesson 2 Representations of a Line Mathematics Level D: Lesson 2 Representations of a Line Targeted Student Outcomes Students graph a line specified by a linear function. Students graph a line specified by an initial value and rate of change

More information

Graphing and Optimization

Graphing and Optimization BARNMC_33886.QXD //7 :7 Page 74 Graphing and Optimization CHAPTER - First Derivative and Graphs - Second Derivative and Graphs -3 L Hôpital s Rule -4 Curve-Sketching Techniques - Absolute Maima and Minima

More information

= $ m. Telephone Company B charges $11.50 per month plus five cents per minute. Writing that mathematically, we have c B. = $

= $ m. Telephone Company B charges $11.50 per month plus five cents per minute. Writing that mathematically, we have c B. = $ Chapter 6 Systems of Equations Sec. 1 Systems of Equations How many times have you watched a commercial on television touting a product or services as not only the best, but the cheapest? Let s say you

More information

Practice Questions for Math 131 Exam # 1

Practice Questions for Math 131 Exam # 1 Practice Questions for Math 131 Exam # 1 1) A company produces a product for which the variable cost per unit is $3.50 and fixed cost 1) is $20,000 per year. Next year, the company wants the total cost

More information

The Interpretation of λ

The Interpretation of λ The Interpretation of λ Lecture 49 Section 7.5 Robb T. Koether Hampden-Sydney College Wed, Apr 26, 2017 Robb T. Koether (Hampden-Sydney College) The Interpretation of λ Wed, Apr 26, 2017 1 / 6 Objectives

More information

How can you use linear functions of two independent variables to represent problem situations?

How can you use linear functions of two independent variables to represent problem situations? Problems that occur in business situations often require expressing income as a linear function of one variable like time worked or number of sales. For example, if an employee earns $7.25 per hour, then

More information

3 Additional Applications of the Derivative

3 Additional Applications of the Derivative 3 Additional Applications of the Derivative 3.1 Increasing and Decreasing Functions; Relative Etrema 3.2 Concavit and Points of Inflection 3.4 Optimization Homework Problem Sets 3.1 (1, 3, 5-9, 11, 15,

More information

3.5 Graphs of Polynomial Functions

3.5 Graphs of Polynomial Functions . Graphs of olynomial Functions Symmetry of olynomial Functions: This information is a review of symmetry from the unit on graphs of functions. We W will be considering two types of symmetry in this lesson;

More information

12-1. Example 1: Which relations below represent functions? State the domains and ranges. a) {(9,81), (4,16), (5,25), ( 2,4), ( 6,36)} Function?

12-1. Example 1: Which relations below represent functions? State the domains and ranges. a) {(9,81), (4,16), (5,25), ( 2,4), ( 6,36)} Function? MA 000, Lessons a and b Introduction to Functions Algebra: Sections 3.5 and 7.4 Calculus: Sections 1. and.1 Definition: A relation is any set of ordered pairs. The set of first components in the ordered

More information

CP Algebra 2. Summer Packet. Name:

CP Algebra 2. Summer Packet. Name: CP Algebra Summer Packet 018 Name: Objectives for CP Algebra Summer Packet 018 I. Number Sense and Numerical Operations (Problems: 1 to 4) Use the Order of Operations to evaluate expressions. (p. 6) Evaluate

More information

Create your own system of equations: 1. Prove (2, 5) is a solution for the following system: 2. Is (-2, 0) a solution for the following system?

Create your own system of equations: 1. Prove (2, 5) is a solution for the following system: 2. Is (-2, 0) a solution for the following system? 5.1 Explain Solving Systems of Linear Equations by Graphing - Notes Main Ideas/ Questions What You Will Learn What is a system of linear equations? Essential Question: How can you solve a system of linear

More information

Systems of Linear Equations in Two Variables. Break Even. Example. 240x x This is when total cost equals total revenue.

Systems of Linear Equations in Two Variables. Break Even. Example. 240x x This is when total cost equals total revenue. Systems of Linear Equations in Two Variables 1 Break Even This is when total cost equals total revenue C(x) = R(x) A company breaks even when the profit is zero P(x) = R(x) C(x) = 0 2 R x 565x C x 6000

More information

Polynomial Operations Polly s Pasta

Polynomial Operations Polly s Pasta Polynomial Operations ACTIVITY 4.2 SUGGESTED LEARNING STRATEGIES: Close Reading, Discussion Group, Create Representations, Think/Pair/Share, Self/Peer Revision and Pizza Supply sells wholesale goods to

More information

Section 11.3 Rates of Change:

Section 11.3 Rates of Change: Section 11.3 Rates of Change: 1. Consider the following table, which describes a driver making a 168-mile trip from Cleveland to Columbus, Ohio in 3 hours. t Time (in hours) 0 0.5 1 1.5 2 2.5 3 f(t) Distance

More information

Chapter 2 Describing Change: Rates

Chapter 2 Describing Change: Rates Chapter Describing Change: Rates Section.1 Change, Percentage Change, and Average Rates of Change 1. 3. $.30 $0.46 per day 5 days = The stock price rose an average of 46 cents per day during the 5-day

More information

Chapter 2: Linear Functions

Chapter 2: Linear Functions Chapter 2: Linear Functions Chapter one was a window that gave us a peek into the entire course. Our goal was to understand the basic structure of functions and function notation, the toolkit functions,

More information

The Graph of a Quadratic Function. Quadratic Functions & Models. The Graph of a Quadratic Function. The Graph of a Quadratic Function

The Graph of a Quadratic Function. Quadratic Functions & Models. The Graph of a Quadratic Function. The Graph of a Quadratic Function 8/1/015 The Graph of a Quadratic Function Quadratic Functions & Models Precalculus.1 The Graph of a Quadratic Function The Graph of a Quadratic Function All parabolas are symmetric with respect to a line

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. x )

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. x ) Midterm Review Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Decide whether or not the arrow diagram defines a function. 1) Domain Range 1) Determine

More information

CORE. Chapter 3: Interacting Linear Functions, Linear Systems. Algebra Assessments

CORE. Chapter 3: Interacting Linear Functions, Linear Systems. Algebra Assessments CORE Algebra Assessments Chapter 3: Interacting Linear Functions, Linear Systems 97 98 Bears Band Booster Club The Bears Band Booster Club has decided to sell calendars to the band members and their parents.

More information

BLITZER LEARNING GUIDE SAMPLE

BLITZER LEARNING GUIDE SAMPLE BLITZER LEARNING GUIDE SAMPLE Section 5.1 Systems of Linear Equations in Two Variables Procrastination makes you sick! Researchers compared college students who were procrastinators and nonprocrastinators.

More information

0 Review: Lines, Fractions, Exponents Lines Fractions Rules of exponents... 4

0 Review: Lines, Fractions, Exponents Lines Fractions Rules of exponents... 4 Contents 0 Review: Lines, Fractions, Exponents 2 0.1 Lines................................... 2 0.2 Fractions................................ 3 0.3 Rules of exponents........................... 4 1 Functions

More information

Essential Functions Practice for Students of TASC-math

Essential Functions Practice for Students of TASC-math Essential Functions Practice for Students of TASC-math This packet was created by NYSED Teacher Leader, Todd Orelli in collaboration with the CUNY Adult Literacy & HSE professional development team as

More information

Lesson 9.1 Skills Practice

Lesson 9.1 Skills Practice Lesson 9.1 Skills Practice Name Date Call to Order Inequalities Vocabulary Write the term that best completes each statement. 1. A(n) graph of an inequality in one variable is the set of all points on

More information

Chapter 1 Review Applied Calculus 31

Chapter 1 Review Applied Calculus 31 Chapter Review Applied Calculus Section : Linear Functions As you hop into a taxicab in Allentown, the meter will immediately read $.0; this is the drop charge made when the taximeter is activated. After

More information

Chapter 3: Linear Functions & Their Algebra

Chapter 3: Linear Functions & Their Algebra Chapter 3: Linear Functions & Their Algebra Lesson 1: Direct Variation Lesson 2: Average Rate of Change Lesson 3: Forms of a Line Lesson 4: Linear Modeling Lesson 5: Inverse of Linear Functions Lesson

More information

LUNG CHEUNG GOVERNMENT SECONDARY SCHOOL Mock Examination 2006 / 2007 Mathematics and Statistics

LUNG CHEUNG GOVERNMENT SECONDARY SCHOOL Mock Examination 2006 / 2007 Mathematics and Statistics S.7 LUNG CHEUNG GOVERNMENT SECONDARY SCHOOL Mock Examination 006 / 007 Mathematics and Statistics Maximum Mark: 100 Date: 1 007 Time: 8 30 11 30 1. This paper consists of Section A and Section B.. Answer

More information

2-5 Solving Equations Containing Integers. Warm Up Problem of the Day Lesson Presentation Lesson Quizzes

2-5 Solving Equations Containing Integers. Warm Up Problem of the Day Lesson Presentation Lesson Quizzes Warm Up Problem of the Day Lesson Presentation Lesson Quizzes Warm Up Use mental math to find each solution. 1. 7 + y = 15 2. x 9 = 9 3. 6x = 24 4. x 12 = 30 Problem of the Day Zelda sold her wet suit

More information

Semester One Review. FORMULAS Given on Exam! 3. What is the value of f(5), given the equation f(x) = x 2 4x + 1? Slope:

Semester One Review. FORMULAS Given on Exam! 3. What is the value of f(5), given the equation f(x) = x 2 4x + 1? Slope: FORMULAS Given on Exam!. What is equivalent to A. -(x )? B. (x + ) (x + ). Evaluate: A. + 7 B. C.. D.. = i. 6.6 ii. 6.6 iii. 6 iv. 6 E. + F. 0 + G. 9. ( ) H. ( + ) + ( + ) I. ( ) + = J. 9x 0 + y (when

More information

Linear Regression 3.2

Linear Regression 3.2 3.2 Linear Regression Regression is an analytic technique for determining the relationship between a dependent variable and an independent variable. When the two variables have a linear correlation, you

More information