Maximum likelihood. Fredrik Ronquist. September 28, 2005

Size: px
Start display at page:

Download "Maximum likelihood. Fredrik Ronquist. September 28, 2005"

Transcription

1 Maxmum lkelhood Fredrk Ronqust September 28, 2005 Introducton Now that we have explored a number of evolutonary models, rangng from smple to complex, let us examne how we can use them n statstcal nference. The standard approach s to use maxmum lkelhood, whch wll be covered n ths lecture. Assume that we have some data D and a model M of the process that generated the data. The model has some parameters θ, the specfc value of whch we do not know but wsh to estmate. If the model s properly constructed, we wll be able to calculate the probablty of t generatng the observed data gven a specfc set of parameter values, P (D θ, M). Often, the condtonng on the model s suppressed n the notaton, n whch case the probablty would smply be wrtten as P (D θ). Ths probablty s often referred to as the lkelhood of the parameter values. In maxmum lkelhood nference, we smply estmate the unknowns n θ by fndng the values wth the maxmum lkelhood or, more precsely, the hghest probablty of generatng the observed data. 2 One-parameter models The maxmzaton process s typcally straght-forward when there s only one parameter n the model. Say, for nstance, that we are nterested n estmatng the probablty of obtanng heads when tossng a con. A reasonable model s that each toss s dentcal and ndependent and has a heads probablty of p. Hence, the probablty of tals would be p, and the probablty of a partcular outcome would follow a bnomal dstrbuton. For nstance, the probablty of the

2 Computatonal Evolutonary Bology sequence HHTTHTHHTTT would be L = P (D p) = pp( p)( p)p( p)pp( p)( p)( p) = p 5 ( p) 6 As you can see, t s suffcent to know the number of heads and tals to calculate the probablty. If we graph the lkelhood we can smply fnd ts maxmum, whch s at p = 5/ = (Fg. ); the estmate of p s often denoted ˆp. We can also calculate ˆp analytcally by takng the dervatve of L wth respect to p: dl dp = 5p4 ( p) 6 6p 5 ( p) 5 and fndng where ths dervatve s zero. That s easly done by factorng out p 4 and ( p) 5 and concentratng on the remanng expresson 5( p) 6p, whch wll gve us the only relevant root p = 5/. Fgure : Lkelhood curve for the con tossng example. Note that the lkelhood does not ntegrate to ; t s not a probablty dstrbuton. The maxmum lkelhood estmate for p s found by locatng the peak of the curve. It s often easer to maxmze the logarthm of the lkelhood than the lkelhood tself. In ths case, 2

3 we would get: ln L = 5 ln p + 6 ln( p) Computatonal Evolutonary Bology and the dervatve d(ln L) dp If we set the dervatve to zero, we would get = 5 p 6 p 5 p 6 p = 0 5( p) 6p = 0 5 p = 0 p = 5 whch, not surprsngly, s the same estmate of p. Generally n ths type of model, the maxmum lkelhood estmate turns out to be the fracton of tosses that are heads, an ntutvely appealng estmate of the probablty of obtanng heads. Mult-parameter models When the model has more than one parameter t becomes much more dffcult to maxmze lkelhood. A mult-parameter model typcally has one parameter or a small set of parameters that we are nterested n and a number of other parameters that are ntroduced n the model only to make the latter more realstc. In lkelhood nference we often refer to the former parameter(s) as structural parameter(s) and the latter as nusance parameters. Assume that we have a parameter vector θ = {θ, θ 2 }, and that we are nterested n nferrng the value of the frst parameter (θ, the structural parameter) but not the second (θ 2, the nusance parameter). We can take two dfferent approaches. One s to calculate the profle lkelhood L p (θ ) = max θ 2 L(θ, θ 2 ) whch smply fnds the lkelhood of each value of θ by maxmzng over the possble values of θ 2. The alternatve approach s to use ntegrated lkelhood, whch s the same thng as margnal lkelhood, although the latter term s more commonly used n Bayesan nference. Wth ths method,

4 Computatonal Evolutonary Bology the lkelhood for the structural parameter s obtaned by summng or ntegratng out the nusance parameter: L (θ ) = L(θ, θ 2 ) θ 2 for a dscrete nusance parameter and L (θ ) = L(θ, θ 2 ) dθ 2 θ 2 for a contnuous nusance parameter. It s easy to understand the dfference between the two approaches by referrng to a smple lkelhood landscape for two parameters (Fg. 2). The base of the landscape s determned by the two parameters n the model and the heght s the lkelhood for each combnaton of parameter values. The profle lkelhood method would obtan the lkelhood curve for the parameter of nterest by fndng the profle of the landscape n the relevant plane, that s, ts maxmum heght for each value of the structural parameter. The lkelhood curve obtaned wth the ntegrated lkelhood method would nstead measure the average heght of the landscape for each value of the structural parameter. Generally speakng, there are good reasons to mnmze the number of parameters that we are tryng to maxmze durng a maxmum lkelhood analyss. Therefore, ntegraton or summaton s often favored where t s possble. An nterestng property of profle lkelhoods s that they are scale-ndependent. That s, regardless of the parametrzaton we use for the nusance parameter(s), the maxmum of the profle lkelhood for the structural parameter wll be the same. However, ths s not the case for ntegrated lkelhoods. The result of ntegraton wll be dependent on how much weght we put on dfferent parts of the nusance parameter space. Hard-core lkelhoodsts wll only use ntegrated lkelhoods when there s one parametrzaton that s so obvous that people forget there are other possbltes, and they rarely pont out that there s an assumed pror. In prncple, however, ntegrated lkelhoods always requre the specfcaton of prors. When there s an obvous parametrzaton, we are mplctly assumng a unform pror on the chosen parameter space. 4 Consstency and effcency Generally speakng, lkelhood methods have the propertes of consstency and effcency. Consstency means that the maxmum lkelhood estmate converges to the correct value as data accumu- 4

5 Computatonal Evolutonary Bology Fgure 2: A lkelhood landscape for a model wth two parameters. We are nterested n the lkelhood curve for the parameter along the x axs. It can be determned usng ether the profle lkelhood or the ntegrated lkelhood method. lates. Effcency means that the varance of the estmate around the true parameter value s small and decreases rapdly wth ncreasng amounts of data. However, there are stuatons when lkelhood s msbehaved. A typcal stuaton s when the number of parameters that we are tryng to estmate grows wth the addton of new data; f the amount of data per parameter we are estmatng s not growng, then there wll always be some resdual varance of the estmate that wll never dsappear. Other nstances occur when the model s ncorrect. For nstance, phylogenetc nference under over-smplfed models s well known to suffer from the problem of long branch attracton. In such cases we wll tend to nfer ancestral states ncorrectly, especally across long branches, leadng to a tendency to place these ncorrectly n the tree. The phenomenon s more pronounced for parsmony methods but does affect lkelhood methods as well. 5

6 Computatonal Evolutonary Bology 5 Dervng transton probabltes To calculate the lkelhood of a phylogenetc model ncludng a tree and a substtuton model, we need frst to derve the transton probabltes for our substtuton model. We have seen before that, f we have the nstantaneous rate matrx Q, we can obtan the transton probabltes P (t) over some tme perod t by exponentatng the Q matrx: P = e Qt As we have dscussed earler, we can typcally not estmate the absolute rate of change but only the amount of change (v), whch s the product of rate and tme. Therefore, we typcally measure the branch length n phylogenetc trees n terms of the amount of change. In partcular, we want a branch length unt to correspond to one expected change per ste at statonarty. Ths requres a very specfc scalng of the Q matrx, namely that π q = For llustraton, we can scale the rate matrx for the Jukes Cantor model. The unscaled verson would be Q = or somethng smlar. If we scale t wth the factor µ we get µ µ µ µ µ µ µ µ Q = µ µ µ µ µ µ µ µ and fnally we solve for the value of the scalng factor by usng the scalng condton above. Specfcally, snce the statonary state frequency of all nucleotdes s the same (/4) n the Jukes Cantor 6

7 Computatonal Evolutonary Bology model, we get 4 π ( µ) = =0 4 µ 4 = µ = µ = If we now nsert ths n the Q matrx, we get the scaled verson Q = The prncple s the same for more complex rate matrces even though the analytcal expresson for the scaler wll be more complcated. However, t s easy enough to devse an algorthm to determne ts value numercally. To exponentate the scaled Q matrx, we would usually fnd ts egenvalues and egenvectors, decomposng t nto the product: Q = SΛS where S s a matrx whose columns are the rght egenvectors of Q and Λ s a dagonal matrx contanng the egenvalues (λ ). The exponental of Q can now be found by smply exponentatng each of the elements n Λ separately. For smple nstantaneous rate matrces, the egenvalues and egenvectors are known n closed form so that we can express the elements of the transton probablty matrx exactly. For nstance, the transton probablty matrx for the Jukes Cantor model s e 4v/ 4 4 e 4v/ 4 4 e 4v/ 4 4 e 4v/ 4 P = 4 e 4v/ e 4v/ 4 4 e 4v/ 4 4 e 4v/ 4 4 e 4v/ 4 4 e 4v/ e 4v/ 4 4 e 4v/ 4 4 e 4v/ 4 4 e 4v/ 4 4 e 4v/ e 4v/ The transton probablty matrx s known n closed form for many of the other smple substtuton models but not for the more complex ones. In the latter cases t s common to use routnes 7

8 Computatonal Evolutonary Bology for numercally determnng the egenvalues and egenvectors and then usng those n dervng the transton probabltes. However, the egenvalue decomposton methods can occasonally be numercally naccurate, n whch case Golub and van Loan (996) recommend usng the Padé approxmaton. 6 Calculatng lkelhoods on trees Calculatng lkelhoods on trees s relatvely straghtforward. We assume for now that the tree and the branch lengths are gven, as well as the values of all other parameters n our phylogenetc model. Typcally, we are nterested n calculatng the total probablty of the tree by summng over all possble ancestral state assgnments. The summaton over ancestral states s an example of the use of ntegrated lkelhood to elmnate a nusance parameter; ths partcular parameter s mportant to elmnate because f we tred to estmate the ancestral states (maxmze over the possble assgnments), we would run nto the problem wth the growng number of parameters that was mentoned above. The calculaton proceeds from the tp down to the root of the tree n a downpass that s very smlar to the Sankoff downpass, except that we replace addton wth multplcaton and maxmzaton wth summaton. The ntalzaton s also slghtly dfferent. At each node n the tree we calculate the condtonal probablty of the tree gven each of the possble state assgnments at that node. As you probably recognze, ths s an example of a dynamc programmng algorthm. We descrbe the algorthm here for a four-state DNA character, and we assume that the P matrx has been calculated already for all branches n the tree. We assgn to each node p a set G p = {g (p) A, g(p) C, g(p) G, g(p) T } contanng the condtonal probablty of the subtree rooted at p gven each of the possble state assgnments at that node. We use another smlar set H p, whch wll gve the condtonal probablty of assgnng each state to the ancestral end of the branch havng p as ts descendant. The elements of H p wll be derved from G p and the elements of P p, the transton probabltes for the branch endng n the node p. Intalzaton s performed by gong through all tps and settng g (p) = f the state has been observed at tp p and g (p) = 0 otherwse. As usual, the downpass algorthm s formulated for a node p and ts two descendant nodes q and r (Algorthm ). At the root node ρ, we obtan the total probablty of the tree by summng over all possble states, weghtng each assgnment by ts statonary state frequency. Thus L = π g (ρ) 8

9 Computatonal Evolutonary Bology Once we have the lkelhood for each ste we obtan the total lkelhood for the entre data matrx by smply multplyng over all characters: L = P (D θ) = L The entre procedure s llustrated n Fgure. Algorthm Lkelhood downpass algorthm for all do h (q) 0 for all j do h (q) end for end for h (q) for all do h (r) 0 for all j do h (r) end for end for for all do g (p) end for h (r) h (q) h (r) + p (q) j g(q) j + p (r) j g(r) j 6. Study Questons. What s the dfference between a profle lkelhood and an ntegrated lkelhood? 2. Why does ntegrated lkelhoods requre a pror, at least mplctly?. Are profle lkelhoods scale ndependent? Are ntegrated lkelhoods scale ndependent? 4. Why do we need to scale nstantaneous rate matrces? How s t done? 5. Formulate the forward algorthm of an HMM by modfyng the downpass algorthm for calculatng tree probabltes. Tp: assume that there s only one descendant of each node n the tree and set G p = H q. 9

10 Computatonal Evolutonary Bology Fgure : A worked example for the calculaton of the probablty of a tree. We start wth transton probablty matrces for each of the branches n the tree (a) and then assgn condtonal probabltes to the tps of the tree (b). For each node n the tree n a postorder traversal, we then calculate the condtonal probabltes of the dfferent ancestral state assgnments at the bottom end of each of the descendant branches. We then multply these costs to get the costs for the node of nterest (d). Fnally, at the root node, we fnd the total probablty of the tree by calculatng the weghted sum over all possble state assgnments at the root, usng the statonary state frequences as the weghts (e). 0

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement Markov Chan Monte Carlo MCMC, Gbbs Samplng, Metropols Algorthms, and Smulated Annealng 2001 Bonformatcs Course Supplement SNU Bontellgence Lab http://bsnuackr/ Outlne! Markov Chan Monte Carlo MCMC! Metropols-Hastngs

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

Hidden Markov Models & The Multivariate Gaussian (10/26/04)

Hidden Markov Models & The Multivariate Gaussian (10/26/04) CS281A/Stat241A: Statstcal Learnng Theory Hdden Markov Models & The Multvarate Gaussan (10/26/04) Lecturer: Mchael I. Jordan Scrbes: Jonathan W. Hu 1 Hdden Markov Models As a bref revew, hdden Markov models

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

= z 20 z n. (k 20) + 4 z k = 4

= z 20 z n. (k 20) + 4 z k = 4 Problem Set #7 solutons 7.2.. (a Fnd the coeffcent of z k n (z + z 5 + z 6 + z 7 + 5, k 20. We use the known seres expanson ( n+l ( z l l z n below: (z + z 5 + z 6 + z 7 + 5 (z 5 ( + z + z 2 + z + 5 5

More information

Limited Dependent Variables

Limited Dependent Variables Lmted Dependent Varables. What f the left-hand sde varable s not a contnuous thng spread from mnus nfnty to plus nfnty? That s, gven a model = f (, β, ε, where a. s bounded below at zero, such as wages

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Solutions to Problem Set 6

Solutions to Problem Set 6 Solutons to Problem Set 6 Problem 6. (Resdue theory) a) Problem 4.7.7 Boas. n ths problem we wll solve ths ntegral: x sn x x + 4x + 5 dx: To solve ths usng the resdue theorem, we study ths complex ntegral:

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

Rockefeller College University at Albany

Rockefeller College University at Albany Rockefeller College Unverst at Alban PAD 705 Handout: Maxmum Lkelhood Estmaton Orgnal b Davd A. Wse John F. Kenned School of Government, Harvard Unverst Modfcatons b R. Karl Rethemeer Up to ths pont n

More information

Chapter 6. Supplemental Text Material

Chapter 6. Supplemental Text Material Chapter 6. Supplemental Text Materal S6-. actor Effect Estmates are Least Squares Estmates We have gven heurstc or ntutve explanatons of how the estmates of the factor effects are obtaned n the textboo.

More information

Computational Biology Lecture 8: Substitution matrices Saad Mneimneh

Computational Biology Lecture 8: Substitution matrices Saad Mneimneh Computatonal Bology Lecture 8: Substtuton matrces Saad Mnemneh As we have ntroduced last tme, smple scorng schemes lke + or a match, - or a msmatch and -2 or a gap are not justable bologcally, especally

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Convergence of random processes

Convergence of random processes DS-GA 12 Lecture notes 6 Fall 216 Convergence of random processes 1 Introducton In these notes we study convergence of dscrete random processes. Ths allows to characterze phenomena such as the law of large

More information

1 GSW Iterative Techniques for y = Ax

1 GSW Iterative Techniques for y = Ax 1 for y = A I m gong to cheat here. here are a lot of teratve technques that can be used to solve the general case of a set of smultaneous equatons (wrtten n the matr form as y = A), but ths chapter sn

More information

Module 9. Lecture 6. Duality in Assignment Problems

Module 9. Lecture 6. Duality in Assignment Problems Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept

More information

Basically, if you have a dummy dependent variable you will be estimating a probability.

Basically, if you have a dummy dependent variable you will be estimating a probability. ECON 497: Lecture Notes 13 Page 1 of 1 Metropoltan State Unversty ECON 497: Research and Forecastng Lecture Notes 13 Dummy Dependent Varable Technques Studenmund Chapter 13 Bascally, f you have a dummy

More information

Global Sensitivity. Tuesday 20 th February, 2018

Global Sensitivity. Tuesday 20 th February, 2018 Global Senstvty Tuesday 2 th February, 28 ) Local Senstvty Most senstvty analyses [] are based on local estmates of senstvty, typcally by expandng the response n a Taylor seres about some specfc values

More information

8 : Learning in Fully Observed Markov Networks. 1 Why We Need to Learn Undirected Graphical Models. 2 Structural Learning for Completely Observed MRF

8 : Learning in Fully Observed Markov Networks. 1 Why We Need to Learn Undirected Graphical Models. 2 Structural Learning for Completely Observed MRF 10-708: Probablstc Graphcal Models 10-708, Sprng 2014 8 : Learnng n Fully Observed Markov Networks Lecturer: Erc P. Xng Scrbes: Meng Song, L Zhou 1 Why We Need to Learn Undrected Graphcal Models In the

More information

Density matrix. c α (t)φ α (q)

Density matrix. c α (t)φ α (q) Densty matrx Note: ths s supplementary materal. I strongly recommend that you read t for your own nterest. I beleve t wll help wth understandng the quantum ensembles, but t s not necessary to know t n

More information

Hidden Markov Models

Hidden Markov Models CM229S: Machne Learnng for Bonformatcs Lecture 12-05/05/2016 Hdden Markov Models Lecturer: Srram Sankararaman Scrbe: Akshay Dattatray Shnde Edted by: TBD 1 Introducton For a drected graph G we can wrte

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography CSc 6974 and ECSE 6966 Math. Tech. for Vson, Graphcs and Robotcs Lecture 21, Aprl 17, 2006 Estmatng A Plane Homography Overvew We contnue wth a dscusson of the major ssues, usng estmaton of plane projectve

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

STATS 306B: Unsupervised Learning Spring Lecture 10 April 30

STATS 306B: Unsupervised Learning Spring Lecture 10 April 30 STATS 306B: Unsupervsed Learnng Sprng 2014 Lecture 10 Aprl 30 Lecturer: Lester Mackey Scrbe: Joey Arthur, Rakesh Achanta 10.1 Factor Analyss 10.1.1 Recap Recall the factor analyss (FA) model for lnear

More information

Inductance Calculation for Conductors of Arbitrary Shape

Inductance Calculation for Conductors of Arbitrary Shape CRYO/02/028 Aprl 5, 2002 Inductance Calculaton for Conductors of Arbtrary Shape L. Bottura Dstrbuton: Internal Summary In ths note we descrbe a method for the numercal calculaton of nductances among conductors

More information

Note on EM-training of IBM-model 1

Note on EM-training of IBM-model 1 Note on EM-tranng of IBM-model INF58 Language Technologcal Applcatons, Fall The sldes on ths subject (nf58 6.pdf) ncludng the example seem nsuffcent to gve a good grasp of what s gong on. Hence here are

More information

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14 APPROXIMAE PRICES OF BASKE AND ASIAN OPIONS DUPON OLIVIER Prema 14 Contents Introducton 1 1. Framewor 1 1.1. Baset optons 1.. Asan optons. Computng the prce 3. Lower bound 3.1. Closed formula for the prce

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

Table III.1: Probabilities for a Two-Item Test. Item 1

Table III.1: Probabilities for a Two-Item Test. Item 1 The Dsappearng Beta Trck The essental attrbutes of a Rasch model are suffcent statstcs and separable parameters, whch allow, but don t guarantee, specfc objectvty Well, actually suffcent statstcs come

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements CS 750 Machne Learnng Lecture 5 Densty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square CS 750 Machne Learnng Announcements Homework Due on Wednesday before the class Reports: hand n before

More information

Temperature. Chapter Heat Engine

Temperature. Chapter Heat Engine Chapter 3 Temperature In prevous chapters of these notes we ntroduced the Prncple of Maxmum ntropy as a technque for estmatng probablty dstrbutons consstent wth constrants. In Chapter 9 we dscussed the

More information

Conjugacy and the Exponential Family

Conjugacy and the Exponential Family CS281B/Stat241B: Advanced Topcs n Learnng & Decson Makng Conjugacy and the Exponental Famly Lecturer: Mchael I. Jordan Scrbes: Bran Mlch 1 Conjugacy In the prevous lecture, we saw conjugate prors for the

More information

SIO 224. m(r) =(ρ(r),k s (r),µ(r))

SIO 224. m(r) =(ρ(r),k s (r),µ(r)) SIO 224 1. A bref look at resoluton analyss Here s some background for the Masters and Gubbns resoluton paper. Global Earth models are usually found teratvely by assumng a startng model and fndng small

More information

5 The Rational Canonical Form

5 The Rational Canonical Form 5 The Ratonal Canoncal Form Here p s a monc rreducble factor of the mnmum polynomal m T and s not necessarly of degree one Let F p denote the feld constructed earler n the course, consstng of all matrces

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

Stat260: Bayesian Modeling and Inference Lecture Date: February 22, Reference Priors

Stat260: Bayesian Modeling and Inference Lecture Date: February 22, Reference Priors Stat60: Bayesan Modelng and Inference Lecture Date: February, 00 Reference Prors Lecturer: Mchael I. Jordan Scrbe: Steven Troxler and Wayne Lee In ths lecture, we assume that θ R; n hgher-dmensons, reference

More information

8.6 The Complex Number System

8.6 The Complex Number System 8.6 The Complex Number System Earler n the chapter, we mentoned that we cannot have a negatve under a square root, snce the square of any postve or negatve number s always postve. In ths secton we want

More information

Random Walks on Digraphs

Random Walks on Digraphs Random Walks on Dgraphs J. J. P. Veerman October 23, 27 Introducton Let V = {, n} be a vertex set and S a non-negatve row-stochastc matrx (.e. rows sum to ). V and S defne a dgraph G = G(V, S) and a drected

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition)

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition) Count Data Models See Book Chapter 11 2 nd Edton (Chapter 10 1 st Edton) Count data consst of non-negatve nteger values Examples: number of drver route changes per week, the number of trp departure changes

More information

CHAPTER 14 GENERAL PERTURBATION THEORY

CHAPTER 14 GENERAL PERTURBATION THEORY CHAPTER 4 GENERAL PERTURBATION THEORY 4 Introducton A partcle n orbt around a pont mass or a sphercally symmetrc mass dstrbuton s movng n a gravtatonal potental of the form GM / r In ths potental t moves

More information

STAT 405 BIOSTATISTICS (Fall 2016) Handout 15 Introduction to Logistic Regression

STAT 405 BIOSTATISTICS (Fall 2016) Handout 15 Introduction to Logistic Regression STAT 45 BIOSTATISTICS (Fall 26) Handout 5 Introducton to Logstc Regresson Ths handout covers materal found n Secton 3.7 of your text. You may also want to revew regresson technques n Chapter. In ths handout,

More information

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

Lecture 12: Classification

Lecture 12: Classification Lecture : Classfcaton g Dscrmnant functons g The optmal Bayes classfer g Quadratc classfers g Eucldean and Mahalanobs metrcs g K Nearest Neghbor Classfers Intellgent Sensor Systems Rcardo Guterrez-Osuna

More information

Supplementary Notes for Chapter 9 Mixture Thermodynamics

Supplementary Notes for Chapter 9 Mixture Thermodynamics Supplementary Notes for Chapter 9 Mxture Thermodynamcs Key ponts Nne major topcs of Chapter 9 are revewed below: 1. Notaton and operatonal equatons for mxtures 2. PVTN EOSs for mxtures 3. General effects

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1 Random varables Measure of central tendences and varablty (means and varances) Jont densty functons and ndependence Measures of assocaton (covarance and correlaton) Interestng result Condtonal dstrbutons

More information

The optimal delay of the second test is therefore approximately 210 hours earlier than =2.

The optimal delay of the second test is therefore approximately 210 hours earlier than =2. THE IEC 61508 FORMULAS 223 The optmal delay of the second test s therefore approxmately 210 hours earler than =2. 8.4 The IEC 61508 Formulas IEC 61508-6 provdes approxmaton formulas for the PF for smple

More information

b ), which stands for uniform distribution on the interval a x< b. = 0 elsewhere

b ), which stands for uniform distribution on the interval a x< b. = 0 elsewhere Fall Analyss of Epermental Measurements B. Esensten/rev. S. Errede Some mportant probablty dstrbutons: Unform Bnomal Posson Gaussan/ormal The Unform dstrbuton s often called U( a, b ), hch stands for unform

More information

The exam is closed book, closed notes except your one-page cheat sheet.

The exam is closed book, closed notes except your one-page cheat sheet. CS 89 Fall 206 Introducton to Machne Learnng Fnal Do not open the exam before you are nstructed to do so The exam s closed book, closed notes except your one-page cheat sheet Usage of electronc devces

More information

One-sided finite-difference approximations suitable for use with Richardson extrapolation

One-sided finite-difference approximations suitable for use with Richardson extrapolation Journal of Computatonal Physcs 219 (2006) 13 20 Short note One-sded fnte-dfference approxmatons sutable for use wth Rchardson extrapolaton Kumar Rahul, S.N. Bhattacharyya * Department of Mechancal Engneerng,

More information

Foundations of Arithmetic

Foundations of Arithmetic Foundatons of Arthmetc Notaton We shall denote the sum and product of numbers n the usual notaton as a 2 + a 2 + a 3 + + a = a, a 1 a 2 a 3 a = a The notaton a b means a dvdes b,.e. ac = b where c s an

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 3: Large deviations bounds and applications Lecturer: Sanjeev Arora

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 3: Large deviations bounds and applications Lecturer: Sanjeev Arora prnceton unv. F 13 cos 521: Advanced Algorthm Desgn Lecture 3: Large devatons bounds and applcatons Lecturer: Sanjeev Arora Scrbe: Today s topc s devaton bounds: what s the probablty that a random varable

More information

1 Generating functions, continued

1 Generating functions, continued Generatng functons, contnued. Generatng functons and parttons We can make use of generatng functons to answer some questons a bt more restrctve than we ve done so far: Queston : Fnd a generatng functon

More information

The KMO Method for Solving Non-homogenous, m th Order Differential Equations

The KMO Method for Solving Non-homogenous, m th Order Differential Equations The KMO Method for Solvng Non-homogenous, m th Order Dfferental Equatons Davd Krohn Danel Marño-Johnson John Paul Ouyang March 14, 2013 Abstract Ths paper shows a smple tabular procedure for fndng the

More information

Learning from Data 1 Naive Bayes

Learning from Data 1 Naive Bayes Learnng from Data 1 Nave Bayes Davd Barber dbarber@anc.ed.ac.uk course page : http://anc.ed.ac.uk/ dbarber/lfd1/lfd1.html c Davd Barber 2001, 2002 1 Learnng from Data 1 : c Davd Barber 2001,2002 2 1 Why

More information

CS 331 DESIGN AND ANALYSIS OF ALGORITHMS DYNAMIC PROGRAMMING. Dr. Daisy Tang

CS 331 DESIGN AND ANALYSIS OF ALGORITHMS DYNAMIC PROGRAMMING. Dr. Daisy Tang CS DESIGN ND NLYSIS OF LGORITHMS DYNMIC PROGRMMING Dr. Dasy Tang Dynamc Programmng Idea: Problems can be dvded nto stages Soluton s a sequence o decsons and the decson at the current stage s based on the

More information

Case A. P k = Ni ( 2L i k 1 ) + (# big cells) 10d 2 P k.

Case A. P k = Ni ( 2L i k 1 ) + (# big cells) 10d 2 P k. THE CELLULAR METHOD In ths lecture, we ntroduce the cellular method as an approach to ncdence geometry theorems lke the Szemeréd-Trotter theorem. The method was ntroduced n the paper Combnatoral complexty

More information

For example, if the drawing pin was tossed 200 times and it landed point up on 140 of these trials,

For example, if the drawing pin was tossed 200 times and it landed point up on 140 of these trials, Probablty In ths actvty you wll use some real data to estmate the probablty of an event happenng. You wll also use a varety of methods to work out theoretcal probabltes. heoretcal and expermental probabltes

More information

Chapter 1. Probability

Chapter 1. Probability Chapter. Probablty Mcroscopc propertes of matter: quantum mechancs, atomc and molecular propertes Macroscopc propertes of matter: thermodynamcs, E, H, C V, C p, S, A, G How do we relate these two propertes?

More information

ENG 8801/ Special Topics in Computer Engineering: Pattern Recognition. Memorial University of Newfoundland Pattern Recognition

ENG 8801/ Special Topics in Computer Engineering: Pattern Recognition. Memorial University of Newfoundland Pattern Recognition EG 880/988 - Specal opcs n Computer Engneerng: Pattern Recognton Memoral Unversty of ewfoundland Pattern Recognton Lecture 7 May 3, 006 http://wwwengrmunca/~charlesr Offce Hours: uesdays hursdays 8:30-9:30

More information

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ CSE 455/555 Sprng 2013 Homework 7: Parametrc Technques Jason J. Corso Computer Scence and Engneerng SUY at Buffalo jcorso@buffalo.edu Solutons by Yngbo Zhou Ths assgnment does not need to be submtted and

More information

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty Addtonal Codes usng Fnte Dfference Method Benamn Moll 1 HJB Equaton for Consumpton-Savng Problem Wthout Uncertanty Before consderng the case wth stochastc ncome n http://www.prnceton.edu/~moll/ HACTproect/HACT_Numercal_Appendx.pdf,

More information

FREQUENCY DISTRIBUTIONS Page 1 of The idea of a frequency distribution for sets of observations will be introduced,

FREQUENCY DISTRIBUTIONS Page 1 of The idea of a frequency distribution for sets of observations will be introduced, FREQUENCY DISTRIBUTIONS Page 1 of 6 I. Introducton 1. The dea of a frequency dstrbuton for sets of observatons wll be ntroduced, together wth some of the mechancs for constructng dstrbutons of data. Then

More information

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur Module Random Processes Lesson 6 Functons of Random Varables After readng ths lesson, ou wll learn about cdf of functon of a random varable. Formula for determnng the pdf of a random varable. Let, X be

More information

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models Computaton of Hgher Order Moments from Two Multnomal Overdsperson Lkelhood Models BY J. T. NEWCOMER, N. K. NEERCHAL Department of Mathematcs and Statstcs, Unversty of Maryland, Baltmore County, Baltmore,

More information

8/25/17. Data Modeling. Data Modeling. Data Modeling. Patrice Koehl Department of Biological Sciences National University of Singapore

8/25/17. Data Modeling. Data Modeling. Data Modeling. Patrice Koehl Department of Biological Sciences National University of Singapore 8/5/17 Data Modelng Patrce Koehl Department of Bologcal Scences atonal Unversty of Sngapore http://www.cs.ucdavs.edu/~koehl/teachng/bl59 koehl@cs.ucdavs.edu Data Modelng Ø Data Modelng: least squares Ø

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information

Relevance Vector Machines Explained

Relevance Vector Machines Explained October 19, 2010 Relevance Vector Machnes Explaned Trstan Fletcher www.cs.ucl.ac.uk/staff/t.fletcher/ Introducton Ths document has been wrtten n an attempt to make Tppng s [1] Relevance Vector Machnes

More information

Statistical pattern recognition

Statistical pattern recognition Statstcal pattern recognton Bayes theorem Problem: decdng f a patent has a partcular condton based on a partcular test However, the test s mperfect Someone wth the condton may go undetected (false negatve

More information

Assortment Optimization under MNL

Assortment Optimization under MNL Assortment Optmzaton under MNL Haotan Song Aprl 30, 2017 1 Introducton The assortment optmzaton problem ams to fnd the revenue-maxmzng assortment of products to offer when the prces of products are fxed.

More information

4.3 Poisson Regression

4.3 Poisson Regression of teratvely reweghted least squares regressons (the IRLS algorthm). We do wthout gvng further detals, but nstead focus on the practcal applcaton. > glm(survval~log(weght)+age, famly="bnomal", data=baby)

More information

Expectation Maximization Mixture Models HMMs

Expectation Maximization Mixture Models HMMs -755 Machne Learnng for Sgnal Processng Mture Models HMMs Class 9. 2 Sep 200 Learnng Dstrbutons for Data Problem: Gven a collecton of eamples from some data, estmate ts dstrbuton Basc deas of Mamum Lelhood

More information

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering /

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering / Theory and Applcatons of Pattern Recognton 003, Rob Polkar, Rowan Unversty, Glassboro, NJ Lecture 4 Bayes Classfcaton Rule Dept. of Electrcal and Computer Engneerng 0909.40.0 / 0909.504.04 Theory & Applcatons

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Analysis of Discrete Time Queues (Section 4.6)

Analysis of Discrete Time Queues (Section 4.6) Analyss of Dscrete Tme Queues (Secton 4.6) Copyrght 2002, Sanjay K. Bose Tme axs dvded nto slots slot slot boundares Arrvals can only occur at slot boundares Servce to a job can only start at a slot boundary

More information

Entropy of Markov Information Sources and Capacity of Discrete Input Constrained Channels (from Immink, Coding Techniques for Digital Recorders)

Entropy of Markov Information Sources and Capacity of Discrete Input Constrained Channels (from Immink, Coding Techniques for Digital Recorders) Entropy of Marov Informaton Sources and Capacty of Dscrete Input Constraned Channels (from Immn, Codng Technques for Dgtal Recorders). Entropy of Marov Chans We have already ntroduced the noton of entropy

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE : Lnear Systems Summary #: Backpropagaton BACKPROPAGATION The perceptron rule as well as the Wdrow Hoff learnng were desgned to tran sngle layer networks. They suffer from the same dsadvantage: they

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

LECTURE 9 CANONICAL CORRELATION ANALYSIS

LECTURE 9 CANONICAL CORRELATION ANALYSIS LECURE 9 CANONICAL CORRELAION ANALYSIS Introducton he concept of canoncal correlaton arses when we want to quantfy the assocatons between two sets of varables. For example, suppose that the frst set of

More information

arxiv: v2 [stat.me] 26 Jun 2012

arxiv: v2 [stat.me] 26 Jun 2012 The Two-Way Lkelhood Rato (G Test and Comparson to Two-Way χ Test Jesse Hoey June 7, 01 arxv:106.4881v [stat.me] 6 Jun 01 1 One-Way Lkelhood Rato or χ test Suppose we have a set of data x and two hypotheses

More information

Lecture 4. Instructor: Haipeng Luo

Lecture 4. Instructor: Haipeng Luo Lecture 4 Instructor: Hapeng Luo In the followng lectures, we focus on the expert problem and study more adaptve algorthms. Although Hedge s proven to be worst-case optmal, one may wonder how well t would

More information

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information