SOUND INTENSITY PROBE CALIBRATOR FOR FIELD USE: CALCULATING THE SOUND FIELD IN THE CALIBRATOR USING BOUNDARY ELEMENT MODELLING

Size: px
Start display at page:

Download "SOUND INTENSITY PROBE CALIBRATOR FOR FIELD USE: CALCULATING THE SOUND FIELD IN THE CALIBRATOR USING BOUNDARY ELEMENT MODELLING"

Transcription

1 Pge 1 of 1 SOUND INTENSITY PROBE CALIBRATOR FOR FIELD USE: CALCULATING THE SOUND FIELD IN THE CALIBRATOR USING BOUNDARY ELEMENT MODELLING PACS REFERENCE: Fm Ginn, Bernrd; Olsen,Erling; Cutnd,Vicente; Grmtorp,John; Eriksen,Anders Brüel & Kjær, Sound nd Virtion Skodsorgvej 307 DK-2850 Nærum Denmrk Tel e-mil: kginn@kdk.com ABSTRACT The newest genertion of sound intensity mesurement equipment is smll nd light enough to e hndheld when used for mesurements in the field. This increses the need for field verifiction of the equipment. Field verifiction must e esy to perform nd should not require the equipment to e tken prt. Therefore it ws decided t Brüel & Kjær to develop n intensity proe clirtor tht could e used for the two-microphone intensity proe s it is, without dismounting the spcer. The geometry of the cvity of the clirtor with proe is rther complex, nd it turned out tht simple model sed on geometric considertions could not e mde for predicting the coustic properties of the clirtor. Therefore Boundry Element Model of the clirtor cvity ws developed nd successfully used in the design of the clirtor. The clcultions re shortly descried, nd the sound fields in the coupler with different cvity geometries nd source configurtions nd the corresponding microphone responses re discussed. INTRODUCTION The newest genertion of sound intensity mesurement equipment is smll nd light enough to e hndheld when used for mesurements in the field. The hnd-held Brüel & Kjær Investigtor Sound Intensity System Type 2260E/3595 is good exmple of such mesurement equipment. As in ll mesurements, the equipment for sound intensity mesurements must e clirted nd verified efore nd fter use. While in the lortory it is not so importnt how the clirtion is mde, field clirtion nd verifiction must e esy to perform nd should not require the equipment to e tken prt. Since this is not the cse with sound intensity clirtors ville until now, it ws decided t Brüel & Kjær to develop new intensity proe clirtor for field use. The design gols for the clirtor were: i) tht it could e used for the Brüel&Kjær ½ two-microphone intensity proe s it is, without dismounting the spcer, ii) tht it should e usle for solute sensitivity clirtions s well s for pressure residul intensity index verifiction, nd iii) tht it should fulfil the requirements of Interntionl Stndrds IEC Type 1 nd IEC Clss 1. A prototype for the new clirtor ws designed sed on clssicl, sound cousticl considertions, e.g. symmetry, s smll volume s fesile round the proe. The design of the prototype ws not fr

2 Pge 2 of 2 from the design of the finl Brüel & Kjær Sound Intensity Clirtor Type 4297, ut it turned out to work in much smller frequency nd thn expected. The unexpected ehviour ws intensively discussed nd numer of modifictions of the prototype were mde. The ehviour could not e explined y mens of ny suggested geometricl, lumped prmeter or impednce considertions nd no significnt improvements were chieved with the modifictions. Therefore it ws decided to mke numericl model in order to find n explntion of the ehviour of the sound field in the coupler nd to see if there were ny possiilities of improvement. Since one of the uthors, Vicente Cutnd, t the sme time ws working with Boundry Element Modeling, BEM, of the interior of microphones, model of the coupler could e implemented fst with his softwre. GEOMETRY The clirtor consists of n xisymmetricl coupler cvity where the complete proe with spcer cn e inserted. Bsiclly, the coupler is cylindricl cvity in which the intensity proe is plced with mutul symmetry xis nd symmetry plne. In the prototype the coupler cvity ws connected to nother cvity with the sound source nd reference microphone through smll hole in the wll midwy etween the microphone diphrgms. In the finl design the sound source is prt of ring source situted in the coupler wll midwy etween the microphones nd connected to the cvity through slit. The cvity in the finl design is lso connected to nother cvity with reference microphone, ut tht is of minor importnce in this context. Coupler wll Sel etween coupler nd microphone Microphone diphrgms Spcer Figure 1. The coupler geometry defined for the clcultions, see lso figure 2. CALCULATIONS The BEM method used for the clcultions ws the direct colloction method in formultion for xisymmetric odies [1] with n improved clcultion method for ner-singulr integrtion [2]. The ctul formultion used llows for the clcultion of non-xisymmetric sound fields y using cosine expnsion of the cousticl vriles, i.e. pressure, prticle velocity nd excittion [3]. The terms in the expnsion represent sound field with n incresing numer of nodelines. The first term,, represents the xisymmetric prt of the sound field nd the following terms represent the non-xisymmetric prt of the sound field. In this cse, non-xisymmetric velocity distriution on the oundry ws used for the excittion. No losses were tken into considertion in the clcultions, nd the microphone diphrgms were ssumed to e locked. Clcultions were mde for wide vriety of dimensions nd shpes within the sic geometry of the coupler cvity. Here few of the clcultions re presented so s to demonstrte the influence of the vritions nd the importnt results. In the exmples the sound source is hlf ring source in the coupler wll t the symmetry plne of the proe spcer (in the middle of the coupler). Also, one of the microphones is slightly displced from its correct position so tht the gps etween the spcer nd the diphrgm re different t the two microphones.

3 Pge 3 of 3 Figure 2. Photogrphs of the finl clirtor. The proe is ½ proe with 12 mm spcer. The slit with the sound source is seen in the middle of the coupler cvity. x x c d x x Figure 3. Coupler with different dimeter nd with nd without spcer. Hlf-ring source. Condition numer plots for the first four terms in the cosine expnsion of the sound field. : 7.2 mm with spcer. : 8.0 mm with spcer. c: 8.5 mm with spcer. d: 8.0 mm without spcer. The condition numer of the coefficient mtrix is convenient mens to locte the eigenfrequencies of the coupler [4]. This is due to the instility generted in the system of equtions in the vicinity of such eigenmodes. Since the condition numer is mesure of the system ill-conditioning, it presents mxim t those frequencies. In figure 3 the condition numers re shown for the system of equtions for the first four terms of the cosine expnsion. Wheres the eigenfrequencies of the configurtions with the spcer do not correspond in simple wy to the dimensions of the coupler, the eigenfrequencies for the

4 Pge 4 of 4 configurtion without the spcer corresponds closely to wht must e expected for cylindricl cvity. With the spcer the frequency of the xisymmetric modes increses with incresing dimeter while the frequency of the non-xisymmetric modes decreses with incresing dimeter. The clculted sound fields in the coupler t frequencies close to the eigenfrequencies shown in figure 3 re for the modes elow 10 khz in figures 4 to 7. In the nrrow coupler the lowest eigenmode is n xisymmetric longitudinl mode. Note, tht the phse is opposite t the two microphone diphrgms. This will not e the cse if the gps t the microphones re exctly sme. However, the sound field is Figure 4. Sound field t 7.55 khz in 7.2 mm coupler with spcer nd hlf-ring source. : modulus in db, : phse in. Figure 5. Sound field t 9.38 khz in 8.0 mm coupler with spcer nd hlf-ring source. : modulus in db, : phse in. unstle t this frequency nd will chnge with ny smll chnge in the dimensions. The lowest modes of the 8.0 mm nd 8.5 mm coupler re trnsversl modes. The sound field is in opposite phse in the two sides of the coupler nd the sound pressure level is high. The 8.0 mm coupler hs longitudinl mode t slightly higher frequency. The sound field t tht frequency is comintion of trnsversl nd longitudinl wve.

5 Pge 5 of 5 Figure 6. Sound field t 9.51 khz in 8.0 mm coupler with spcer nd hlf-ring source. : modulus in db, : phse in. Figure 7. Sound field t 8.72 khz in 8.5 mm coupler with spcer nd hlf-ring source. : modulus in db, : phse in. DISCUSSION As shown ove, the sound field in the coupler with the sme excittion chnges rpidly with the coupler dimeter in wy so tht there is n optiml dimeter for the coupler cvity with the given geometry. With smll dimeter nd thus nrrow gp etween the proe nd the coupler wlls the xisymmetric modes pper t lower frequencies thn the non-xisymmetric modes. With incresing dimeter the frequencies of the xisymmetric modes increse while the frequencies for the non-xisymmetric modes decrese. The optimum dimeter is the dimeter where the modes hve the sme frequency since this gives the highest ndwidth without resonnces nd therey stle sound field. The chnges of the sound field with dimeter illustrtes why the modes of the cvity with the spcer cnnot e found with simple geometricl considertions. The cvity cnnot e divided into sustructures tht cn e identified s eing cvities, tues or trnsmission lines. Rther, ll prts of the cvity with the spcer re something in etween such cousticl elements. The process in the development project on which this pper is sed clerly shows the vlue of numericl clcultion methods. The dvntge most often mentioned in the literture is the possiility of mking mny virtul prototypes, tht is, testing mny vrints of design. However, more importnt dvntge of using the clcultions here is tht deeper understnding of the sound field in the coupler nd the prolems in the development were otined. Bsed on the clcultions descried in the previous section the coupler in the intensity proe clirtor ws designed with dimeter of 8.0 mm. In the first design of

6 Pge 6 of 6 the coupler the dimeter ws chosen to e s smll s prcticlly possile. It ws ctully discovered efore the clcultions were tken into use tht some, ut not ll, couplers with lrger dimeter hd etter performnce, ut since there were no cler explntion nd since it is not prcticlly possile to mke severl prototypes this did not led to conclusion on the design. Furthermore, even more prototypes my not hve led to the finl design since the informtion on the sound field nd therey the explntion of the differences could only hve een otined with highly complicted mesurements on mny prototypes. The microphone responses were lso considered during the development of the coupler. In principle the microphones re only sensitive to the xisymmetricl modes of the sound field nd therefore nonxisymmetric modes should not influence the performnce. Although ny rel microphone my exhiit some minor sensitivity to non-xisymmetricl modes this is proly not the only reson the coupler does not perform well when non-xisymmetric modes re present. Rther, ecuse the sound field vries so much in the coupler ner the eigenfrequencies, the xisymmetric prt of the sound pressure in the rel coupler my very well e little different t the two microphones, nd this difference would e mesured even with perfect microphones. For this reson it is not possile directly to compre the clcultions with mesurements with the proe in the coupler nd therefore such comprisons re not shown here. Wht could e seen ws tht the couplers performed well t frequencies up to round 2/3 of n octve elow the first eigenfrequency of the coupler. It should e rememered tht in this context good performnce mens less thn 0.1 db nd 0.2 difference etween the two microphones t frequencies round 5 khz. The Sound Intensity Clirtor Type 4297 tht is the result of the development project descried here is very close to the fulfillment of the design gols initilly set up for the project. Without the spcer the clirtor fulfils the requirements of IEC Clss 1. The pressure-residul intensity index of the sound field is lrger thn 24 db in 1/3 octve nds from 50 Hz to 6.3 khz. However, with the spcer the pressure-residul intensity index is slightly lower thn 24 db in the 6.3 khz 1/3 octve nd. The clirtor cn still e used for verifiction of the equipment with the spcer in dily use, ut it does not fulfil the stndrd completely. The numericl clcultions showed tht this ws the est performnce tht could e chieved for coupler where the proe could e inserted without dismounting the spcer. CONCLUSIONS In this pper it hs een demonstrted how BEM clcultions successfully led to working design of sound intensity clirtor. The sound field in the coupler could not e predicted with clssicl methods. The clcultions did not only led to successful design ut lso gve understnding of the ehviour of the sound field in the clirtor tht could not e otined without the clcultions. The clcultions descried in this pper led development project from filure into success. Numericl clcultions re certin to e developed nd used in future cousticl design projects t Brüel & Kjær. ACKNOWLEDGEMENTS The uthors wish to thnk Peter Møller Juhl t Odense University in Denmrk for his contriutions to the work with the clcultions descried here. The uthors lso wish to thnk Erling Frederiksen t Brüel nd Kjær nd Finn Jcosen t the Technicl University of Denmrk for vlule discussions during the development of the intensity clirtor. REFERENCES [1] A.F.Seyert, B.Soenrko, F.J.Rizzo, D.J.Shippy, "A specil integrl eqution formultion for coustic rdition nd scttering for xisymmetric odiues nd oundry conditions", J.Acoust.Soc.Am., 80, (1986) [2] V.Cutnd, P.M.Juhl, F.Jcosen, "On the modeling of nrrow gps using the stndrd oundry element method ", J.Acoust.Soc.Am., 109, (2001) [3] P.M.Juhl, "An xisymmetric integrl eqution formultion for free spce non-xisymmetric rdition nd scttering of known incident wve", J.Sound Vi., 163, (1993) [4] M.R. Bi, "Study of coustic resonnce in enclosures using eigennlysis sed on oundry element methods", J.Acoust.Soc.Am., 91, (1992)

Review of Gaussian Quadrature method

Review of Gaussian Quadrature method Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge

More information

Homework Assignment 3 Solution Set

Homework Assignment 3 Solution Set Homework Assignment 3 Solution Set PHYCS 44 6 Ferury, 4 Prolem 1 (Griffiths.5(c The potentil due to ny continuous chrge distriution is the sum of the contriutions from ech infinitesiml chrge in the distriution.

More information

10. AREAS BETWEEN CURVES

10. AREAS BETWEEN CURVES . AREAS BETWEEN CURVES.. Ares etween curves So res ove the x-xis re positive nd res elow re negtive, right? Wrong! We lied! Well, when you first lern out integrtion it s convenient fiction tht s true in

More information

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows:

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows: Improper Integrls The First Fundmentl Theorem of Clculus, s we ve discussed in clss, goes s follows: If f is continuous on the intervl [, ] nd F is function for which F t = ft, then ftdt = F F. An integrl

More information

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3 2 The Prllel Circuit Electric Circuits: Figure 2- elow show ttery nd multiple resistors rrnged in prllel. Ech resistor receives portion of the current from the ttery sed on its resistnce. The split is

More information

7.1 Integral as Net Change and 7.2 Areas in the Plane Calculus

7.1 Integral as Net Change and 7.2 Areas in the Plane Calculus 7.1 Integrl s Net Chnge nd 7. Ares in the Plne Clculus 7.1 INTEGRAL AS NET CHANGE Notecrds from 7.1: Displcement vs Totl Distnce, Integrl s Net Chnge We hve lredy seen how the position of n oject cn e

More information

Interpreting Integrals and the Fundamental Theorem

Interpreting Integrals and the Fundamental Theorem Interpreting Integrls nd the Fundmentl Theorem Tody, we go further in interpreting the mening of the definite integrl. Using Units to Aid Interprettion We lredy know tht if f(t) is the rte of chnge of

More information

10 Vector Integral Calculus

10 Vector Integral Calculus Vector Integrl lculus Vector integrl clculus extends integrls s known from clculus to integrls over curves ("line integrls"), surfces ("surfce integrls") nd solids ("volume integrls"). These integrls hve

More information

Section 6: Area, Volume, and Average Value

Section 6: Area, Volume, and Average Value Chpter The Integrl Applied Clculus Section 6: Are, Volume, nd Averge Vlue Are We hve lredy used integrls to find the re etween the grph of function nd the horizontl xis. Integrls cn lso e used to find

More information

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp. MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27-233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.

More information

Chapter 9 Definite Integrals

Chapter 9 Definite Integrals Chpter 9 Definite Integrls In the previous chpter we found how to tke n ntiderivtive nd investigted the indefinite integrl. In this chpter the connection etween ntiderivtives nd definite integrls is estlished

More information

2.4 Linear Inequalities and Interval Notation

2.4 Linear Inequalities and Interval Notation .4 Liner Inequlities nd Intervl Nottion We wnt to solve equtions tht hve n inequlity symol insted of n equl sign. There re four inequlity symols tht we will look t: Less thn , Less thn or

More information

Continuous Random Variables Class 5, Jeremy Orloff and Jonathan Bloom

Continuous Random Variables Class 5, Jeremy Orloff and Jonathan Bloom Lerning Gols Continuous Rndom Vriles Clss 5, 8.05 Jeremy Orloff nd Jonthn Bloom. Know the definition of continuous rndom vrile. 2. Know the definition of the proility density function (pdf) nd cumultive

More information

Parse trees, ambiguity, and Chomsky normal form

Parse trees, ambiguity, and Chomsky normal form Prse trees, miguity, nd Chomsky norml form In this lecture we will discuss few importnt notions connected with contextfree grmmrs, including prse trees, miguity, nd specil form for context-free grmmrs

More information

ADVANCEMENT OF THE CLOSELY COUPLED PROBES POTENTIAL DROP TECHNIQUE FOR NDE OF SURFACE CRACKS

ADVANCEMENT OF THE CLOSELY COUPLED PROBES POTENTIAL DROP TECHNIQUE FOR NDE OF SURFACE CRACKS ADVANCEMENT OF THE CLOSELY COUPLED PROBES POTENTIAL DROP TECHNIQUE FOR NDE OF SURFACE CRACKS F. Tkeo 1 nd M. Sk 1 Hchinohe Ntionl College of Technology, Hchinohe, Jpn; Tohoku University, Sendi, Jpn Abstrct:

More information

OVER-DETERMINATION IN ACOUSTIC TWO-PORT DATA MEASUREMENT

OVER-DETERMINATION IN ACOUSTIC TWO-PORT DATA MEASUREMENT OVER-DEERMINAION IN ACOUSIC WO-POR DAA MEASUREMEN Sry Allm, Hns Bodén nd Mts Åom he Mrcus Wllenerg Lortory for Sound nd Virtion Reserch Dept. of Aeronuticl nd Vehicle Engineering, KH, SE-0044 Stockholm,

More information

This chapter will show you. What you should already know. 1 Write down the value of each of the following. a 5 2

This chapter will show you. What you should already know. 1 Write down the value of each of the following. a 5 2 1 Direct vrition 2 Inverse vrition This chpter will show you how to solve prolems where two vriles re connected y reltionship tht vries in direct or inverse proportion Direct proportion Inverse proportion

More information

Riemann is the Mann! (But Lebesgue may besgue to differ.)

Riemann is the Mann! (But Lebesgue may besgue to differ.) Riemnn is the Mnn! (But Lebesgue my besgue to differ.) Leo Livshits My 2, 2008 1 For finite intervls in R We hve seen in clss tht every continuous function f : [, b] R hs the property tht for every ɛ >

More information

Fully Kinetic Simulations of Ion Beam Neutralization

Fully Kinetic Simulations of Ion Beam Neutralization Fully Kinetic Simultions of Ion Bem Neutrliztion Joseph Wng University of Southern Cliforni Hideyuki Usui Kyoto University E-mil: josephjw@usc.edu; usui@rish.kyoto-u.c.jp 1. Introduction Ion em emission/neutrliztion

More information

Discrete Mathematics and Probability Theory Spring 2013 Anant Sahai Lecture 17

Discrete Mathematics and Probability Theory Spring 2013 Anant Sahai Lecture 17 EECS 70 Discrete Mthemtics nd Proility Theory Spring 2013 Annt Shi Lecture 17 I.I.D. Rndom Vriles Estimting the is of coin Question: We wnt to estimte the proportion p of Democrts in the US popultion,

More information

p-adic Egyptian Fractions

p-adic Egyptian Fractions p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

More information

2. VECTORS AND MATRICES IN 3 DIMENSIONS

2. VECTORS AND MATRICES IN 3 DIMENSIONS 2 VECTORS AND MATRICES IN 3 DIMENSIONS 21 Extending the Theory of 2-dimensionl Vectors x A point in 3-dimensionl spce cn e represented y column vector of the form y z z-xis y-xis z x y x-xis Most of the

More information

An Overview of Integration

An Overview of Integration An Overview of Integrtion S. F. Ellermeyer July 26, 2 The Definite Integrl of Function f Over n Intervl, Suppose tht f is continuous function defined on n intervl,. The definite integrl of f from to is

More information

Math 1B, lecture 4: Error bounds for numerical methods

Math 1B, lecture 4: Error bounds for numerical methods Mth B, lecture 4: Error bounds for numericl methods Nthn Pflueger 4 September 0 Introduction The five numericl methods descried in the previous lecture ll operte by the sme principle: they pproximte the

More information

Patch Antennas. Chapter Resonant Cavity Analysis

Patch Antennas. Chapter Resonant Cavity Analysis Chpter 4 Ptch Antenns A ptch ntenn is low-profile ntenn consisting of metl lyer over dielectric sustrte nd ground plne. Typiclly, ptch ntenn is fed y microstrip trnsmission line, ut other feed lines such

More information

Lecture 3: Equivalence Relations

Lecture 3: Equivalence Relations Mthcmp Crsh Course Instructor: Pdric Brtlett Lecture 3: Equivlence Reltions Week 1 Mthcmp 2014 In our lst three tlks of this clss, we shift the focus of our tlks from proof techniques to proof concepts

More information

5.1 How do we Measure Distance Traveled given Velocity? Student Notes

5.1 How do we Measure Distance Traveled given Velocity? Student Notes . How do we Mesure Distnce Trveled given Velocity? Student Notes EX ) The tle contins velocities of moving cr in ft/sec for time t in seconds: time (sec) 3 velocity (ft/sec) 3 A) Lel the x-xis & y-xis

More information

Mathematics. Area under Curve.

Mathematics. Area under Curve. Mthemtics Are under Curve www.testprepkrt.com Tle of Content 1. Introduction.. Procedure of Curve Sketching. 3. Sketching of Some common Curves. 4. Are of Bounded Regions. 5. Sign convention for finding

More information

Special Relativity solved examples using an Electrical Analog Circuit

Special Relativity solved examples using an Electrical Analog Circuit 1-1-15 Specil Reltivity solved exmples using n Electricl Anlog Circuit Mourici Shchter mourici@gmil.com mourici@wll.co.il ISRAE, HOON 54-54855 Introduction In this pper, I develop simple nlog electricl

More information

Intermediate Math Circles Wednesday, November 14, 2018 Finite Automata II. Nickolas Rollick a b b. a b 4

Intermediate Math Circles Wednesday, November 14, 2018 Finite Automata II. Nickolas Rollick a b b. a b 4 Intermedite Mth Circles Wednesdy, Novemer 14, 2018 Finite Automt II Nickols Rollick nrollick@uwterloo.c Regulr Lnguges Lst time, we were introduced to the ide of DFA (deterministic finite utomton), one

More information

Chapter 0. What is the Lebesgue integral about?

Chapter 0. What is the Lebesgue integral about? Chpter 0. Wht is the Lebesgue integrl bout? The pln is to hve tutoril sheet ech week, most often on Fridy, (to be done during the clss) where you will try to get used to the ides introduced in the previous

More information

Bases for Vector Spaces

Bases for Vector Spaces Bses for Vector Spces 2-26-25 A set is independent if, roughly speking, there is no redundncy in the set: You cn t uild ny vector in the set s liner comintion of the others A set spns if you cn uild everything

More information

Linear Systems with Constant Coefficients

Linear Systems with Constant Coefficients Liner Systems with Constnt Coefficients 4-3-05 Here is system of n differentil equtions in n unknowns: x x + + n x n, x x + + n x n, x n n x + + nn x n This is constnt coefficient liner homogeneous system

More information

13: Diffusion in 2 Energy Groups

13: Diffusion in 2 Energy Groups 3: Diffusion in Energy Groups B. Rouben McMster University Course EP 4D3/6D3 Nucler Rector Anlysis (Rector Physics) 5 Sept.-Dec. 5 September Contents We study the diffusion eqution in two energy groups

More information

Homework Solution - Set 5 Due: Friday 10/03/08

Homework Solution - Set 5 Due: Friday 10/03/08 CE 96 Introduction to the Theory of Computtion ll 2008 Homework olution - et 5 Due: ridy 10/0/08 1. Textook, Pge 86, Exercise 1.21. () 1 2 Add new strt stte nd finl stte. Mke originl finl stte non-finl.

More information

4 VECTORS. 4.0 Introduction. Objectives. Activity 1

4 VECTORS. 4.0 Introduction. Objectives. Activity 1 4 VECTRS Chpter 4 Vectors jectives fter studying this chpter you should understnd the difference etween vectors nd sclrs; e le to find the mgnitude nd direction of vector; e le to dd vectors, nd multiply

More information

1 Which of the following summarises the change in wave characteristics on going from infra-red to ultraviolet in the electromagnetic spectrum?

1 Which of the following summarises the change in wave characteristics on going from infra-red to ultraviolet in the electromagnetic spectrum? Which of the following summrises the chnge in wve chrcteristics on going from infr-red to ultrviolet in the electromgnetic spectrum? frequency speed (in vcuum) decreses decreses decreses remins constnt

More information

Discrete Mathematics and Probability Theory Summer 2014 James Cook Note 17

Discrete Mathematics and Probability Theory Summer 2014 James Cook Note 17 CS 70 Discrete Mthemtics nd Proility Theory Summer 2014 Jmes Cook Note 17 I.I.D. Rndom Vriles Estimting the is of coin Question: We wnt to estimte the proportion p of Democrts in the US popultion, y tking

More information

Exploring parametric representation with the TI-84 Plus CE graphing calculator

Exploring parametric representation with the TI-84 Plus CE graphing calculator Exploring prmetric representtion with the TI-84 Plus CE grphing clcultor Richrd Prr Executive Director Rice University School Mthemtics Project rprr@rice.edu Alice Fisher Director of Director of Technology

More information

Examples Using both 2-D sections from Figure 3, data has been modeled for (acoustic) P and (elastic) S wave field

Examples Using both 2-D sections from Figure 3, data has been modeled for (acoustic) P and (elastic) S wave field Suslt illumintion studies through longitudinl nd trnsversl wve propgtion Riz Ali *, Jn Thorecke nd Eric Verschuur, Delft University of Technology, The Netherlnds Copyright 2007, SBGf - Sociedde Brsileir

More information

7.2 The Definite Integral

7.2 The Definite Integral 7.2 The Definite Integrl the definite integrl In the previous section, it ws found tht if function f is continuous nd nonnegtive, then the re under the grph of f on [, b] is given by F (b) F (), where

More information

Date Lesson Text TOPIC Homework. Solving for Obtuse Angles QUIZ ( ) More Trig Word Problems QUIZ ( )

Date Lesson Text TOPIC Homework. Solving for Obtuse Angles QUIZ ( ) More Trig Word Problems QUIZ ( ) UNIT 5 TRIGONOMETRI RTIOS Dte Lesson Text TOPI Homework pr. 4 5.1 (48) Trigonometry Review WS 5.1 # 3 5, 9 11, (1, 13)doso pr. 6 5. (49) Relted ngles omplete lesson shell & WS 5. pr. 30 5.3 (50) 5.3 5.4

More information

1B40 Practical Skills

1B40 Practical Skills B40 Prcticl Skills Comining uncertinties from severl quntities error propgtion We usully encounter situtions where the result of n experiment is given in terms of two (or more) quntities. We then need

More information

1 ELEMENTARY ALGEBRA and GEOMETRY READINESS DIAGNOSTIC TEST PRACTICE

1 ELEMENTARY ALGEBRA and GEOMETRY READINESS DIAGNOSTIC TEST PRACTICE ELEMENTARY ALGEBRA nd GEOMETRY READINESS DIAGNOSTIC TEST PRACTICE Directions: Study the exmples, work the prolems, then check your nswers t the end of ech topic. If you don t get the nswer given, check

More information

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique? XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk out solving systems of liner equtions. These re prolems tht give couple of equtions with couple of unknowns, like: 6= x + x 7=

More information

QUADRATURE is an old-fashioned word that refers to

QUADRATURE is an old-fashioned word that refers to World Acdemy of Science Engineering nd Technology Interntionl Journl of Mthemticl nd Computtionl Sciences Vol:5 No:7 011 A New Qudrture Rule Derived from Spline Interpoltion with Error Anlysis Hdi Tghvfrd

More information

MAA 4212 Improper Integrals

MAA 4212 Improper Integrals Notes by Dvid Groisser, Copyright c 1995; revised 2002, 2009, 2014 MAA 4212 Improper Integrls The Riemnn integrl, while perfectly well-defined, is too restrictive for mny purposes; there re functions which

More information

Lecture 3. In this lecture, we will discuss algorithms for solving systems of linear equations.

Lecture 3. In this lecture, we will discuss algorithms for solving systems of linear equations. Lecture 3 3 Solving liner equtions In this lecture we will discuss lgorithms for solving systems of liner equtions Multiplictive identity Let us restrict ourselves to considering squre mtrices since one

More information

Week 10: Line Integrals

Week 10: Line Integrals Week 10: Line Integrls Introduction In this finl week we return to prmetrised curves nd consider integrtion long such curves. We lredy sw this in Week 2 when we integrted long curve to find its length.

More information

Bridging the gap: GCSE AS Level

Bridging the gap: GCSE AS Level Bridging the gp: GCSE AS Level CONTENTS Chpter Removing rckets pge Chpter Liner equtions Chpter Simultneous equtions 8 Chpter Fctors 0 Chpter Chnge the suject of the formul Chpter 6 Solving qudrtic equtions

More information

Definite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 +

Definite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 + Definite Integrls --5 The re under curve cn e pproximted y dding up the res of rectngles. Exmple. Approximte the re under y = from x = to x = using equl suintervls nd + x evluting the function t the left-hnd

More information

List all of the possible rational roots of each equation. Then find all solutions (both real and imaginary) of the equation. 1.

List all of the possible rational roots of each equation. Then find all solutions (both real and imaginary) of the equation. 1. Mth Anlysis CP WS 4.X- Section 4.-4.4 Review Complete ech question without the use of grphing clcultor.. Compre the mening of the words: roots, zeros nd fctors.. Determine whether - is root of 0. Show

More information

The Minimum Label Spanning Tree Problem: Illustrating the Utility of Genetic Algorithms

The Minimum Label Spanning Tree Problem: Illustrating the Utility of Genetic Algorithms The Minimum Lel Spnning Tree Prolem: Illustrting the Utility of Genetic Algorithms Yupei Xiong, Univ. of Mrylnd Bruce Golden, Univ. of Mrylnd Edwrd Wsil, Americn Univ. Presented t BAE Systems Distinguished

More information

1.9 C 2 inner variations

1.9 C 2 inner variations 46 CHAPTER 1. INDIRECT METHODS 1.9 C 2 inner vritions So fr, we hve restricted ttention to liner vritions. These re vritions of the form vx; ǫ = ux + ǫφx where φ is in some liner perturbtion clss P, for

More information

Conservation Law. Chapter Goal. 5.2 Theory

Conservation Law. Chapter Goal. 5.2 Theory Chpter 5 Conservtion Lw 5.1 Gol Our long term gol is to understnd how mny mthemticl models re derived. We study how certin quntity chnges with time in given region (sptil domin). We first derive the very

More information

M344 - ADVANCED ENGINEERING MATHEMATICS

M344 - ADVANCED ENGINEERING MATHEMATICS M3 - ADVANCED ENGINEERING MATHEMATICS Lecture 18: Lplce s Eqution, Anltic nd Numericl Solution Our emple of n elliptic prtil differentil eqution is Lplce s eqution, lso clled the Diffusion Eqution. If

More information

Waveguide Guide: A and V. Ross L. Spencer

Waveguide Guide: A and V. Ross L. Spencer Wveguide Guide: A nd V Ross L. Spencer I relly think tht wveguide fields re esier to understnd using the potentils A nd V thn they re using the electric nd mgnetic fields. Since Griffiths doesn t do it

More information

Chapters Five Notes SN AA U1C5

Chapters Five Notes SN AA U1C5 Chpters Five Notes SN AA U1C5 Nme Period Section 5-: Fctoring Qudrtic Epressions When you took lger, you lerned tht the first thing involved in fctoring is to mke sure to fctor out ny numers or vriles

More information

Section 4: Integration ECO4112F 2011

Section 4: Integration ECO4112F 2011 Reding: Ching Chpter Section : Integrtion ECOF Note: These notes do not fully cover the mteril in Ching, ut re ment to supplement your reding in Ching. Thus fr the optimistion you hve covered hs een sttic

More information

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O 1 Section 5. The Definite Integrl Suppose tht function f is continuous nd positive over n intervl [, ]. y = f(x) x The re under the grph of f nd ove the x-xis etween nd is denoted y f(x) dx nd clled the

More information

221B Lecture Notes WKB Method

221B Lecture Notes WKB Method Clssicl Limit B Lecture Notes WKB Method Hmilton Jcobi Eqution We strt from the Schrödinger eqution for single prticle in potentil i h t ψ x, t = [ ] h m + V x ψ x, t. We cn rewrite this eqution by using

More information

Physics 9 Fall 2011 Homework 2 - Solutions Friday September 2, 2011

Physics 9 Fall 2011 Homework 2 - Solutions Friday September 2, 2011 Physics 9 Fll 0 Homework - s Fridy September, 0 Mke sure your nme is on your homework, nd plese box your finl nswer. Becuse we will be giving prtil credit, be sure to ttempt ll the problems, even if you

More information

LINEAR ALGEBRA APPLIED

LINEAR ALGEBRA APPLIED 5.5 Applictions of Inner Product Spces 5.5 Applictions of Inner Product Spces 7 Find the cross product of two vectors in R. Find the liner or qudrtic lest squres pproimtion of function. Find the nth-order

More information

Quantum Analogs Chapter 4 Student Manual

Quantum Analogs Chapter 4 Student Manual Quntum Anlogs Chpter 4 Student Mnul Modeling One Dimensionl Solid Professor Rene Mtzdorf Universitet Kssel Stud. Mn. Rev 2.0 12/09 4. Modeling one-dimensionl solid There re two different wys to explin

More information

CS 311 Homework 3 due 16:30, Thursday, 14 th October 2010

CS 311 Homework 3 due 16:30, Thursday, 14 th October 2010 CS 311 Homework 3 due 16:30, Thursdy, 14 th Octoer 2010 Homework must e sumitted on pper, in clss. Question 1. [15 pts.; 5 pts. ech] Drw stte digrms for NFAs recognizing the following lnguges:. L = {w

More information

4.4 Areas, Integrals and Antiderivatives

4.4 Areas, Integrals and Antiderivatives . res, integrls nd ntiderivtives 333. Ares, Integrls nd Antiderivtives This section explores properties of functions defined s res nd exmines some connections mong res, integrls nd ntiderivtives. In order

More information

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as Improper Integrls Two different types of integrls cn qulify s improper. The first type of improper integrl (which we will refer to s Type I) involves evluting n integrl over n infinite region. In the grph

More information

Lecture Solution of a System of Linear Equation

Lecture Solution of a System of Linear Equation ChE Lecture Notes, Dept. of Chemicl Engineering, Univ. of TN, Knoville - D. Keffer, 5/9/98 (updted /) Lecture 8- - Solution of System of Liner Eqution 8. Why is it importnt to e le to solve system of liner

More information

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions

More information

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1 Exm, Mthemtics 471, Section ETY6 6:5 pm 7:4 pm, Mrch 1, 16, IH-115 Instructor: Attil Máté 1 17 copies 1. ) Stte the usul sufficient condition for the fixed-point itertion to converge when solving the eqution

More information

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

More information

2 b. , a. area is S= 2π xds. Again, understand where these formulas came from (pages ).

2 b. , a. area is S= 2π xds. Again, understand where these formulas came from (pages ). AP Clculus BC Review Chpter 8 Prt nd Chpter 9 Things to Know nd Be Ale to Do Know everything from the first prt of Chpter 8 Given n integrnd figure out how to ntidifferentite it using ny of the following

More information

Flexible Beam. Objectives

Flexible Beam. Objectives Flexile Bem Ojectives The ojective of this l is to lern out the chllenges posed y resonnces in feedck systems. An intuitive understnding will e gined through the mnul control of flexile em resemling lrge

More information

dx dt dy = G(t, x, y), dt where the functions are defined on I Ω, and are locally Lipschitz w.r.t. variable (x, y) Ω.

dx dt dy = G(t, x, y), dt where the functions are defined on I Ω, and are locally Lipschitz w.r.t. variable (x, y) Ω. Chpter 8 Stility theory We discuss properties of solutions of first order two dimensionl system, nd stility theory for specil clss of liner systems. We denote the independent vrile y t in plce of x, nd

More information

Bend Forms of Circular Saws and Evaluation of their Mechanical Properties

Bend Forms of Circular Saws and Evaluation of their Mechanical Properties ISSN 139 13 MATERIALS SCIENCE (MEDŽIAGOTYRA). Vol. 11, No. 1. 5 Bend Forms of Circulr s nd Evlution of their Mechnicl Properties Kristin UKVALBERGIENĖ, Jons VOBOLIS Deprtment of Mechnicl Wood Technology,

More information

Chapter 6 Techniques of Integration

Chapter 6 Techniques of Integration MA Techniques of Integrtion Asst.Prof.Dr.Suprnee Liswdi Chpter 6 Techniques of Integrtion Recll: Some importnt integrls tht we hve lernt so fr. Tle of Integrls n+ n d = + C n + e d = e + C ( n ) d = ln

More information

Genetic Programming. Outline. Evolutionary Strategies. Evolutionary strategies Genetic programming Summary

Genetic Programming. Outline. Evolutionary Strategies. Evolutionary strategies Genetic programming Summary Outline Genetic Progrmming Evolutionry strtegies Genetic progrmming Summry Bsed on the mteril provided y Professor Michel Negnevitsky Evolutionry Strtegies An pproch simulting nturl evolution ws proposed

More information

Physics 1402: Lecture 7 Today s Agenda

Physics 1402: Lecture 7 Today s Agenda 1 Physics 1402: Lecture 7 Tody s gend nnouncements: Lectures posted on: www.phys.uconn.edu/~rcote/ HW ssignments, solutions etc. Homework #2: On Msterphysics tody: due Fridy Go to msteringphysics.com Ls:

More information

Acceptance Sampling by Attributes

Acceptance Sampling by Attributes Introduction Acceptnce Smpling by Attributes Acceptnce smpling is concerned with inspection nd decision mking regrding products. Three spects of smpling re importnt: o Involves rndom smpling of n entire

More information

The practical version

The practical version Roerto s Notes on Integrl Clculus Chpter 4: Definite integrls nd the FTC Section 7 The Fundmentl Theorem of Clculus: The prcticl version Wht you need to know lredy: The theoreticl version of the FTC. Wht

More information

The Properties of Stars

The Properties of Stars 10/11/010 The Properties of Strs sses Using Newton s Lw of Grvity to Determine the ss of Celestil ody ny two prticles in the universe ttrct ech other with force tht is directly proportionl to the product

More information

A study of Pythagoras Theorem

A study of Pythagoras Theorem CHAPTER 19 A study of Pythgors Theorem Reson is immortl, ll else mortl. Pythgors, Diogenes Lertius (Lives of Eminent Philosophers) Pythgors Theorem is proly the est-known mthemticl theorem. Even most nonmthemticins

More information

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite

More information

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral Improper Integrls Every time tht we hve evluted definite integrl such s f(x) dx, we hve mde two implicit ssumptions bout the integrl:. The intervl [, b] is finite, nd. f(x) is continuous on [, b]. If one

More information

5.2 Volumes: Disks and Washers

5.2 Volumes: Disks and Washers 4 pplictions of definite integrls 5. Volumes: Disks nd Wshers In the previous section, we computed volumes of solids for which we could determine the re of cross-section or slice. In this section, we restrict

More information

Pressure Wave Analysis of a Cylindrical Drum

Pressure Wave Analysis of a Cylindrical Drum Pressure Wve Anlysis of Cylindricl Drum Chris Clrk, Brin Anderson, Brin Thoms, nd Josh Symonds Deprtment of Mthemtics The University of Rochester, Rochester, NY 4627 (Dted: December, 24 In this pper, hypotheticl

More information

Lecture 14: Quadrature

Lecture 14: Quadrature Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be rel-vlues nd smooth The pproximtion of n integrl by numericl

More information

Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon

Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon Phys463.nb 49 7 Energy Bnds Ref: textbook, Chpter 7 Q: Why re there insultors nd conductors? Q: Wht will hppen when n electron moves in crystl? In the previous chpter, we discussed free electron gses,

More information

Ch AP Problems

Ch AP Problems Ch. 7.-7. AP Prolems. Willy nd his friends decided to rce ech other one fternoon. Willy volunteered to rce first. His position is descried y the function f(t). Joe, his friend from school, rced ginst him,

More information

221A Lecture Notes WKB Method

221A Lecture Notes WKB Method A Lecture Notes WKB Method Hmilton Jcobi Eqution We strt from the Schrödinger eqution for single prticle in potentil i h t ψ x, t = [ ] h m + V x ψ x, t. We cn rewrite this eqution by using ψ x, t = e

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

expression simply by forming an OR of the ANDs of all input variables for which the output is

expression simply by forming an OR of the ANDs of all input variables for which the output is 2.4 Logic Minimiztion nd Krnugh Mps As we found ove, given truth tle, it is lwys possile to write down correct logic expression simply y forming n OR of the ANDs of ll input vriles for which the output

More information

New Expansion and Infinite Series

New Expansion and Infinite Series Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06-073 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University

More information

Analytically, vectors will be represented by lowercase bold-face Latin letters, e.g. a, r, q.

Analytically, vectors will be represented by lowercase bold-face Latin letters, e.g. a, r, q. 1.1 Vector Alger 1.1.1 Sclrs A physicl quntity which is completely descried y single rel numer is clled sclr. Physiclly, it is something which hs mgnitude, nd is completely descried y this mgnitude. Exmples

More information

Chapter Five: Nondeterministic Finite Automata. Formal Language, chapter 5, slide 1

Chapter Five: Nondeterministic Finite Automata. Formal Language, chapter 5, slide 1 Chpter Five: Nondeterministic Finite Automt Forml Lnguge, chpter 5, slide 1 1 A DFA hs exctly one trnsition from every stte on every symol in the lphet. By relxing this requirement we get relted ut more

More information

Supplementary Information for Directional Reflective Surface Formed via Gradient- Impeding Acoustic Meta-surfaces

Supplementary Information for Directional Reflective Surface Formed via Gradient- Impeding Acoustic Meta-surfaces Supplementry Informtion for Directionl Reflective Surfce Formed vi Grdient- Impeding Acoustic Met-surfces Kyungjun Song 1*, Jedo Kim 2, Hur Shin 1, Jun-Hyuk Kwk 1, Seong-Hyun Lee 3,Tesung Kim 4 1 Deprtment

More information

a * a (2,1) 1,1 0,1 1,1 2,1 hkl 1,0 1,0 2,0 O 2,1 0,1 1,1 0,2 1,2 2,2

a * a (2,1) 1,1 0,1 1,1 2,1 hkl 1,0 1,0 2,0 O 2,1 0,1 1,1 0,2 1,2 2,2 18 34.3 The Reciprocl Lttice The inverse of the intersections of plne with the unit cell xes is used to find the Miller indices of the plne. The inverse of the d-spcing etween plnes ppers in expressions

More information

Lecture 1: Introduction to integration theory and bounded variation

Lecture 1: Introduction to integration theory and bounded variation Lecture 1: Introduction to integrtion theory nd bounded vrition Wht is this course bout? Integrtion theory. The first question you might hve is why there is nything you need to lern bout integrtion. You

More information

Designing Information Devices and Systems I Anant Sahai, Ali Niknejad. This homework is due October 19, 2015, at Noon.

Designing Information Devices and Systems I Anant Sahai, Ali Niknejad. This homework is due October 19, 2015, at Noon. EECS 16A Designing Informtion Devices nd Systems I Fll 2015 Annt Shi, Ali Niknejd Homework 7 This homework is due Octoer 19, 2015, t Noon. 1. Circuits with cpcitors nd resistors () Find the voltges cross

More information

9.4. The Vector Product. Introduction. Prerequisites. Learning Outcomes

9.4. The Vector Product. Introduction. Prerequisites. Learning Outcomes The Vector Product 9.4 Introduction In this section we descrie how to find the vector product of two vectors. Like the sclr product its definition my seem strnge when first met ut the definition is chosen

More information