Euler s Formula. Complex Numbers - Example. Complex Numbers - Example. Complex Numbers - Review. Complex Numbers - Review.

Size: px
Start display at page:

Download "Euler s Formula. Complex Numbers - Example. Complex Numbers - Example. Complex Numbers - Review. Complex Numbers - Review."

Transcription

1 Chaper ahemaical ehods Slides o accompay lecures i Vibro-Acousic Desig i echaical Sysems by D. W. Herri Deparme of echaical Egieerig Lexigo, KY el: dherri@egr.uky.edu Euler s Formula he Power of Complex Numbers θ e j cosθ j siθ aylor s Series Proof 4 x x x x f 4 4 x f a xf a f f f f 4 6 θ θ θ cosθ θ θ θ siθ θ e j θ θ θ θ θ θj j j 4 5 Complex Numbers - Example z j Addiio ad Subracio z z 7 j z z 4 j z 5 j Complex Numbers - Example uliplicaio ad Divisio Raioalizaio z j z 5 j z z 5j j j j 5 j 7 5 j 5 j 6 * z zz 7 j * z z z 4 Close ad Frederick, Complex Numbers - Review Close ad Frederick, Complex Numbers - Review 5 6

2 Close ad Frederick, Polar Form - Review x z cosθ y z siθ z x y y θ arca x jθ z z e Close ad Frederick, Complex Number Noaios - Review Recagular Form z x jy cosθ jsiθ z z Polar Form z z θ jθ z z e 7 8 Polar Form - Review z e z e π j π π j π cos j si j j π cos π j si z e π π cos π j si j j π cos π j si z e π z z Polar Form - Examples z j z 5 j z e.98 j π j z e j 6.97 z z 8e 4 j *.98 j zz e. 8 j 7 7 j e *.97 j zz 6e 6 9 Polar Form - Examples z j z 5 j z z z z 8 45 z z z z Polar Form Complex Cojugae z j * z j z e z e.98 j *.98 j *.98 j.97 j zz e 6e. 8 j 7 7 j e *.97 j.97 j zz 6e 6e 6

3 ALAB Commads Example Wrie he harmoically varyig force as a complex force. r absz hea aglez x realz y imagz ˆF cos ω ˆFe jω ˆF cos ω jsi ω F F F Re jω ˆFe 4 Example Wrie he harmoically varyig force as a complex force. F ˆF cos ω ˆF si ω e jω ˆF j ˆF F ˆF j ˆF F ˆF cos ω ˆF si ω cos ω jsi ω j ˆF si ω ˆF cos ω Example Wrie he harmoically varyig force as a complex force. F ˆF cos ω ˆF si ω ˆF cos ω ϕ ˆF ˆF ˆF ϕ arca ˆF ˆF F ˆFe jω jϕ jω ˆFe F Re jω ˆFe 5 6 Displaceme, Velociy ad Acceleraio v ˆve j ωϕ v a d d v jω ˆve j ωϕ v ω ˆve j ωϕ vπ / v x d jω ˆve j ωϕ v ω ˆve j ωϕ v π / Complex Cojugae F FF * j ωϕ j ωϕ ˆFe ˆFe ˆF ˆF ˆF Re F F F* ˆF cos ω jsi ω ˆF cos ω jsi ω ˆF cos ω 7 8

4 Derivaio echaical Power F ˆF cos ω ϕ F Re ˆFe j ωϕ F v ˆvcos ω ϕ v Re ˆve j ωϕ v W F v Re F Re v * v W F F v * v Re F * v Re ˆFˆve j ϕ F ϕ v W 4 F v F * v * F * v F v * W Re F W Re ˆFˆve j ωϕ Fϕ v W ˆFˆv cos ω ϕ F ϕ v cos ϕ F ϕ v Derivaio echaical Power ˆFˆv cos ω ϕ F ϕ v cos ϕ F ϕ v W W W d W Re Fv* Re F* v ˆFˆvcos ϕ F ϕ v 9 he rasfer Fucio rasfer Fucios H i a i oupu F ipu easure usig impac esig or shaker. Simulae by usig ui force ad deermiig acceleraio. easure usig impac esig or shaker. Simulae by usig ui force ad deermiig acceleraio. a i F Ui Force Assumpio Superposiio Assumpio Lieariy Doublig he force will double he respose. F F a i I F a i II a i I a i II F a i I a i II H i F H i F a i F a i F 4 4

5 Liear Superposiio Sigle DOF Sysems I Operaio Equaio of oio: x Bx Kx f F cos ω f x K B F F oal respose rasie Respose Seady Sae Respose F F 4 rasie respose depeds o a he sysem parameers, B, ad K ad b he I.C s Seady sae respose depeds o a he sysem parameers ad b he ampliude ad frequecy of he forcig fucio 5 6 rasie ad Seady Sae Respose Complex Expoeial Form f ad x rasie Seady Sae oal Respose Forcig Fucio ime s ζω Ae cos ω θ X cos ω φ x D x B x Kx f ˆF cos ω x ˆXe jω jω f ˆFe ω jωb K ˆXe jω ˆF ˆX K ω ˆFe jω f jωb e jϕ K ω ωb ˆF jω x Re ˆXe ωb ϕ arca K ω ˆF cos ω ϕ K ω ωb x K B 7 8 ω δ B g K F he Amplificaio Facor ˆX ĝ ω ω δω δω ϕ arca ω π,,,,... ω he Amplificaio Facor ˆX ω φ ˆX ω ω ω 4 δ ω ωω Siusoidal Seady Sae Respose f F cos ω Frequecy Respose Fucio H s s jω H jω ϕ X ϕ F H jω ϕ Vibraig Sysem wih rasfer fucio Hs Ipu, Oupu x X cos ω ϕ ime s f x 9 5

6 Frequecy Respose Fucios Y ω X ω H ω Dyamic Flexibiliy or Recepace obiliy or echaical Admiace Accelerace Dyamic Siffess echaical Impedace Acousic Impedace Specific Impedace H ω x ω F ω H ω v ω F ω A ω a ω F ω κ ω F ω x ω Z ω F ω v ω Z ω p ω Q ω Z ω p ω u ω H ω Frequecy Respose Fucios X ω F ω ω jωδ K K ω ω δ ω δ > ω δ < ω δ Criically Damped Overdamped Uderdamped Udamped ξ δ Ofe a dampig raio is defied ω j ωδ ω Dyamic Flexibiliy agiude Dyamic Flexibiliy Phase 4 Nyquis Diagram Derivaio of Loss Facor E ki ω x cos ω ϕ E po K x si ω ϕ dx E dis F d dx B d dx B dx d d Bx ω cos ω ϕd Bx ω Bx ω π ω Bx ωπ η E dis π max E po ωb K ωδ ω 5 6 6

7 aerial Dampig aerial Dampig ε σ Creep es σ Relaxaio es ε ε ε σ σ σ J ε E ε σ he Kelvi-Voig -Parameer odel E R Creep Compliace ε J J σ E R e E Sress Relaxaio σ ε E E E 7 8 aerial Dampig aerial Dampig he -Parameer odel E R E Cosas p R E q E E E q R E Creep Compliace ε σ J p q J e q q q q Sress Relaxaio σ E E ε q q q e p p For Low Frequecy Harmoic Processes he Kelvi-Voig odel is Applicable E ω E jωr E jη he aerial Loss Facor Seel ~. Eergy Dissipaed per Cycle η ω aximum Poeial Eergy W D ωr πu E 9 4 Compoe ad Srucural Dampig Cook e al., Srucural Dampig Compoe loss facor differs because sress ad disorio codiios are posiio-depede. Uless paricular measures are ake o icrease compoe dampig, dampig a he coac surfaces of jois boled, riveed, clamped is he predomia dampig mechaism. Dampig is due o relaive moio of he maig surfaces. his ca happe i he form of macro-slip relaive moio across he eire face of he joi, micro-slip ierfacial slip of small areas, ad gas pumpig losses. η ~. Dampig i srucures is ormally o viscous. I is due o mechaisms such as hyseresis i he maerial ad slip i coecios. I realiy, due o compuaio easiess, dampig i srucures are approximaed by viscous dampig. Pheomeological dampig mehods physical dissipaive mechaisms are modeled. Specral dampig mehods viscous dampig is iroduced by meas of specified fracios of criical dampig

8 odels for Damped Srucures odels for Damped Srucures x Cx Kx f x ξω x ω x C K f x f a jω Xe jω Fe x f Viscous Dampig Represeaio x ξωx ω x F ω X ξω jωx ω X F A Resoace η ξ Used i SEA Codes Loss Facor Represeaio x K jη x f K x jη x f ω X jηω X ω X F Used i FE Codes 4 44 VDI 8 odels for Damped Srucures odels for Damped Srucures [ ] x [ C] x [ K] x { f } [ C] α [ K] β[ ] a Assumig special dampig marices which simplify calculaio wih viscous dampig or wih srucural dampig, he equaios of moio ca be decoupled by modal rasformaio. his yields equaios of moio for simple damped sysems which ca be solved i he familiar maer. If his assumpio is o jusified by he physical dampig behavior of a srucure, he he couplig effecs should be icorporaed i he model. Proporioal Dampig Represeaio x αk β x Kx f ξω αω β αω β x ω x f x x ξωx ω x f Relaio o Viscous Dampig Raio ξ αω β ω Cook e al., Rayleigh or Proporioal Dampig Srucural Vibraio a a Sigle DOF A a sigle degree of freedom ξ ξ Desig Specrum β ξ αω ω Esimaig α ad β ξω ξω α ω ω ωω ξω ξω β ω ω u ϕ cos ω u displaceme of a odal DOF ϕ ampliude ω ω

9 Srucural Vibraio for he Eire Srucure { u} { ϕ}cos ω ode Shapes he vecor of ampliudes is a mode shape φ φ φ φ 4 5 φ 6 φ 7 φ 8 { u} Vecor of odal displacemes { ϕ} vecor of ampliudes for each DOF Use subscrip i o differeiae mode shapes ad aural frequecies { u} { ϕ} i cos ω i 49 5 Appropriae Iiial Codiios Deermiig Naural Frequecies If he I.C.s are a scalar a muliple of a specific mode shape he he srucure will vibrae i he correspodig mode ad aural frequecy ICs a{ ϕ} i Cosider a muli DOF sysem [ ]{ u } [ K] { u} { } Noe ha he sysem is ü Udamped ü No excied by ay exeral forces 5 5 odal Aalysis If he sysem vibraes accordig o a paricular mode shape ad frequecy { u} { ϕ} i cos ω i { ϕ} i mode shape i ω i aural frequecy i odal Aalysis g Firs derivaive Velociy { u } ω i { ϕ} i si ω i g Secod derivaive Acceleraio { u } ω i { φ} cos ω i i

10 odal Aalysis Plug velociy ad acceleraio io he equaio of moio ω K i φ wo possible soluios { φ} i { } de ω K i { } i { } he Eige Problem de ω K i he Eige Problem A x { } λ x { } Eigevalue Eigevecor λ { x} odal Aalysis A Eige Problem ω K i { φ} K { } ω i { } φ K Naural frequecies are eigevalues he mode shapes are eigevecors φ φ { } ω i { φ} ω i { φ} odal Aalysis A Eige Problem K { φ } ω i { φ} { } λ{ x} A x Solvig he eige problem A { x } λ x A λ I x de A λ I { } { } Example Eige Problem de * x x λ i x x - λ * i,, Fid Eigevalues de * λ λ Eige values λ λ,. - 9 λ 4λ 5 λ λ

11 λ * * For Eige Vecor,/. - x x,/. - / 4 5 x x / For Eige Vecor *- /,. / x ca be ay value x x x x / -/. / / / / λ 5 * * For Eige Vecor 5 5 5,/. - x x,/ x /. 4 - x 5 / * For Eige Vecor x x. -/, x ca be ay value x x x x. / Example arix Form 5 kg x x kg K K K 8 N/m K 4 N/m Equaios of moios x K x K x x K x K x K x x K, K x,, * x - K K K * x - * - 5 x, 8 8 x,, * x - 8 * x - *

12 Se Up Eige Problem { } ω i { φ} K φ K de 6 6 λ. -, 8 / ω Solve Eige Problem de * λ 5. rad/s f Hz π ω λ rad/s f Hz π 6 λ 6 8 λ φ φ φ φ, ode ode K K K K 69 7 Weighed Orhogoaliy odal Vecor Scalig ϕ ϕ ϕ ϕ [ ] [ K] ϕ ϕ ϕ ϕ g Uiy odal ass ϕ ϕ [ ] ϕ ϕ 7 7

13 odal Vecor Scalig Example Vibraig achie Isolaio g Uiy odal ass.7645x.6446x ϕ ϕ 5 *, X X.6446X m kg m 5 kg κ 5E6 N/m κ E6 N/m d v kg/s d v kg/s 7 74 Eigevalues ad Eigevecors Forces Wih / Wihou Exciaio ω 4.7 rad/s f 6.48 Hz ψ 5.8 ω 45.6 rad/s f 9. Hz ψ.4 F ˆF e jω F ˆF e jω x p ˆx p e jω x p ˆx p e jω ˆF wihou ˆF exc ˆF wih κ ˆx e jω jωd vˆx e jω Simulaeous Differeial Equaios m ω ˆx p jω d v d v ˆx p κ κ ˆx p jωd v ˆx p κ ˆx p ˆF exc jωd v ˆx p κ ˆx p m ω ˆx p jωd v ˆx p κ ˆx p Simulaeous Differeial Equaios γ ω ˆF wihou κ jωd ω v m κ κ jω d v d v ω m κ jωd v ˆF wih κ jωd v κ jωd v 77 78

14 he Frequecy Specrum Dyamic sigals ca be represeed i he frequecy domai by a frequecy specrum ime domai ampliude vs. ime frequecy domai Fudameal firs harmoic Secod harmoic f Hz ampliude vs. frequecy Fourier Aalysis Used o deermie he frequecy specrum of dyamic sigals specrum aalyzer hardware y A o A cos ω B si ω A o C cos ω ϕ A A y d y cos ω d B y si ω d C A B ϕ a B A π/ω Is he period of he sigal, ω is he fudameal frequecy firs harmoic, ω is he secod harmoic, ec y A Example Example Fourier Series Expasio 4A si ω si ω si 5ω si ω π 5 y A i.e., B -A y cos ω d Acos ω d Acos ω d A si ω ω A ω si π * / 4A π, odd y si ω d, eve C A B B ϕ a B A π Acos ω d,. - Phase bewee A B 4A π 4A π 8 8 Example Fourier Series Expasio Example Fourier Lie Specrum 4A si ω si ω si 5ω si ω π 5 y ime domai frequecy domai y A -A 4A π ω 4A π 4A 5π ω 5ω ec. ampliude vs. ime ampliude vs.frequecy

15 ypical Siuaio ypical Siuaio How much is he vibraio? Peak.5 mm Peak-o-peak.4 mm Average - 8.x -4 mm rms.5 mm Specrum reveals several harmoics uder Hz, probably relaed o egie rpm ad firig frequecy Digiizaio of Aalog Sigals ime sigals are sampled usig a aalog-o-digial coverer a digial logic hardware device o yield a digiized versio of he waveform for furher processig. Aalog volage sigal from rasducer ADC ime s ec. Volage V Volage values sored i compuer memory Samplig Parameers Δ sampleierval f sample rae / Δ samples/sec or Hz N oal umber of samples oal sample period NΔ r sampleidex umber,, N rδ ime of ay give sample y s yrδ y Discree Fourier rasform Coiuous aalog form: A o A cos ω B si ω y A y cos ω d B y si ω Discree digial form: he discree form will yield frequecy values up o N/ oly. N N π πr N A y r cos rδ Δ y rδ cos,, NΔ r NΔ N r N N πr B y rδ si N r N d Frequecies i Discreely Sampled Sigals. Like is aalog couerpar, he discree Fourier series coais frequecy compoes spaced / apar. his is called he frequecy resoluio Δf : Fourier Coefficies Δf / Δf / Hz f

16 Frequecies i Discreely Sampled Sigals he Aliasig Pheomeo. Sigals mus be sampled a a miimum rae f s wice he highes frequecy of ieres he Nyquis frequecy f Nyq. he highes frequecy resolved i a DF is: fs f Nyq If his is o doe, aliasig error occurs. a f s f b f > f s > f c f s f he sigal f will appear as f/ i he specrum miimum sample rae 9 9 he Aliasig Pheomeo No Periodic rasie, radom Sigals f Nyq f Nyq he Fourier Iegral rasform: rue specrum f easured specrum f Fω f π f e jω d Fωe jω dω Fω is coiuous, complex lim f Aliasig resuls i harmoics above he Nyquis frequecy beig folded back oo heir eighbors. Commercial specrum aalyzers se he samplig frequecy a leas.5 imes he highes frequecy of ieres. Sigal is low-pass filered before samplig. f ime Domai Fω ω Frequecy Domai 9 94 he Fourier Iegral he Fourier Iegral Example: f A Example: 5 / -A Fω Ae jω d Ae jω d ja ω e jω / e jω / Fω FωF *ω A ω 6 8cos π ω ω o cos π ω ω o where ω o π / Fω A /ω o 4 Compare wih Fourier series resuls ω/ω o

17 Frequecy Respose Fucios FRF s Frequecy Respose Fucios FRF s A FRF is he raio of wo Fourier rasforms: H ω F ω F ω Wha is he FRF bewee he soud pressures a wo pois i a duc carryig a x wave? A A x x H ω P ω P ω Ae jkx e Ae jkx x jkx Noe: kx x ωδ where Δ is he propagaio ime x x

Chapter 3 Mathematical Methods

Chapter 3 Mathematical Methods Chapter 3 Mathematical Methods Slides to accompany lectures in Vibro-Acoustic Design in Mechanical Systems 0 by D. W. Herrin Department of Mechanical Engineering Lexington, KY 40506-0503 Tel: 859-8-0609

More information

Harmonic excitation (damped)

Harmonic excitation (damped) Harmoic eciaio damped k m cos EOM: m&& c& k cos c && ζ & f cos The respose soluio ca be separaed io par;. Homogeeous soluio h. Paricular soluio p h p & ζ & && ζ & f cos Homogeeous soluio Homogeeous soluio

More information

Problems and Solutions for Section 3.2 (3.15 through 3.25)

Problems and Solutions for Section 3.2 (3.15 through 3.25) 3-7 Problems ad Soluios for Secio 3 35 hrough 35 35 Calculae he respose of a overdamped sigle-degree-of-freedom sysem o a arbirary o-periodic exciaio Soluio: From Equaio 3: x = # F! h "! d! For a overdamped

More information

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory Liear Time-Ivaria Sysems (LTI Sysems) Oulie Basic Sysem Properies Memoryless ad sysems wih memory (saic or dyamic) Causal ad o-causal sysems (Causaliy) Liear ad o-liear sysems (Lieariy) Sable ad o-sable

More information

Optimization of Rotating Machines Vibrations Limits by the Spring - Mass System Analysis

Optimization of Rotating Machines Vibrations Limits by the Spring - Mass System Analysis Joural of aerials Sciece ad Egieerig B 5 (7-8 (5 - doi: 765/6-6/57-8 D DAVID PUBLISHING Opimizaio of Roaig achies Vibraios Limis by he Sprig - ass Sysem Aalysis BENDJAIA Belacem sila, Algéria Absrac: The

More information

Electrical Engineering Department Network Lab.

Electrical Engineering Department Network Lab. Par:- Elecrical Egieerig Deparme Nework Lab. Deermiaio of differe parameers of -por eworks ad verificaio of heir ierrelaio ships. Objecive: - To deermie Y, ad ABD parameers of sigle ad cascaded wo Por

More information

12 Getting Started With Fourier Analysis

12 Getting Started With Fourier Analysis Commuicaios Egieerig MSc - Prelimiary Readig Geig Sared Wih Fourier Aalysis Fourier aalysis is cocered wih he represeaio of sigals i erms of he sums of sie, cosie or complex oscillaio waveforms. We ll

More information

Clock Skew and Signal Representation

Clock Skew and Signal Representation Clock Skew ad Sigal Represeaio Ch. 7 IBM Power 4 Chip 0/7/004 08 frequecy domai Program Iroducio ad moivaio Sequeial circuis, clock imig, Basic ools for frequecy domai aalysis Fourier series sigal represeaio

More information

Solutions Manual 4.1. nonlinear. 4.2 The Fourier Series is: and the fundamental frequency is ω 2π

Solutions Manual 4.1. nonlinear. 4.2 The Fourier Series is: and the fundamental frequency is ω 2π Soluios Maual. (a) (b) (c) (d) (e) (f) (g) liear oliear liear liear oliear oliear liear. The Fourier Series is: F () 5si( ) ad he fudameal frequecy is ω f ----- H z.3 Sice V rms V ad f 6Hz, he Fourier

More information

Vibration 2-1 MENG331

Vibration 2-1 MENG331 Vibraio MENG33 Roos of Char. Eq. of DOF m,c,k sysem for λ o he splae λ, ζ ± ζ FIG..5 Dampig raios of commo maerials 3 4 T d T d / si cos B B e d d ζ ˆ ˆ d T N e B e B ζ ζ d T T w w e e e B e B ˆ ˆ ζ ζ

More information

Fourier transform. Continuous-time Fourier transform (CTFT) ω ω

Fourier transform. Continuous-time Fourier transform (CTFT) ω ω Fourier rasform Coiuous-ime Fourier rasform (CTFT P. Deoe ( he Fourier rasform of he sigal x(. Deermie he followig values, wihou compuig (. a (0 b ( d c ( si d ( d d e iverse Fourier rasform for Re { (

More information

King Fahd University of Petroleum & Minerals Computer Engineering g Dept

King Fahd University of Petroleum & Minerals Computer Engineering g Dept Kig Fahd Uiversiy of Peroleum & Mierals Compuer Egieerig g Dep COE 4 Daa ad Compuer Commuicaios erm Dr. shraf S. Hasa Mahmoud Rm -4 Ex. 74 Email: ashraf@kfupm.edu.sa 9/8/ Dr. shraf S. Hasa Mahmoud Lecure

More information

Let s express the absorption of radiation by dipoles as a dipole correlation function.

Let s express the absorption of radiation by dipoles as a dipole correlation function. MIT Deparme of Chemisry 5.74, Sprig 004: Iroducory Quaum Mechaics II Isrucor: Prof. Adrei Tokmakoff p. 81 Time-Correlaio Fucio Descripio of Absorpio Lieshape Le s express he absorpio of radiaio by dipoles

More information

EGR 544 Communication Theory

EGR 544 Communication Theory EGR 544 Commuicaio heory 7. Represeaio of Digially Modulaed Sigals II Z. Aliyazicioglu Elecrical ad Compuer Egieerig Deparme Cal Poly Pomoa Represeaio of Digial Modulaio wih Memory Liear Digial Modulaio

More information

Section 8 Convolution and Deconvolution

Section 8 Convolution and Deconvolution APPLICATIONS IN SIGNAL PROCESSING Secio 8 Covoluio ad Decovoluio This docume illusraes several echiques for carryig ou covoluio ad decovoluio i Mahcad. There are several operaors available for hese fucios:

More information

BE.430 Tutorial: Linear Operator Theory and Eigenfunction Expansion

BE.430 Tutorial: Linear Operator Theory and Eigenfunction Expansion BE.43 Tuorial: Liear Operaor Theory ad Eigefucio Expasio (adaped fro Douglas Lauffeburger) 9//4 Moivaig proble I class, we ecouered parial differeial equaios describig rasie syses wih cheical diffusio.

More information

A Two-Level Quantum Analysis of ERP Data for Mock-Interrogation Trials. Michael Schillaci Jennifer Vendemia Robert Buzan Eric Green

A Two-Level Quantum Analysis of ERP Data for Mock-Interrogation Trials. Michael Schillaci Jennifer Vendemia Robert Buzan Eric Green A Two-Level Quaum Aalysis of ERP Daa for Mock-Ierrogaio Trials Michael Schillaci Jeifer Vedemia Rober Buza Eric Gree Oulie Experimeal Paradigm 4 Low Workload; Sigle Sessio; 39 8 High Workload; Muliple

More information

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 21 Base Excitation Shock: Classical Pulse

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 21 Base Excitation Shock: Classical Pulse SHOCK AND VIBRAION RESPONSE SPECRA COURSE Ui 1 Base Exciaio Shock: Classical Pulse By om Irvie Email: omirvie@aol.com Iroucio Cosier a srucure subjece o a base exciaio shock pulse. Base exciaio is also

More information

UNIT 6 Signals and Systems

UNIT 6 Signals and Systems UNIT 6 ONE MARK MCQ 6. dy dy The differeial equaio y x( ) d d + describes a sysem wih a ipu x () ad a oupu y. () The sysem, which is iiially relaxed, is excied by a ui sep ipu. The oupu y^h ca be represeed

More information

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP) ENGG450 Probabiliy ad Saisics for Egieers Iroducio 3 Probabiliy 4 Probabiliy disribuios 5 Probabiliy Desiies Orgaizaio ad descripio of daa 6 Samplig disribuios 7 Ifereces cocerig a mea 8 Comparig wo reames

More information

Clock Skew and Signal Representation. Program. Timing Engineering

Clock Skew and Signal Representation. Program. Timing Engineering lock Skew ad Sigal epreseaio h. 7 IBM Power 4 hip Iroducio ad moivaio Sequeial circuis, clock imig, Basic ools for frequecy domai aalysis Fourier series sigal represeaio Periodic sigals ca be represeed

More information

Vibration damping of the cantilever beam with the use of the parametric excitation

Vibration damping of the cantilever beam with the use of the parametric excitation The s Ieraioal Cogress o Soud ad Vibraio 3-7 Jul, 4, Beijig/Chia Vibraio dampig of he cailever beam wih he use of he parameric exciaio Jiří TŮMA, Pavel ŠURÁNE, Miroslav MAHDA VSB Techical Uiversi of Osrava

More information

Comparison between Fourier and Corrected Fourier Series Methods

Comparison between Fourier and Corrected Fourier Series Methods Malaysia Joural of Mahemaical Scieces 7(): 73-8 (13) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/oural Compariso bewee Fourier ad Correced Fourier Series Mehods 1

More information

Discrete-Time Signals and Systems. Introduction to Digital Signal Processing. Independent Variable. What is a Signal? What is a System?

Discrete-Time Signals and Systems. Introduction to Digital Signal Processing. Independent Variable. What is a Signal? What is a System? Discree-Time Sigals ad Sysems Iroducio o Digial Sigal Processig Professor Deepa Kudur Uiversiy of Toroo Referece: Secios. -.4 of Joh G. Proakis ad Dimiris G. Maolakis, Digial Sigal Processig: Priciples,

More information

Stochastic Structural Dynamics. Lecture-32. Probabilistic methods in earthquake engineering-1

Stochastic Structural Dynamics. Lecture-32. Probabilistic methods in earthquake engineering-1 Sochasic Srucural Dyamics Lecure-3 Probabilisic mehods i earhquake eieeri- Dr C S Maohar Deparme of Civil Eieeri Professor of Srucural Eieeri Idia Isiue of Sciece Baalore 56 Idia maohar@civil.iisc.ere.i

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpeCourseWare hp://ocw.mi.edu 5.74 Iroducory Quaum Mechaics II Sprig 009 For iformaio aou ciig hese maerials or our Terms of Use, visi: hp://ocw.mi.edu/erms. drei Tokmakoff, MIT Deparme of Chemisry,

More information

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi Liear lgebra Lecure #9 Noes This week s lecure focuses o wha migh be called he srucural aalysis of liear rasformaios Wha are he irisic properies of a liear rasformaio? re here ay fixed direcios? The discussio

More information

Math-303 Chapter 7 Linear systems of ODE November 16, Chapter 7. Systems of 1 st Order Linear Differential Equations.

Math-303 Chapter 7 Linear systems of ODE November 16, Chapter 7. Systems of 1 st Order Linear Differential Equations. Mah-33 Chaper 7 Liear sysems of ODE November 6, 7 Chaper 7 Sysems of s Order Liear Differeial Equaios saddle poi λ >, λ < Mah-33 Chaper 7 Liear sysems of ODE November 6, 7 Mah-33 Chaper 7 Liear sysems

More information

The Eigen Function of Linear Systems

The Eigen Function of Linear Systems 1/25/211 The Eige Fucio of Liear Sysems.doc 1/7 The Eige Fucio of Liear Sysems Recall ha ha we ca express (expad) a ime-limied sigal wih a weighed summaio of basis fucios: v ( ) a ψ ( ) = where v ( ) =

More information

Principles of Communications Lecture 1: Signals and Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University

Principles of Communications Lecture 1: Signals and Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University Priciples of Commuicaios Lecure : Sigals ad Sysems Chih-Wei Liu 劉志尉 Naioal Chiao ug Uiversiy cwliu@wis.ee.cu.edu.w Oulies Sigal Models & Classificaios Sigal Space & Orhogoal Basis Fourier Series &rasform

More information

Notes 03 largely plagiarized by %khc

Notes 03 largely plagiarized by %khc 1 1 Discree-Time Covoluio Noes 03 largely plagiarized by %khc Le s begi our discussio of covoluio i discree-ime, sice life is somewha easier i ha domai. We sar wih a sigal x[] ha will be he ipu io our

More information

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003 ODEs II, Suppleme o Lecures 6 & 7: The Jorda Normal Form: Solvig Auoomous, Homogeeous Liear Sysems April 2, 23 I his oe, we describe he Jorda ormal form of a marix ad use i o solve a geeral homogeeous

More information

Analysis of Musical Sounds

Analysis of Musical Sounds Aalysis of Musical Souds Musical souds are produced by he vibraio of physical sysems, e.g. Srig Isrumes guiars, piaos, violis ec.: Use he aural vibraio of sreched srigs or wires. Wid Isrumes rumpes, saxophoes,

More information

Manipulations involving the signal amplitude (dependent variable).

Manipulations involving the signal amplitude (dependent variable). Oulie Maipulaio of discree ime sigals: Maipulaios ivolvig he idepede variable : Shifed i ime Operaios. Foldig, reflecio or ime reversal. Time Scalig. Maipulaios ivolvig he sigal ampliude (depede variable).

More information

Sampling Example. ( ) δ ( f 1) (1/2)cos(12πt), T 0 = 1

Sampling Example. ( ) δ ( f 1) (1/2)cos(12πt), T 0 = 1 Samplig Example Le x = cos( 4π)cos( π). The fudameal frequecy of cos 4π fudameal frequecy of cos π is Hz. The ( f ) = ( / ) δ ( f 7) + δ ( f + 7) / δ ( f ) + δ ( f + ). ( f ) = ( / 4) δ ( f 8) + δ ( f

More information

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition. ! Revised April 21, 2010 1:27 P! 1 Fourier Series David Radall Assume ha u( x,) is real ad iegrable If he domai is periodic, wih period L, we ca express u( x,) exacly by a Fourier series expasio: ( ) =

More information

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002 ME 31 Kiemaic ad Dyamic o Machie S. Lamber Wier 6.. Forced Vibraio wih Dampig Coider ow he cae o orced vibraio wih dampig. Recall ha he goverig diereial equaio i: m && c& k F() ad ha we will aume ha he

More information

6.01: Introduction to EECS I Lecture 3 February 15, 2011

6.01: Introduction to EECS I Lecture 3 February 15, 2011 6.01: Iroducio o EECS I Lecure 3 February 15, 2011 6.01: Iroducio o EECS I Sigals ad Sysems Module 1 Summary: Sofware Egieerig Focused o absracio ad modulariy i sofware egieerig. Topics: procedures, daa

More information

ECE-314 Fall 2012 Review Questions

ECE-314 Fall 2012 Review Questions ECE-34 Fall 0 Review Quesios. A liear ime-ivaria sysem has he ipu-oupu characerisics show i he firs row of he diagram below. Deermie he oupu for he ipu show o he secod row of he diagram. Jusify your aswer.

More information

Sampling. AD Conversion (Additional Material) Sampling: Band limited signal. Sampling. Sampling function (sampling comb) III(x) Shah.

Sampling. AD Conversion (Additional Material) Sampling: Band limited signal. Sampling. Sampling function (sampling comb) III(x) Shah. AD Coversio (Addiioal Maerial Samplig Samplig Properies of real ADCs wo Sep Flash ADC Pipelie ADC Iegraig ADCs: Sigle Slope, Dual Slope DA Coverer Samplig fucio (samplig comb III(x Shah III III ( x = δ

More information

Chapter 2: Time-Domain Representations of Linear Time-Invariant Systems. Chih-Wei Liu

Chapter 2: Time-Domain Representations of Linear Time-Invariant Systems. Chih-Wei Liu Caper : Time-Domai Represeaios of Liear Time-Ivaria Sysems Ci-Wei Liu Oulie Iroucio Te Covoluio Sum Covoluio Sum Evaluaio Proceure Te Covoluio Iegral Covoluio Iegral Evaluaio Proceure Iercoecios of LTI

More information

Single Degree of Freedom System Free Vibration

Single Degree of Freedom System Free Vibration Maa Kliah : Diamika Srkr & Pegaar Rekayasa Kegempaa Kode : TSP 30 SKS : 3 SKS Sigle Degree of Freedom Sysem Free Vibraio Perema - TIU : Mahasisa dapa mejelaska eag eori diamika srkr. Mahasisa dapa memba

More information

6.003: Signals and Systems Lecture 20 April 22, 2010

6.003: Signals and Systems Lecture 20 April 22, 2010 6.003: Sigals ad Sysems Lecure 0 April, 00 6.003: Sigals ad Sysems Relaios amog Fourier Represeaios Mid-erm Examiaio #3 Wedesday, April 8, 7:30-9:30pm. No reciaios o he day of he exam. Coverage: Lecures

More information

Calculus BC 2015 Scoring Guidelines

Calculus BC 2015 Scoring Guidelines AP Calculus BC 5 Scorig Guidelies 5 The College Board. College Board, Advaced Placeme Program, AP, AP Ceral, ad he acor logo are regisered rademarks of he College Board. AP Ceral is he official olie home

More information

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 17, 2013

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 17, 2013 LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 7, 203 Iroducio LINEARIZATION OF THE RBC MODEL For f( xyz,, ) = 0, mulivariable Taylor liear expasio aroud f( xyz,, ) f( xyz,, ) + f( xyz,, )( x

More information

Single Degree of Freedom System Free Vibration

Single Degree of Freedom System Free Vibration Iegriy, Professioalism, & Erepreership Maa Kliah : Diamika Srkr & Pegaar Rekayasa Kegempaa Kode : CIV 308 SKS : 3 SKS Sigle Degree of Freedom Sysem Free Vibraio Perema - Iegriy, Professioalism, & Erepreership

More information

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 2013

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 2013 LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 203 Iroducio LINEARIZATION OF THE RBC MODEL For f( x, y, z ) = 0, mulivariable Taylor liear expasio aroud f( x, y, z) f( x, y, z) + f ( x, y,

More information

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis STK48/98 Survival ad eve hisory aalysis Marigales i discree ime Cosider a sochasic process The process M is a marigale if Lecure 3: Marigales ad oher sochasic processes i discree ime (recap) where (formally

More information

Transverse Vibrations of Elastic Thin Beam Resting on Variable Elastic Foundations and Subjected to Traveling Distributed Forces.

Transverse Vibrations of Elastic Thin Beam Resting on Variable Elastic Foundations and Subjected to Traveling Distributed Forces. Trasverse Vibraios of Elasic Thi Beam Resig o Variable Elasic Foudaios ad Subjeced o Travelig Disribued Forces. B. Omolofe ad S.N. Oguyebi * Deparme of Mahemaical Scieces, Federal Uiversiy of Techology,

More information

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition LINEARIZING AND APPROXIMATING THE RBC MODEL SEPTEMBER 7, 200 For f( x, y, z ), mulivariable Taylor liear expasio aroud ( x, yz, ) f ( x, y, z) f( x, y, z) + f ( x, y, z)( x x) + f ( x, y, z)( y y) + f

More information

Signal Processing in Mechatronics. Lecture 3, Convolution, Fourier Series and Fourier Transform

Signal Processing in Mechatronics. Lecture 3, Convolution, Fourier Series and Fourier Transform Sigal Processig i Mechatroics Summer semester, 1 Lecture 3, Covolutio, Fourier Series ad Fourier rasform Dr. Zhu K.P. AIS, UM 1 1. Covolutio Covolutio Descriptio of LI Systems he mai premise is that the

More information

B. Maddah INDE 504 Simulation 09/02/17

B. Maddah INDE 504 Simulation 09/02/17 B. Maddah INDE 54 Simulaio 9/2/7 Queueig Primer Wha is a queueig sysem? A queueig sysem cosiss of servers (resources) ha provide service o cusomers (eiies). A Cusomer requesig service will sar service

More information

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition LINEAR APPROXIMATION OF THE BASELINE RBC MODEL FEBRUARY, 202 Iroducio For f(, y, z ), mulivariable Taylor liear epasio aroud (, yz, ) f (, y, z) f(, y, z) + f (, y, z)( ) + f (, y, z)( y y) + f (, y, z)(

More information

ELEG5693 Wireless Communications Propagation and Noise Part II

ELEG5693 Wireless Communications Propagation and Noise Part II Deparme of Elecrical Egieerig Uiversiy of Arkasas ELEG5693 Wireless Commuicaios Propagaio ad Noise Par II Dr. Jigxia Wu wuj@uark.edu OUTLINE Wireless chael Pah loss Shadowig Small scale fadig Simulaio

More information

TIME RESPONSE Introduction

TIME RESPONSE Introduction TIME RESPONSE Iroducio Time repoe of a corol yem i a udy o how he oupu variable chage whe a ypical e ipu igal i give o he yem. The commoly e ipu igal are hoe of ep fucio, impule fucio, ramp fucio ad iuoidal

More information

6.003: Signal Processing Lecture 2a September 11, 2018

6.003: Signal Processing Lecture 2a September 11, 2018 6003: Sigal Processig Buildig Block Sigals represeig a sigal as a sum of simpler sigals represeig a sample as a sum of samples from simpler sigals Remiders From Las Time Piloig a ew versio of 6003 focused

More information

Linear Time Invariant Systems

Linear Time Invariant Systems 1 Liear Time Ivaria Sysems Oulie We will show ha he oupu equals he covoluio bewee he ipu ad he ui impulse respose: sysem for a discree-ime, for a coiuous-ime sysdem, y x h y x h 2 Discree Time LTI Sysems

More information

Moment Generating Function

Moment Generating Function 1 Mome Geeraig Fucio m h mome m m m E[ ] x f ( x) dx m h ceral mome m m m E[( ) ] ( ) ( x ) f ( x) dx Mome Geeraig Fucio For a real, M () E[ e ] e k x k e p ( x ) discree x k e f ( x) dx coiuous Example

More information

Lecture 15: Three-tank Mixing and Lead Poisoning

Lecture 15: Three-tank Mixing and Lead Poisoning Lecure 15: Three-ak Miig ad Lead Poisoig Eigevalues ad eigevecors will be used o fid he soluio of a sysem for ukow fucios ha saisfy differeial equaios The ukow fucios will be wrie as a 1 colum vecor [

More information

Linear System Theory

Linear System Theory Naioal Tsig Hua Uiversiy Dearme of Power Mechaical Egieerig Mid-Term Eamiaio 3 November 11.5 Hours Liear Sysem Theory (Secio B o Secio E) [11PME 51] This aer coais eigh quesios You may aswer he quesios

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

6.003: Signals and Systems

6.003: Signals and Systems 6.003: Sigals ad Sysems Lecure 8 March 2, 2010 6.003: Sigals ad Sysems Mid-erm Examiaio #1 Tomorrow, Wedesday, March 3, 7:30-9:30pm. No reciaios omorrow. Coverage: Represeaios of CT ad DT Sysems Lecures

More information

Time Dependent Queuing

Time Dependent Queuing Time Depede Queuig Mark S. Daski Deparme of IE/MS, Norhweser Uiversiy Evaso, IL 628 Sprig, 26 Oulie Will look a M/M/s sysem Numerically iegraio of Chapma- Kolmogorov equaios Iroducio o Time Depede Queue

More information

6.003: Signal Processing Lecture 1 September 6, 2018

6.003: Signal Processing Lecture 1 September 6, 2018 63: Sigal Processig Workig wih Overview of Subjec : Defiiios, Eamples, ad Operaios Basis Fucios ad Trasforms Welcome o 63 Piloig a ew versio of 63 focused o Sigal Processig Combies heory aalysis ad syhesis

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

Energy Density / Energy Flux / Total Energy in 1D. Key Mathematics: density, flux, and the continuity equation.

Energy Density / Energy Flux / Total Energy in 1D. Key Mathematics: density, flux, and the continuity equation. ecure Phys 375 Eergy Desiy / Eergy Flu / oal Eergy i D Overview ad Moivaio: Fro your sudy of waves i iroducory physics you should be aware ha waves ca raspor eergy fro oe place o aoher cosider he geeraio

More information

CHAPTER 2. Problem 2.1. Given: m k = k 1. Determine the weight of the table sec (b)

CHAPTER 2. Problem 2.1. Given: m k = k 1. Determine the weight of the table sec (b) CHPTER Problem. Give: m T π 0. 5 sec (a) T m 50 g π. Deermie he weigh of he able. 075. sec (b) Taig he raio of Eq. (b) o Eq. (a) ad sqarig he resl gives or T T mg m 50 g m 50 5. 40 lbs 50 0.75. 5 m g 0.5.

More information

Lecture 9: Polynomial Approximations

Lecture 9: Polynomial Approximations CS 70: Complexiy Theory /6/009 Lecure 9: Polyomial Approximaios Isrucor: Dieer va Melkebeek Scribe: Phil Rydzewski & Piramaayagam Arumuga Naiar Las ime, we proved ha o cosa deph circui ca evaluae he pariy

More information

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research)

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) Ieraioal Associaio of Scieific Iovaio ad Research (IASIR (A Associaio Uifyig he Scieces, Egieerig, ad Applied Research ISSN (Pri: 79- ISSN (Olie: 79-39 Ieraioal Joural of Egieerig, Busiess ad Eerprise

More information

EE 4314 Lab 2 Handout for Workbench #1 Modeling and Identification of the Double-Mass-Spring-Damper System Fall

EE 4314 Lab 2 Handout for Workbench #1 Modeling and Identification of the Double-Mass-Spring-Damper System Fall EE 434 Lab Hadou for Workbech # Modelig ad Ideificaio of he Double-Mass-Sprig-Damper Sysem Fall IMPORTANT! This hadou is for hose who are assiged o Workbech #. Please check your lab schedule o see which

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

EECS 723-Microwave Engineering

EECS 723-Microwave Engineering 1/22/2007 EES 723 iro 1/3 EES 723-Microwave Egieerig Teacher: Bar, do you eve kow your muliplicaio ables? Bar: Well, I kow of hem. ike Bar ad his muliplicaio ables, may elecrical egieers kow of he coceps

More information

MODERN CONTROL SYSTEMS

MODERN CONTROL SYSTEMS MODERN CONTROL SYSTEMS Lecure 9, Sae Space Repreeaio Emam Fahy Deparme of Elecrical ad Corol Egieerig email: emfmz@aa.edu hp://www.aa.edu/cv.php?dip_ui=346&er=6855 Trafer Fucio Limiaio TF = O/P I/P ZIC

More information

If boundary values are necessary, they are called mixed initial-boundary value problems. Again, the simplest prototypes of these IV problems are:

If boundary values are necessary, they are called mixed initial-boundary value problems. Again, the simplest prototypes of these IV problems are: 3. Iiial value problems: umerical soluio Fiie differeces - Trucaio errors, cosisecy, sabiliy ad covergece Crieria for compuaioal sabiliy Explici ad implici ime schemes Table of ime schemes Hyperbolic ad

More information

Big O Notation for Time Complexity of Algorithms

Big O Notation for Time Complexity of Algorithms BRONX COMMUNITY COLLEGE of he Ciy Uiversiy of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE CSI 33 Secio E01 Hadou 1 Fall 2014 Sepember 3, 2014 Big O Noaio for Time Complexiy of Algorihms Time

More information

CHAPTER 2 TORSIONAL VIBRATIONS

CHAPTER 2 TORSIONAL VIBRATIONS Dr Tiwari, Associae Professor, De. of Mechaical Egg., T Guwahai, (riwari@iig.ere.i) CHAPTE TOSONAL VBATONS Torsioal vibraios is redomia wheever here is large discs o relaively hi shafs (e.g. flywheel of

More information

( ) = c n ( t) n ( ) (2.4) ( t) = k! t

( ) = c n ( t) n ( ) (2.4) ( t) = k! t Adrei Tokmakoff, MIT Deparme of Chemisry, /13/007-1.1. TIME-DEPENDENT HAMILTONIAN Mixig of eigesaes by a ime-depede poeial For may ime-depede problems, mos oably i specroscopy, we ofe ca pariio he ime-depede

More information

METHOD OF THE EQUIVALENT BOUNDARY CONDITIONS IN THE UNSTEADY PROBLEM FOR ELASTIC DIFFUSION LAYER

METHOD OF THE EQUIVALENT BOUNDARY CONDITIONS IN THE UNSTEADY PROBLEM FOR ELASTIC DIFFUSION LAYER Maerials Physics ad Mechaics 3 (5) 36-4 Received: March 7 5 METHOD OF THE EQUIVAENT BOUNDARY CONDITIONS IN THE UNSTEADY PROBEM FOR EASTIC DIFFUSION AYER A.V. Zemsov * D.V. Tarlaovsiy Moscow Aviaio Isiue

More information

N! AND THE GAMMA FUNCTION

N! AND THE GAMMA FUNCTION N! AND THE GAMMA FUNCTION Cosider he produc of he firs posiive iegers- 3 4 5 6 (-) =! Oe calls his produc he facorial ad has ha produc of he firs five iegers equals 5!=0. Direcly relaed o he discree! fucio

More information

Stochastic Processes Adopted From p Chapter 9 Probability, Random Variables and Stochastic Processes, 4th Edition A. Papoulis and S.

Stochastic Processes Adopted From p Chapter 9 Probability, Random Variables and Stochastic Processes, 4th Edition A. Papoulis and S. Sochasic Processes Adoped From p Chaper 9 Probabiliy, adom Variables ad Sochasic Processes, 4h Ediio A. Papoulis ad S. Pillai 9. Sochasic Processes Iroducio Le deoe he radom oucome of a experime. To every

More information

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x)

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x) 1 Trasform Techiques h m m m m mome : E[ ] x f ( x) dx h m m m m ceral mome : E[( ) ] ( ) ( x) f ( x) dx A coveie wa of fidig he momes of a radom variable is he mome geeraig fucio (MGF). Oher rasform echiques

More information

A Complex Neural Network Algorithm for Computing the Largest Real Part Eigenvalue and the corresponding Eigenvector of a Real Matrix

A Complex Neural Network Algorithm for Computing the Largest Real Part Eigenvalue and the corresponding Eigenvector of a Real Matrix 4h Ieraioal Coferece o Sesors, Mecharoics ad Auomaio (ICSMA 06) A Complex Neural Newor Algorihm for Compuig he Larges eal Par Eigevalue ad he correspodig Eigevecor of a eal Marix HANG AN, a, XUESONG LIANG,

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science. Fall Problem Set 11 Solutions.

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science. Fall Problem Set 11 Solutions. Massachusetts Istitute of Techology Departmet of Electrical Egieerig ad Computer Sciece Issued: Thursday, December 8, 005 6.341: Discrete-Time Sigal Processig Fall 005 Problem Set 11 Solutios Problem 11.1

More information

Boundary-to-Displacement Asymptotic Gains for Wave Systems With Kelvin-Voigt Damping

Boundary-to-Displacement Asymptotic Gains for Wave Systems With Kelvin-Voigt Damping Boudary-o-Displaceme Asympoic Gais for Wave Sysems Wih Kelvi-Voig Dampig Iasso Karafyllis *, Maria Kooriaki ** ad Miroslav Krsic *** * Dep. of Mahemaics, Naioal Techical Uiversiy of Ahes, Zografou Campus,

More information

State-Space Model. In general, the dynamic equations of a lumped-parameter continuous system may be represented by

State-Space Model. In general, the dynamic equations of a lumped-parameter continuous system may be represented by Sae-Space Model I geeral, he dyaic equaio of a luped-paraeer coiuou ye ay be repreeed by x & f x, u, y g x, u, ae equaio oupu equaio where f ad g are oliear vecor-valued fucio Uig a liearized echique,

More information

F D D D D F. smoothed value of the data including Y t the most recent data.

F D D D D F. smoothed value of the data including Y t the most recent data. Module 2 Forecasig 1. Wha is forecasig? Forecasig is defied as esimaig he fuure value ha a parameer will ake. Mos scieific forecasig mehods forecas he fuure value usig pas daa. I Operaios Maageme forecasig

More information

Digital Sampling and Spectral Analysis

Digital Sampling and Spectral Analysis able of Coes Digial Samplig ad Specral Aalysis Digial Samplig ad Specral Aalysis... 1 I. Objecive... 1 II. Apparaus... 1 III. Priciples ad Backgroud... 1 Acousics... 1 Digial Samplig... 2 Aalog-o-Digial

More information

Modal Analysis of a Tight String

Modal Analysis of a Tight String Moal Aalysis of a Tigh Srig Daiel. S. Sus Associae Professor of Mechaical Egieerig a Egieerig Mechaics Presee o ME Moay, Ocober 30, 000 See: hp://web.ms.eu/~sus/me_classes.hml Basic Theory The srig uer

More information

6.003 Homework #5 Solutions

6.003 Homework #5 Solutions 6. Homework #5 Soluios Problems. DT covoluio Le y represe he DT sigal ha resuls whe f is covolved wih g, i.e., y[] = (f g)[] which is someimes wrie as y[] = f[] g[]. Deermie closed-form expressios for

More information

11. Adaptive Control in the Presence of Bounded Disturbances Consider MIMO systems in the form,

11. Adaptive Control in the Presence of Bounded Disturbances Consider MIMO systems in the form, Lecure 6. Adapive Corol i he Presece of Bouded Disurbaces Cosider MIMO sysems i he form, x Aref xbu x Bref ycmd (.) y Cref x operaig i he presece of a bouded ime-depede disurbace R. All he assumpios ad

More information

ECE 570 Session 7 IC 752-E Computer Aided Engineering for Integrated Circuits. Transient analysis. Discuss time marching methods used in SPICE

ECE 570 Session 7 IC 752-E Computer Aided Engineering for Integrated Circuits. Transient analysis. Discuss time marching methods used in SPICE ECE 570 Sessio 7 IC 75-E Compuer Aided Egieerig for Iegraed Circuis Trasie aalysis Discuss ime marcig meods used i SPICE. Time marcig meods. Explici ad implici iegraio meods 3. Implici meods used i circui

More information

EE 4314 Lab 2 Handout for Workbench #2 Modeling and Identification of the Double-Disk-Torsion-Spring System Fall

EE 4314 Lab 2 Handout for Workbench #2 Modeling and Identification of the Double-Disk-Torsion-Spring System Fall EE 434 Lab Hadou for Workbech # Modelig ad Ideificaio of he Double-Disk-Torsio-Sprig Sysem Fall IMPORTANT! This hadou is for hose who are assiged o Workbech #. Please check your lab schedule o see which

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

ON THE NONLINEAR RESONANCE WAVE INTERACTION

ON THE NONLINEAR RESONANCE WAVE INTERACTION U.P.B. Sci. Bull., Series, Vol. 7, Iss. 3, ISSN 3-77 ON THE NONLINER RESONNCE WVE INTERCTION Pere P.TEODORESCU, Veuria CHIROIU ceasă lucrare sudiază ieracţiuea diamică a uei o bare lieare dispersive aşezaă

More information

INTEGER INTERVAL VALUE OF NEWTON DIVIDED DIFFERENCE AND FORWARD AND BACKWARD INTERPOLATION FORMULA

INTEGER INTERVAL VALUE OF NEWTON DIVIDED DIFFERENCE AND FORWARD AND BACKWARD INTERPOLATION FORMULA Volume 8 No. 8, 45-54 ISSN: 34-3395 (o-lie versio) url: hp://www.ijpam.eu ijpam.eu INTEGER INTERVAL VALUE OF NEWTON DIVIDED DIFFERENCE AND FORWARD AND BACKWARD INTERPOLATION FORMULA A.Arul dass M.Dhaapal

More information

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i) Mah PracTes Be sure o review Lab (ad all labs) There are los of good quesios o i a) Sae he Mea Value Theorem ad draw a graph ha illusraes b) Name a impora heorem where he Mea Value Theorem was used i he

More information

Transform Techniques

Transform Techniques Trasform Techiques (a)maually derived leas square fi Se of pois smooheed by a had draw curve ad by liear leas square fi. (Show i Fig.4.) Poi X Y Y P -. -.8 -.8 P -.9 -. -.9 P3 -.6.4 -.7 P4 -. -.9 -.6 P5..5

More information

Available online at J. Math. Comput. Sci. 4 (2014), No. 4, ISSN:

Available online at   J. Math. Comput. Sci. 4 (2014), No. 4, ISSN: Available olie a hp://sci.org J. Mah. Compu. Sci. 4 (2014), No. 4, 716-727 ISSN: 1927-5307 ON ITERATIVE TECHNIQUES FOR NUMERICAL SOLUTIONS OF LINEAR AND NONLINEAR DIFFERENTIAL EQUATIONS S.O. EDEKI *, A.A.

More information

Effects of Forces Applied in the Middle Plane on Bending of Medium-Thickness Band

Effects of Forces Applied in the Middle Plane on Bending of Medium-Thickness Band MATEC We of Cofereces 7 7 OI:./ maeccof/77 XXVI R-S-P Semiar 7 Theoreical Foudaio of Civil Egieerig Effecs of Forces Applied i he Middle Plae o Bedig of Medium-Thickess Bad Adre Leoev * Moscow sae uiversi

More information

Dynamic h-index: the Hirsch index in function of time

Dynamic h-index: the Hirsch index in function of time Dyamic h-idex: he Hirsch idex i fucio of ime by L. Egghe Uiversiei Hassel (UHassel), Campus Diepebeek, Agoralaa, B-3590 Diepebeek, Belgium ad Uiversiei Awerpe (UA), Campus Drie Eike, Uiversieisplei, B-260

More information