USSR STATE COMMITTEE FOB UTILIZATION OF ATOMIC ENERGY INSTITUTE FOR HIGH ENERGY PHYSICS

Size: px
Start display at page:

Download "USSR STATE COMMITTEE FOB UTILIZATION OF ATOMIC ENERGY INSTITUTE FOR HIGH ENERGY PHYSICS"

Transcription

1 USSR STATE COMMITTEE FOB UTILIZATION OF ATOMIC ENERGY INSTITUTE FOR HIGH ENERGY PHYSICS И Ф В Э ОТФ V.V.Bazhanov, Yu.G.Stroganov HIDDEN SYMMETRY OF THE FREE FERMION MODEL. II. PARTITION FUNCTION Serpukhov 1984

2 USSR STATE COMMITTEE FOR UTILIZATION OF ATOMIC ENERGY INSTITUTE FOR HIGH ENERGY PHYSICS И Ф В Э ОТФ V.V.Bazhanov, Yu.G.Stroganov HIDDEN SYMMETRY OF THE FREE FERMION MODEL. II. PARTITION FUNCTION Submitted to TOTh Serpukhov 1984

3 УДК М - 24 Abstract Bazhanov V.V., Stroganov Yu.O. Hidden Symmetry of the Tree Fermlon Model. II. Partition Function: IHBP Preprint Serpukhov, p. 16, fig*. 3, refs.: 7. We «bow that the partition function of the free fermion model on a plane lattice haa some hidden symmetry properties. Using a specific elliptic parametrlzation for Boltzmann vertex weights, we calculate the partition function per aite and «how that it is а шегошогрыс function of three complex variablea. Баженов BJB.. Строганов Ю.Г. Скрытая симметрия модели свободных фермионов. II. Статистическая сумма: Препринт ИФВЭ Серпухов, с, 3 рис., бшблжогр.: 7. Мы показываем, что статистическая сумма модели свободных фермионов на плоской решетке обладает некоторой скрытой симметрией. Используя специальную эллшггжческую параметризацию для больцмановсих вершинных весов, мы вычисляем статистическую сумму аа узел решетки и показываем, что она является мероморфной функцией трех комплексных переменных. Институт физики высоких энергий, 1984.

4 INTRODUCTION This paper is the second one in the series of papers devoted to the study of the eight-vertex free fermion model on a plane lattice. Let us recall in brief the definition of the model. Consider a square M by N lattice. Every link of the lattice may occur in one of the two states. Eight types of the vertices allowed, as well as the notations for the corresponding Boltzmann weights, are given in Fig. 1. The vanishing weight is assigned to the remaining types of the vertices. The weights b, c, d satisfy the so-called free fermion condition: b o b a + b 2 b 3 - Q2 + d2 «it St. i t ГЦ. 1. The partition function is defined as a sum over all lattice states: Z = 2IIw(k) Ic where k=l,...,mn numbers the vertices of the lattice, and w(k) is the Boltzmann weight of the k-th vertex. In the thermodynamic limit, where z is called a partition function per site (or a speci fic partition function). For a more detailed description of

5 the free fermion model and the related references see In paper' (below we refer to it as I) the elliptic parametrization for the vertex weights was obtained. This parametrization includes five parameters: p, к, ф л, ф^, < Here are the required formulae: b o =PO - e^eg) where b k =p(e k - e^ege^1) (2) H = 4c 2 d 2 = 16p 4 k 2 (e 1 e 2 e 3 s 1 s 2 s 3 ) 2 e j = с з + is J = sn( ф., к), Cj = cn( ф, k), dj =dn(0j, k) (3) are Jacobi elliptic functions of the modulus k. As usual, symmetry transformations of the lattice lead to the symmetry relations for the partition function, which may be obtained on the level of the definition of Z. In section 2 we show that for the free fermion model there exist additional symmetry properties (hidden symmetry). In particular, we generalize the Kramers-Wannie duality transformation of Ising's model to the general free fermion model. In section 3 we calculate the specific partition function z in parametrization (2). It turns out that z is a symmetric and meromorphic function of three variables: ф^, ф, 0g-The technical details are given in the Appendices. When referring to a formula from refу, we put "i" before the formula number. 1. SYMMETRY PROPERTIES OF THE PARTITION FUNCTION 1.1. Let z(b, b.,, b, Ь, с, d) be a partition function per site considered as a function of the weights. There is a number of symmetry properties that may be obtained on the level of the definition of the partition function' 2 ': Z O123 (C ' Z O123 (C ' z 0123 <c> d) d) d) = Z ol23 = Z 2301 (d,c) (c,d) = z 1023 (c,d) where z jhk»( c;» d ) = z (b.,b.,b k,b,c,d). Besides, z is independent of the signs of с and d. Together with the first formula from (4), this means that z is an even and symmetric function of the variables с and d. Therefore, it is convenient to use the combinations c^ + d 2 and c^d^ instead of с and d. Using

6 condition (1), the quantity с 2 + d 2 may be expressed via b.. Hence, one may consider z as a function of five variables;- Ъ^ and c 2 d 2. Relations (4) are valid for any eight-vertex model.it turns out that for the free fermion model there exist additional symmetry relations. Let us show, for instance, that z is fully symmetric in the variables b Q, bj, b 2, b 3. The exact expression for z was obtained in ref. using the dimer techniques: 1 2n 2n 1 n z = - { f 6ф йф n{2a + 2B cos ф % о о 2C cos ф + 2D cos(f - ф 2 ) + 2E соз( ф^ + ф 2 )} (5) by where A = b Q + b][ + b 2, b 3 C - V3 " V 2 (6) D = c 2 - b Q b 3 E = d 2 - b b о 1 It may be readily checked that eq. (5) really has symmetry properties (4). Integrating over ф, one obtains: 1 n I 2 2"" 1 nz = f йф ln(a+bcos^ + y(f+g cos^ ) +H sin ф ) (7) о where P = b o, b 2 - b j - b 3 G = b Q b 2 + b l b 3 (8) H = 4c 2 d 2 Obviously, eq. (7) does not change under the permutation of bj and b 3. With the account for relations (4), this results in the full symmetry of z in the variables b, b,, b o and b,: о Л о z(b o,bj,b 2,b 3,H) - unchanged by permuting b^bj.bg^g. (9) There is another type of symmetry transformations for z. Consider the transformation b^ b A defined by the formulae: 4 " b o + b l + b 2 + b 3

7 2bl = b o - b;i + b 2 - b 3? (10) 2b 3 - b - b l - b 2 + b 3 Clearly under such a transformation the quantities A and В do not change, while F and G are interchanged. To compensate for this change, it is sufficient to replace H in integral (7) by: H' = H - J (13) where J = G - P =4 f o f l f 2 f 3 < 12) The quantities f, f, f o and f_ are defined by f ± = b o + Ь г +- b 2 + b 3-2b ±, i = 0,1,2,3. (13) Combining eqs. (10) and (11) with symmetry (9),one obtains some set of transformations, which do not change the partition function z and have the following interesting property.the fixed points of these transformations in the parameter space satisfy the relation: J = \ f o f l f 2 f 3 = < 14 > which exactly coincides with the phase transition condition of the model' 2 /. Consider as an illustration the two-dimensional Ising model, which is a particular case of the free fermion model. In our notations, b Q = x 2, bj =1, bj = bj = с = d = x (15) where x = th.(j8j), J i s t h e energy of the interaction of neighbouring spins and /3 is the inverse temperature. Performing transformation (10), (31) and interchanging b and b-p one obtains: z(x) = -(x + 1) z(- ) (16) Formula (16) coincides with the Kramers-Wannie duality relation. Thus, transformation (10), (31) may be treated as a generalization of the duality transformation for the free fermion model Let us now consider symmetry relations (9) and (30) (33) in terms of the parameters p,k, ф~, ф, ф 3 entering parametrization (2). Start with relations (9). Obviously, the permutations including the weights b, b, b only, are reduced to the permutation of the parameters ф^, ф 2, ф. The remaining permutation, ie those including the weight b, may be realized in two ways. In fact, using parametrization (2), one may easily show that both transformations:

8 Ф ± --» ф ±, ф^-*ж-фу ф к -*2К-ф к, р-*-е^е к р, (17) as well as (К and К' are complete elliptic integrals of the first kind of the moduli к and k f =(l-k 2 )z) leave Я unchanged and result in the same transformation-'*' for the weights b,b-.b o,b Q : О 1 л >J b o b i ; b j " b (19) k where (i,j,k) is the permutation of (1,2,3). In the present paper we adopt the following normalization of the weight: 9 = jl 3 / 2 з п l exp <- -ir-> 0( - 2 )} V~ )^<-V~ (2k'k*) 3/2 K 3 j=l 4K (20) with 0(x) and <Э^(х) being the Jacobi theta-functions, q = s exp(- ffk'/b;); Some properties of the theta-f unctions used below are given in Appendix C. The constant factor in eq. (20) is chosen to simplify the subsequent formulae. The new parameter p o does not change under transformations (17), and under transformations (18) it behaves as follows: Po - Vik^o fi- k = -exp[i»r( «^ ] (21) One may easily verify this, using the representation of е(ф ) through the theta-functions (C3). Symmetry relations (9) thus become: z(0j, ф 2, ф 3 ) = г(ф ±, ф j,< k ) (22) ^Ф г, ф 2, ф 3 ) = 2( ф ±, 2К- фу 2К-0 к ) (23) г{ф 1,Ф 2, Ф 3 ) =qm jk z(0 i, ^+2iK','f k +2iK') (24) where z( ф г ф^,ф 3 )=г(р к>, к, Ф^,Ф' 2> Ф$Ъ and is the (i'j»^ permutation, of (1,2,3>.-. ' / Moreover, from relation (1-32) one has: z( ф л, ф 2, 0 3 )=1 Ч 4ехр(-1>7^ /2K)z(2K+2iK' - ф ±, ф^, 0 к ) (25) Consider now transformation (10), (11). Let us prove that it ia reduced to the Jacobi imaginary transfromation for ellip- The difference between (17) and (18) lie* in the transformation lav for the weight» с and d (aee eq». (1-24).).

9 tic functions (upto the common factor). Indeed, let us substitute in eqs. (2) <fy - i0j. (j=l,2,3), к-** =(l-k 2 )2. Using standard relations (C4), we may represent (10), (11) as: b' = Ab i (p o, к', 1ф v 1ф 2, 1ф 3) H 1 = A 4 H( f> o, k\ 1ф г ±ф 2, 1ф 3 ) where ~ (26) % % }. (27) Since transformation (10), (11) doe?> not change the partition function, one obtains from (26): z(p o,k', 1ф г хф 2.1ф 3 )=A" 2 z(p o,k, ^, 0 2> ^3). (28) And, finally, combining (23), (24) and (28), one obtains symmetry relations of the form: г(ф, Ф, Ф ) = -г(ф, 0j + 2K, Ф +2К) (29) 3 г 3 ± к z(0 r <?i 2, ^ 3) = "^M Jk z(^i,2ik t -^j,2ik I - «5& k ). (30) Here ^ ij is defined by eq. (21). 3. PARTITION FUNCTION IN ELLIPTIC PARAMETRIZATION In this section we calculate integral (6) and obtain an explicit expression for the specific partition function as a function of the parameters p o»k, Фл, ф 2 > Фз entering into parametrization (2). Let us assume the weights b.b-.b^.bg to be real and H >0. As is shown in Appendix A, due to the symmetry relations for the partition function, it is sufficient to consider the following cases 2 *): 0< k 2 < 1, 0 < <^i< 2K, Jm ф ± =0 (31) k 2 >l, Ф ±(^1 к 2 <0, ф. D 2 (33) where i=1,2,3, and the regions Dj and D 2 are shown in Figures 2 and 3. We perform calculations for the case (31); the same formulae remain true for the case of (32). The case of (33) is reduced to (32) with the help of duality transformation (28). Substituting (2) into (7), one obtains: In z = ln(-4 p 2 e e e ) + L a*) 2 о For k 45 > 1 we choose Jmk'< 0, J*K> 0; and «or 1Г<0, Лк< О, ЛК'>0. 8

10 2тт О +S1 S 3 > 2 * «4" 3 (34) where compact notations (3) for the elliptic functions are used. The calculation of integral (34) is carried out in Appendix B. The result is expressed through the function: (35) where Z(fi ) is the logarithmic derivative of the Jacobi thetafunctions 8(/3 ) The function F(/3 ) is meromorphic in any finite part of the complex plane. It has the poles of the n-th order at the points /3 = -2nK + 2imK'; /8 =(2n+l)K+(2m+l)iK f, where ra,n are arbitrary integers (the zeros are treated as negative order poles). -а К Fig. 3. The function F( fi ) satisfies a number of functional equations: (36) F(/S)F(-/S) = (f^ F(/3 +2K) = (37) (38) ~- (39) These relations are obtained in Appendix C.

11 Define the quantities 2 0 о» ^-ф г ф 2 -ф 3 20 ± = Ф г +ф 2 + Ф 3-2ф ±, i = 1,2,3 satisfying the relation 18,,+ 18,+ ls, + )3 = 2K. It is shown in Appendix В that the partition function per site (34) has the form: z z (p o,k, ф 1г ф 2, ф 3 ) = С p o P( / S o )F( i 8 1 )F(j8 2 )F( Э 3 ), (41) С = 2(кк')"*ехр(-КК'А) As has already been noted, formula (41) obtained for region (31), is also valid for region (32). In order to obtain the expression of the partition function for region (33) (which we denote below through Zjj), we use duality transformation (28): zii^o' k) ^1* ^2' ^3* - Az i<p o ' k '» -1Ф г > - i 0 2 '~ i^3 ) =» \ф о т-г ^o)f(-ij5 1 )f(-i^2)l i (-ij3 3) (42) where \< is defined in (27), /3^ i =1,2,3 in i40), and /9 O = + = 2iK'-( 0 + ^ 2 03-)/ 2 ' T h e function F(/8 ) is defined by relation (35J, where the modulus of the elliptic functions is replaced by k 1, and К and K' are interchanged. The RHS of eqs. (41) and (42) are meromorphic functions of the variables ф-, ф, ф. They coincide with the value of integral (34) in regions (31), (32) and (33), respectively. Symmetries of partition function (34) are not, generally speaking, symmetries of these functions. However, using eqs. (36-39), one may verify by immediate' calculations that Zj satisfies symmetry relations (22^, (23), (24), (25), and z n satisfies relations (22), (25), ("29), (30). The degenerate case (14) (the critical free fermion model) is connected with the modulus k -.<». The expression for the partition function in this case may be obtained from (41) with the help of the corresponding limiting procedure (see paper I, Appendix B). In our next paper' 4 ' we shall show thatzj and ZJJ satisfy the inversion relations' 5 "?/. 10

12 REFERENCES 1. Bazhanov V.V., Stroganov Yu.G. - IHEP Preprint , Serpukhov, Fan C, Wu F.Y. - Phys. Rev., 1970, v. B2, p Whittaker E.T., Watson G.N. A Course of Modern Analysis. Cambridge University Press, Bazhanov V.V., Stroganov Yu.G. IHEP Preprint , Serpukhov, Stroganov Yu.G. - Phys. Lett., 1979, v. 74A, p Zamolodchikov A.B. -Sov.Sci.Rev.,[Phys.Rev Л,1980,v.2,p Baxter R.J. - In Fundamental Problems in Statistical Mechanics, 1980, v. 5, Amsterdam, North-Holland. Received 17 April, Appendix A In this Appendix we show that in the case of real weights it is sufficient to calculate the partition function in regions (31), (32), (33). Li paper I (Appendix B) the inversion of parametrization (2) was obtained, ie the parameters p,k, ф. were expressed through the weights b,b.pb 2,b 3,c,d. Remember the basic form u l a e :? 2 2 k 2 = 16c"! dv(f o f 1 f 2 f 3 ) (Al) where f^ are defined by (13). Introduce the quantities: x k = (f o f 1 f 2 f 3 )*/(f o f k ), к = 1,2,3 (A2) Then the parameters p and ф. may be found from the relations: (A4) о It follows from (Al) that к is real. The eliptic functions sn(0, k) and cn(<, k) have the following properties for real k 2. When 0^ k 2^l, the complete elliptic integrals К and K 1 are real and positive. In the range 0 <: ф^. 2К the function вп(ф,к) takes the values from 0 to 1, while сп(ф,к) varies from +1 to -1. For k 2 > 1 we choose k>0, Jm k f <0. Then K'> 0, К is complex, and Jm K=K', ReK> 0. The function sn(<, k) varies from 0 to 1 along the polygonal lines ABC and EDC (see Fig. 2).The function сп(ф, к) varies from 3 to -1 along the polygonal line ABODE. 11

13 For к < 0 we choose k'> 0, Jm k< 0. Then K> 0, JmK' = K, Re K*> 0. In this case the function sn(<,k) on the polygonal line ABGDJt is purely imaginary (Fig.3).It varies from 0 to along ABC, and from -i«> to 0 along CDE. The function cn(<, k) varies from 1 to «along ABC and from -«> to -1 along CDE Now consider the partition function per site z(b o,bj,b2, b 3,H). With the account for relations (2),(Al),(A3),(A4),one may treat it as a function of f, k 2, x-^x^xg. With the help of expression (7) for z one may easily show that z(f o,k 2,x lf x 3.x 3 ) = z(f Q,k,±х 1,±х 2> ±х 3 ) (А5) for an arbitrary choice of signs in RHS. Eqs. (Al), (A2) entail the fact that the variables x^ are real, provided к > 0, and are purely imaginary when к < 0. In the first case, using relation (A5), one may choose all x* nonnegative. When k 2 < 0, ie for purely imaginary x i,using eq. (A5), we can make Jm x.. 0. Then formulae (A4), with the account for the abovs properties of the elliptic functions ап(ф, k) and сп(у>,к), lead to the cases (31),(32),(33) given in the text. Appendix В In this Appendix we calculate the partition function in the elliptic parametrization for the case (31). Considering the singularities of the integrand in eq. (34), one may verify that the integral is an analytical function in region (31). Therefore, for conveniency, we confine ourselves to the case: 0 < ф г < ф 2 < 0з < К (Bl) Performing in eq. (34) the substitution of the variable: v - с cos ф = (B2) 1 - vc 2 and passing from ф~ and ф 3 to the combinations ф +1 =( Ф -,+ _+ < 3 )/2, one obtains: ln[ 2 x (l-k 2 s 2 sf) (B3> where s + = sn^+, с ± = en ф ±. The expression under the logarithm contains the factor without a root and two factors of the form A+y*B".For further 12

14 calculations it seems convenient to divide the integral into two parts, using the identity: In [C(A +VB)(A-+VB)1 = B)] <VVB)(A 2 +VB) ] (B4) Consider first that part of the integral which is connected with the second item. Substituting the integration variable: v = 1/cn z (B5) and differentiating over 0_, one obtains: is 2 sn2<fc. Я1Ж' dzdn2 z + r + <0.-*)<B6) 4 * о (cnz-c 2 )(cnz-cn2«^) where the integration contour goes along the imaginary axis. Using eq. (B17), we obtain: Here C t = cn/3 if Sj^ = зп^1? D ± = 6np ±, i = 0,1,2,3, f (/ 3) ^- (- + Z(/S)), (B8) 2sn (8 dnj8 JS. are defined by formulae (4$ K Z(/3 ) = d/d/3 1пв(/3 ) Consider now the part of the integral associated with the first item in formula (B4). Differentiating over ф. and using an elementary formula; 1 * dv 3 one obtains -l» and - Z(/3 2 +K)-Z(y3 3 +K)] (BIO) In deriving (BIO), we systematically express all the elliptic functions via Z-function with the help of the Liouville theorem. Combining (B7) and (BIO) and using (C5), we obtain the following expression for the derivative of integral L over ф = [? ( * } + f </ 3 ) + f ( / 3 i ) - f (^2 ) " r ( ' 8 3 ) < B n ) 13

15 where ^ - f(/3 ) = f(/3 ) + ^(0 + К) (В12) The function f(/3 ) is meromorphic in any finite part of the complex plane. It has simple poles at the points: /3 = 2nK + 2imK', residue = n, )8 = (2n+l)K+(2m+l)iK', residue = -n. Therefore, the function F(/3) defined by the relation: В F(j8 ) = exp[/ f(s)ds] (B13) о is also meromorphic. In the main text we give functional equa tions (36)-(39) for the functions F(/3 ). Let us show now that the required integral (34) equals: L = lnf( j3 J Ф,) в (ф ) в (ф 2 3 )- -in<-2_ _) 2 1 * 8k'K 3 n Indeed, it may be easily seen that eq. (B14) has a correct derivative over ф _, which is given by eq. (BID. Next, putting in eq. (B14) ф =C and using equations (37), (38), one obtain;,: 2 LI «5 ln >,=0 2 2к&в(ф )в(ф ) which exactly coincides with the expression for L ф _Q, directly obtained from eq. (34) with the help of eq. (6). When deriving the second equality in (B15) we use the Liouville theorem. Substituting eqs. (20), (СЗ), (В14) into eq. (34) and using the duplication formula for the в-function (see ге±у^, & ): 1 / 4 Т 1 / / 2 1 ^ ^ ' (B16) we come to result (41) given in the main text. What is left is to derive the formula: ^ i sn 2(9, sn 2 0, ) 3 2 2iK ' ; dz dn 2 z (cnz-cn20 )(enz-cn20_) 1 л 14

16 sn(0 i +ff 0< 0J, 0 2 < К which has been used in calculating the integrals in RHS of eq. (B6). Decomposing the integrans in eq. (B17) into simple fractions over the variable en z, we get: 0 2 ) ~ S n 2в 1 S n 2в 2 +[dn 20 a J(2<9 1 )-dn 20 2 J(20 2 )]/(cn гв^сп 20 2 )J (B18) where J(a) 2iK' =1 / Hnfen^' 0<a<2K < B19) о Since cn(z+2ik f )=-cnz, we may rewrite (B18) as follows: i 2iK> / d \ 1 d z[ z [ ] 2n 1 Q enz-ena enz+ena icna 2 i K ' dz T f 2 T i ( B 2 0 ) о sn a -sn z This is an elliptic integral of the third kind which can be expressed through theta-functions in a standard way (see ref. /3/, 22.74): J <«> " Г-Чг <* " IT ~ z (a)) Stia an а К " 0< a < 2K (B21) Substituting eq. (B21) into (B18), replacing the parameters <?, and 0 2 by $- + в о a n d и5^п^ t h e addition theorems for elliptic functions, one obtains formula (B17). Appendix С In the present Appendix we give some properties of the elliptic functions and obtain functional equations (36)-(39). The Jacobi theta-functions в( х), в (х), Н(х), НЛх) (see ref.^3/, ^ 21.62) are related to the elliptic functions sn x, dn x, en x through the following relations:

17 H(x) V^ H1 ( X ) л-т в 1, 1Ч _ ; en x s * -; dn х«=ук ' - (Cl) Vk 600 Vk~ 8 (x) в (x) List some properties of the theta-functions: в(х) в(-х) ш e(x+2k) 0(x+2iK') = -q^expi-iax/k) в(х) H(x) = iq 1 / 4 exp( - 1*х/К)в(х+1К') e t (x) == в(х+к), H^x) ж H(x+K) в(0) ж (2k'K/ff)i, q = exp(nrk'/k) ej(o) = <2К/я)*, H 2 (0) = <2kK/rf)* <С2) where К and K' are complete elliptic integrals of the first kind of the moduli k and k'=(l-k 2 )5, respectively. Here and henceforth, if a modulus is not indicated explicitly, it is meant to equal k. Using the Liouville theorem for elliptic function^3/, it is not difficult to show, that е(ф ) = спф + 1зпф - ±пф exp(--2) 2 (C3) The transformation to the complementary modulus k'=(l-k ) is performed with the help of the Jacob! imaginary transformation (see ref. /3/, 21.51; (22.4): k') = i sn(<^, Ю/спСф, k) k') = l/cn(0, k) (С4) Let us prove now relations (36)-(39). Consider the ratio of RHS and LHS of eq. (36) as a function of fi. Involving eqs. (Cl), (C2) and the relations (see ref.' 3 /, ): Z(/3 + K) = Z(/3 ) - k 2 sn/3cn0/dn/8 Z(/3 +ik')= Z(j8 ) - cn/3dnj8/sn 0 -W 2 K (C5) we may easily prove that this ratio is a constant. Assuming then /S = -(K+iK')/2, one gets convinced that this constant equals unity. Similarly, one proves that the ratios of RHS and LHS of eqs. (37)-(39) are constants. In order to shew that they are equal to unity, it is sufficient to put /3=0 in e,q. (37), /3 = -K+1K 1 in eq. (38), /3 = KTiK' in eq. (39) and apply relation (36). 16

18 ВЗ.Бажиюв, ЮЛЧСтроганов, Скрытая симметрия модели свободных фермионов. П. Статистическая сумма. Редактор А.А.Антипова. Технический редактор Л.П.Тимкива. Коррактор ЕЛ Jonang, Подписано к печати Т Формат 60/00x16. Офсетная печать. Печ.л. 1,00. Уч.-шэд.п. 1,24. Тираж 260. Заказ 636. Индекс Цена 18 коп. Институт физики высоких иерги1,142284,св{11ухов Московской обл.

19 Цена 18 коп. Индекс 3624 ПРЕПРИНТ , ИФВЭ, 1984

USSR STATE COMMITTEE FOR UTILIZATION OF ATOMIC ENERGY INSTITUTE FOR HIGH ENERGY PHYSICS. Yu.M.Zinoviev

USSR STATE COMMITTEE FOR UTILIZATION OF ATOMIC ENERGY INSTITUTE FOR HIGH ENERGY PHYSICS. Yu.M.Zinoviev USSR STATE COMMITTEE FOR UTILIZATION OF ATOMIC ENERGY INSTITUTE FOR HIGH ENERGY PHYSICS И Ф В Э 88-171 ОТФ Yu.M.Zinoviev SPONTANEOUS SYMMETRY BREAKING Ш N=3 SUPERGRAVITY Submitted to TMP Serpukhov 1986

More information

K.G.Klimenko ON NECESSARY AND SUFFICIENT CONDITIONS FOR SOME HIGGS POTENTIALS TO BE BOUNDED FROM BELOW

K.G.Klimenko ON NECESSARY AND SUFFICIENT CONDITIONS FOR SOME HIGGS POTENTIALS TO BE BOUNDED FROM BELOW I N S T I T U T E F O R H I G H E N E R G Y P H Y S I C S И Ф В Э 84-43 ОТФ K.G.Klimenko ON NECESSARY AND SUFFICIENT CONDITIONS FOR SOME HIGGS POTENTIALS TO BE BOUNDED FROM BELOW Serpukhov 2984 K.G.Kllmenko

More information

R.M.KashaeY, M.V.Savel^s?, S.A.Savel/eva Institute for High Energy Physics, Protvlno A.M.VerahlK Leningrad State University, Leningrad

R.M.KashaeY, M.V.Savel^s?, S.A.Savel/eva Institute for High Energy Physics, Protvlno A.M.VerahlK Leningrad State University, Leningrad USSR STATE COMMITTEE FOR UTILIZATION OF ATOMIC ENERGY INSTITUTE FOR HIGH ENERGY PHYSICS - Л И Ф В Э 90-1 *\о - Л \ ОТФ R.M.KashaeY, M.V.Savel^s?, S.A.Savel/eva Institute for High Energy Physics, Protvlno

More information

\ / I N S T I T U T E FOR HIGH ENERGY PHYSICS И Ф В Э

\ / I N S T I T U T E FOR HIGH ENERGY PHYSICS И Ф В Э \ / I N S T I T U T E FOR HIGH ENERGY PHYSICS И Ф В Э 80-179 ОЭФ SERP-E-134 R.I.Dzhelyadin, S.V.Golovkin, A.S.Konstantinov, V.F.Konstantinov, V.P.Kubarovski, L.G.Landsberg, V.A.Mukhin, V.F.Obrastsov, Yu.D.Prokoshkin,

More information

USSR STATE COMMITTEE FOR UTILIZATION OF ATOMIC ENERGY INSTITUTE FOR HIGH ENERGY PHYSICS. M.S.Plyushchav

USSR STATE COMMITTEE FOR UTILIZATION OF ATOMIC ENERGY INSTITUTE FOR HIGH ENERGY PHYSICS. M.S.Plyushchav 4 ' / '. / USSR STATE COMMITTEE FOR UTILIZATION OF ATOMIC ENERGY INSTITUTE FOR HIGH ENERGY PHYSICS Т ^~ - И Ф В Э 69-116 ОТФ M.S.Plyushchav SUPERSYMMETRIC MASSLESS PARTICLE WITH RIGIDITY Submitted to "Modern

More information

W*-«*rr \ъ~гя, Studying Triple Higgs Vertex in the Process 77 > HE at TeV Energies INSTITUTE FOR HJGH ENERGY PHYSICS ШЕР ОТФ

W*-«*rr \ъ~гя, Studying Triple Higgs Vertex in the Process 77 > HE at TeV Energies INSTITUTE FOR HJGH ENERGY PHYSICS ШЕР ОТФ / / /. INSTITUTE FOR HJGH ENERGY PHYSICS W*-«*rr \ъ~гя, ШЕР 92 29 ОТФ G.V. Jikia 1 and Yu.F. Pirogov 3 Studying Triple Higgs Vertex in the Process 77 > HE at TeV Energies Submitted to Physics Letters В

More information

About One way of Encoding Alphanumeric and Symbolic Information

About One way of Encoding Alphanumeric and Symbolic Information Int. J. Open Problems Compt. Math., Vol. 3, No. 4, December 2010 ISSN 1998-6262; Copyright ICSRS Publication, 2010 www.i-csrs.org About One way of Encoding Alphanumeric and Symbolic Information Mohammed

More information

Storm Open Library 3.0

Storm Open Library 3.0 S 50% off! 3 O L Storm Open Library 3.0 Amor Sans, Amor Serif, Andulka, Baskerville, John Sans, Metron, Ozdoby,, Regent, Sebastian, Serapion, Splendid Quartett, Vida & Walbaum. d 50% f summer j sale n

More information

VOL ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ. Дубна Е НЕРТН/ V.Berezovoj 1, A.Pashnev 2

VOL ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ. Дубна Е НЕРТН/ V.Berezovoj 1, A.Pashnev 2 л'j? 11 i. < и i: и «' 91 ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна Е2-95-250 НЕРТН/9506094 V.Berezovoj 1, A.Pashnev 2 ON THE STRUCTURE OF THE W = 4 SUPERSYMMETRIC QUANTUM MECHANICS IN D = 2 AND

More information

M. S. Plyushcha/ The model of a free relativistic particle with fractional spin

M. S. Plyushcha/ The model of a free relativistic particle with fractional spin INSTITUTE FOR HIGH ENERGY PHYSICS IHEP 91-106 ОТФ J M. S. Plyushcha/ The model of a free relativistic particle with fractional spin Submitted to Nucl. Phys. D "t 'E-Mail: PLUSHCHAY@M9.IHEP.SU Protvino

More information

On the Distribution o f Vertex-Degrees in a Strata o f a Random Recursive Tree. Marian D O N D A J E W S K I and Jerzy S Z Y M A N S K I

On the Distribution o f Vertex-Degrees in a Strata o f a Random Recursive Tree. Marian D O N D A J E W S K I and Jerzy S Z Y M A N S K I BULLETIN DE L ACADÉMIE POLONAISE DES SCIENCES Série des sciences mathématiques Vol. XXX, No. 5-6, 982 COMBINATORICS On the Distribution o f Vertex-Degrees in a Strata o f a Rom Recursive Tree by Marian

More information

THE HYPERBOLIC METRIC OF A RECTANGLE

THE HYPERBOLIC METRIC OF A RECTANGLE Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 26, 2001, 401 407 THE HYPERBOLIC METRIC OF A RECTANGLE A. F. Beardon University of Cambridge, DPMMS, Centre for Mathematical Sciences Wilberforce

More information

The Fluxes and the Equations of Change

The Fluxes and the Equations of Change Appendix 15 The Fluxes nd the Equtions of Chnge B.l B. B.3 B.4 B.5 B.6 B.7 B.8 B.9 Newton's lw of viscosity Fourier's lw of het conduction Fick's (first) lw of binry diffusion The eqution of continuity

More information

Math-Net.Ru All Russian mathematical portal

Math-Net.Ru All Russian mathematical portal Math-Net.Ru All Russian mathematical portal U. V. Linnik, On the representation of large numbers as sums of seven cubes, Rec. Math. [Mat. Sbornik] N.S., 1943, Volume 12(54), Number 2, 218 224 Use of the

More information

17-MESON ELECTROMAGNETIC STRUCTURE

17-MESON ELECTROMAGNETIC STRUCTURE I N S T I T U T E F O R H I G H E N E R G Y P H Y S I C S R. I.D z h e ly a d in, S.V.G o lo v k in, V.A.K a ch a n o v, A.S.K o n s ta n tin o v, V.F.K o n s t a n t in o v, V.P.K u b a r o v s k i, A.

More information

ядерных исследо1аии! дума

ядерных исследо1аии! дума вбъедшииый ИНСТИТУТ ядерных исследо1аии! дума Е1-86-607 P.Kozma, J.KIiman SPALLATION OF NICKEL BY 9 GeV/c PROTONS AND DEUTERONS Submitted to "Physics Letters B" 1986 In recent years considerable interest

More information

J.Bell, C.T.Coffin, B.P.Roe, A.A.Seidl, D.Sinclair, E.Wang (University of Michigan,Ann Arbon, Michigan USA)

J.Bell, C.T.Coffin, B.P.Roe, A.A.Seidl, D.Sinclair, E.Wang (University of Michigan,Ann Arbon, Michigan USA) I N S T I T U T E FOR HIGH ENERGY P H Y S I C S И В Э 81-в5 Н V.V.Ammosov, A.G.Denisov, P.F.Ermolov, G.S.Gapienko, V.A.Gapienko, V.I.Klyukhin, V.I.Koreshev, P.V.Pitukhin, V.I.Sirotenko, E.A.Slobodyuk,

More information

Slowing-down of Charged Particles in a Plasma

Slowing-down of Charged Particles in a Plasma P/2532 France Slowing-down of Charged Particles in a Plasma By G. Boulègue, P. Chanson, R. Combe, M. Félix and P. Strasman We shall investigate the case in which the slowingdown of an incident particle

More information

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 11 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,, a n, b are given real

More information

arxiv:nlin/ v1 [nlin.si] 18 Mar 2003

arxiv:nlin/ v1 [nlin.si] 18 Mar 2003 UFSCAR-TH-02 Yang-Baxter equation for the asymmetric eight-vertex model. arxiv:nlin/0303036v1 [nlin.si] 18 Mar 2003 W. Galleas and M.J. Martins Departamento de Física, Universidade Federal de São Carlos

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K R MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND First Printing, 99 Chapter LINEAR EQUATIONS Introduction to linear equations A linear equation in n unknowns x,

More information

И Ф В Э ПЭФ OBSERVATION OF A SPIN 4 NEUTRAL MESON WITH 2 GeV MASS DECAYING IN П П

И Ф В Э ПЭФ OBSERVATION OF A SPIN 4 NEUTRAL MESON WITH 2 GeV MASS DECAYING IN П П I N S T I T U T E F O R H I G H E N E R G Y P H Y S I C S И Ф В Э ПЭФ 75-84 W.D. Apel, K. Augenstein, E. Bertolucci, S.V. Donskov, A.V. Inyakin, V.A. Kachanov, W. Kittenberger, R.N. Krasnokutsky, M. Kruger,

More information

The Physical Pendulum

The Physical Pendulum The Physical Pendulum Sourendu Gupta TIFR, Mumbai, India Classical Mechanics 2011 August 20, 2011 The physical pendulum θ L T mg We choose to work with a generalized coordinate q which is the angle of

More information

ELLIPTIC FUNCTIONS AND THETA FUNCTIONS

ELLIPTIC FUNCTIONS AND THETA FUNCTIONS ELLIPTIC FUNCTIONS AND THETA FUNCTIONS LECTURE NOTES FOR NOV.24, 26 Historically, elliptic functions were first discovered by Niels Henrik Abel as inverse functions of elliptic integrals, and their theory

More information

THE DERIVATION OF THE FREE ENERGY OF THE ISING MODEL FROM THAT OF THE EIGHT-VERTEX MODEL D. A. LAVIS Department of Mathematics, King's College, Strand

THE DERIVATION OF THE FREE ENERGY OF THE ISING MODEL FROM THAT OF THE EIGHT-VERTEX MODEL D. A. LAVIS Department of Mathematics, King's College, Strand THE DERIVATION OF THE FREE ENERGY OF THE ISING MODEL FROM THAT OF THE EIGHT-VERTEX MODEL D. A. LAVIS Department of Mathematics, King's College, Strand, London, WCR LS, England March 5, 99 Abstract The

More information

ON ALGORITHMS INVARIANT T 0 NONLINEAR SCALING WITH INEXACT SEARCHES

ON ALGORITHMS INVARIANT T 0 NONLINEAR SCALING WITH INEXACT SEARCHES Chin. Aim. of Math. 8B (1) 1987 ON ALGORITHMS INVARIANT T 0 NONLINEAR SCALING WITH INEXACT SEARCHES 'В щ о К л х о д ш (ЯДОф).* Oh en Zh i (F&, Abstract Among the researches of unconstrained optimization

More information

A matrix over a field F is a rectangular array of elements from F. The symbol

A matrix over a field F is a rectangular array of elements from F. The symbol Chapter MATRICES Matrix arithmetic A matrix over a field F is a rectangular array of elements from F The symbol M m n (F ) denotes the collection of all m n matrices over F Matrices will usually be denoted

More information

3 /,,,:;. c E THE LEVEL DENSITY OF NUCLEI IN THE REGION 230 ~ A < 254. A.L.Komov, L.A.Malov, V.G.Soloviev, V.V.Voronov.

3 /,,,:;. c E THE LEVEL DENSITY OF NUCLEI IN THE REGION 230 ~ A < 254. A.L.Komov, L.A.Malov, V.G.Soloviev, V.V.Voronov. ~ - t-1 'I I 3 /,,,:;. c E4-9236 A.L.Komov, L.A.Malov, V.G.Soloviev, V.V.Voronov THE LEVEL DENSITY OF NUCLEI IN THE REGION 230 ~ A < 254 1975 E4-9236 AX.Komov, L.A.Malov, V.G.SoIoviev, V.V.Voronov THE

More information

ATLANTA, GEORGIA, DECEMBER 12, No. 13. D r. M. L. B r i t t a i n T e l l s S t u d e n t s C o n t r a c t I s B r o k e n

ATLANTA, GEORGIA, DECEMBER 12, No. 13. D r. M. L. B r i t t a i n T e l l s S t u d e n t s C o n t r a c t I s B r o k e n Z-V. XX,, D 141.. 13 ' ' b v k ; D... k x 1 1 7 v f b k f f ' b,, b J 7 11:30 D... D. b " vv f, bv." x v..., bk, b v ff., b b Jk,., f ' v v z. b f. f f b v 123. k,., - f x 123. ' b 140-41, f " f" b - 141-42

More information

И Ф В 3 ПЭФ PARTICLE PRODUCTION BY 70 GeV/c PROTONS. Serpukhov 1975

И Ф В 3 ПЭФ PARTICLE PRODUCTION BY 70 GeV/c PROTONS. Serpukhov 1975 I N S T I T U T E F O R H I G H E N E R G Y P H Y S I C S И Ф В 3 ПЭФ 75-15 Yu.M. Antipov, V. A. Bessubov, N. P. Budanov, Yu.B. Bushnin, S.P. Denisov, Yu.p. Gorin, A.A. Lebedev, A.A. Lednev, Yu.V. Mikhailov,

More information

INSTITUTE FOR HIGH ENERGY PHYSICS . (T.F.. S2 >** IHEP ОТФ. V.V.Kiselev. Leptonic Decay Constants of Heavy Quarkonia in Effective QCD Sum Rules

INSTITUTE FOR HIGH ENERGY PHYSICS . (T.F.. S2 >** IHEP ОТФ. V.V.Kiselev. Leptonic Decay Constants of Heavy Quarkonia in Effective QCD Sum Rules INSTITUTE FOR HIGH ENERGY PHYSICS - и е Ь. (T.F.. S2 >** IHEP 92-149 ОТФ V.V.Kiselev Leptonic Decay Constants of Heavy Quarkonia in Effective QCD Sum Rules Protvino 1992 UDK 539.1 M 24 Abstract V.V.Kiselev.

More information

C-CC514 NT, C-CC514 PL C-CC564 NT, C-CC564 PL C-CC574 NT, C-CC574 PL C-CC714 NT, C-CC714 PL C-CC764 NT, C-CC764 PL C-CC774 NT, C-CC774 PL

C-CC514 NT, C-CC514 PL C-CC564 NT, C-CC564 PL C-CC574 NT, C-CC574 PL C-CC714 NT, C-CC714 PL C-CC764 NT, C-CC764 PL C-CC774 NT, C-CC774 PL SETUP MANUAL COMBINATION CAMERA OUTDOOR COMBINATION CAMERA C-CC514 NT, C-CC514 PL C-CC564 NT, C-CC564 PL C-CC574 NT, C-CC574 PL C-CC714 NT, C-CC714 PL C-CC764 NT, C-CC764 PL C-CC774 NT, C-CC774 PL Thank

More information

IS.Akh«b.ki»n, J.Bartke, V.G.Griihin, M.Kowahki

IS.Akh«b.ki»n, J.Bartke, V.G.Griihin, M.Kowahki М^.Ш:й*;п II, 1Д1 Н1Х ЯвШДЮМ* i ПГиГ- ii i) и ii in ill i El-83-670 IS.Akh«b.ki»n, J.Bartke, V.G.Griihin, M.Kowahki SMALL ANGLE CORRELATIONS OF IDENTICAL PARTICLES IN CARBON-CARBON INTERACTIONS AT P *

More information

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ СО АН СССР

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ СО АН СССР ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ СО АН СССР Е.М. Ilgenfritz, E.V. Shuryak CHIRAL SYMMETRY RESTORATION AT FINITE TEMPERATURE IN THE INSTANTON LIQUID PREPWNT 88-85 НОВОСИБИРСК Institute of Nuclear Physics E.M. Ilgenfritz,

More information

USSR STATE COMMITTEE FOR UTILIZATION OF ATOMIC ENEMY INSTITUTE FOR HIGH ENERGY PHYSICS. M.S.Plyuehcha

USSR STATE COMMITTEE FOR UTILIZATION OF ATOMIC ENEMY INSTITUTE FOR HIGH ENERGY PHYSICS. M.S.Plyuehcha USSR STATE COMMITTEE FOR UTILIZATION OF ATOMIC ENEMY INSTITUTE FOR HIGH ENERGY PHYSICS И В Э 89-136 ОТ* M.S.Plyuehcha RELATIVISTIC MASSIVE PARTICLE WITH HIGHER CURVATURES AS A MODEL FOR DESCRIPTION OF

More information

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ СО АН СССР

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ СО АН СССР ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ СО АН СССР S.I.Dolinsky, V.P.Druzhinin, M.S.Dubrovin, V.B.Golubev, V. N.lvanchenko, A.P.Lysenko, A.A.Mikhailichenko, E.V.Pakhtusova, A. N.Peryshkin, S.I.Serednyakov, Yu.M.Shatunov,

More information

Czechoslovak Mathematical Journal

Czechoslovak Mathematical Journal Czechoslovak Mathematical Journal Štefan Schwarz Prime ideals and maximal ideals in semigroups Czechoslovak Mathematical Journal, Vol. 19 (1969), No. 1, 72 79 Persistent URL: http://dml.cz/dmlcz/100877

More information

Symmetry Factors of Feynman Diagrams for Scalar Fields

Symmetry Factors of Feynman Diagrams for Scalar Fields arxiv:0907.0859v2 [hep-ph] 15 Nov 2010 Symmetry Factors of Feynman Diagrams for Scalar Fields P. V. Dong, L. T. Hue, H. T. Hung, H. N. Long, and N. H. Thao Institute of Physics, VAST, P.O. Box 429, Bo

More information

arxiv:hep-ph/ v1 26 May 1994

arxiv:hep-ph/ v1 26 May 1994 ETH-TH/94-4 KLTE-DTP/94-3 May 5, 994 arxiv:hep-ph/9405386v 6 May 994 One-loop radiative corrections to the helicity amplitudes of QCD processes involving four quarks and one gluon Zoltan Kunszt a, Adrian

More information

Physics 116A Determinants

Physics 116A Determinants Physics 116A Determinants Peter Young (Dated: February 5, 2014) I. DEFINITION The determinant is an important property of a square n n matrix. Such a matrix, A say, has n 2 elements, a ij, and is written

More information

CONSTRUCTING SOLUTIONS TO THE ULTRA-DISCRETE PAINLEVE EQUATIONS

CONSTRUCTING SOLUTIONS TO THE ULTRA-DISCRETE PAINLEVE EQUATIONS CONSTRUCTING SOLUTIONS TO THE ULTRA-DISCRETE PAINLEVE EQUATIONS D. Takahashi Department of Applied Mathematics and Informatics Ryukoku University Seta, Ohtsu 50-1, Japan T. Tokihiro Department of Mathematical

More information

SMT 2013 Power Round Solutions February 2, 2013

SMT 2013 Power Round Solutions February 2, 2013 Introduction This Power Round is an exploration of numerical semigroups, mathematical structures which appear very naturally out of answers to simple questions. For example, suppose McDonald s sells Chicken

More information

REMARKS ON ESTIMATING THE LEBESGUE FUNCTIONS OF AN ORTHONORMAL SYSTEM UDC B. S. KASlN

REMARKS ON ESTIMATING THE LEBESGUE FUNCTIONS OF AN ORTHONORMAL SYSTEM UDC B. S. KASlN Мат. Сборник Math. USSR Sbornik Том 106(148) (1978), Вып. 3 Vol. 35(1979), o. 1 REMARKS O ESTIMATIG THE LEBESGUE FUCTIOS OF A ORTHOORMAL SYSTEM UDC 517.5 B. S. KASl ABSTRACT. In this paper we clarify the

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K. R. MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND Second Online Version, December 1998 Comments to the author at krm@maths.uq.edu.au Contents 1 LINEAR EQUATIONS

More information

Rational Form Solitary Wave Solutions and Doubly Periodic Wave Solutions to (1+1)-Dimensional Dispersive Long Wave Equation

Rational Form Solitary Wave Solutions and Doubly Periodic Wave Solutions to (1+1)-Dimensional Dispersive Long Wave Equation Commun. Theor. Phys. (Beijing, China) 43 (005) pp. 975 98 c International Academic Publishers Vol. 43, No. 6, June 15, 005 Rational Form Solitary Wave Solutions and Doubly Periodic Wave Solutions to (1+1)-Dimensional

More information

GRAVITON MASS, QUINTESSENCE AND OSCILLATORY CHARACTER OF THE UNIVERSE EVOLUTION

GRAVITON MASS, QUINTESSENCE AND OSCILLATORY CHARACTER OF THE UNIVERSE EVOLUTION STATE RESEARCH CENTER OF RUSSIA INSTITUTE FOR HIGH ENERGY PHYSICS IHEP 2003 13 S.S. Gershtein 1, A.A. Logunov 2, M.A. Mestvirishvili, N.P. Tkachenko 3 GRAVITON MASS, QUINTESSENCE AND OSCILLATORY CHARACTER

More information

ITP-9O-29B. L.L.Jenkovszky, E.S,Martynov, HOW FAST DO CROSS SECTIONS RISE?

ITP-9O-29B. L.L.Jenkovszky, E.S,Martynov, HOW FAST DO CROSS SECTIONS RISE? ITP-9O-29B L.L.Jenkovszky, E.S,Martynov, HOW FAST DO CROSS SECTIONS RISE? Academy of Sciences of the Ukrainian SSR Institute for Theoretical Physios Preprint ITP-90-29E L.L.Jenkovszky, E.S.Martynov, B.V.Struminsky

More information

The two loop D0-brane metric in N = 2 sigma models

The two loop D0-brane metric in N = 2 sigma models The two loop D0-brane metric in N = sigma models Thomas Wynter SPhT, CEA-Saclay, 91011 Gif-sur Yvette, France Abstract We investigate, up to two loop order, the physical metric seen by a D0-brane probe

More information

ОБЪЕДИНЕННЫЙ ЯДЕРНЫХ. Дубна ^Ш ИНСТИТУТ ПИШЛЕДОВАШ! Е V.S.Melezhik* NEW APPROACH TO THE OLD PROBLEM OF MUON STICKING IN \icf

ОБЪЕДИНЕННЫЙ ЯДЕРНЫХ. Дубна ^Ш ИНСТИТУТ ПИШЛЕДОВАШ! Е V.S.Melezhik* NEW APPROACH TO THE OLD PROBLEM OF MUON STICKING IN \icf [l'"'ih'ii И { II 2 ^ ОБЪЕДИНЕННЫЙ ^Ш ИНСТИТУТ ЯДЕРНЫХ ПИШЛЕДОВАШ! Дубна Е4-95-425 V.S.Melezhik* NEW APPROACH TO THE OLD PROBLEM OF MUON STICKING IN \icf Submitted to «Hyperfine Interaction» *E-muil address:

More information

1 4 which satisfies (2) identically in u for at least one value of the complex variable z then s c g.l.b. I ~m-1 y~~z cn, lar m- = 0 ( co < r, s < oo)

1 4 which satisfies (2) identically in u for at least one value of the complex variable z then s c g.l.b. I ~m-1 y~~z cn, lar m- = 0 ( co < r, s < oo) Nieuw Archief voor Wiskunde (3) III 13--19 (1955) FUNCTIONS WHICH ARE SYMMETRIC ABOUT SEVERAL POINTS BY PAUL ERDÖS and MICHAEL GOLOMB (Notre Dame University) (Purdue University) 1. Let 1(t) be a real-valued

More information

A GENERALIZATION OF THE FARKAS AND KRA PARTITION THEOREM FOR MODULUS 7

A GENERALIZATION OF THE FARKAS AND KRA PARTITION THEOREM FOR MODULUS 7 A GENERALIZATION OF THE FARKAS AND KRA PARTITION THEOREM FOR MODULUS 7 S. OLE WARNAAR Dedicated to George Andrews on the occasion of his 65th birthday Abstract. We prove generalizations of some partition

More information

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial.

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial. Lecture 3 Usual complex functions MATH-GA 245.00 Complex Variables Polynomials. Construction f : z z is analytic on all of C since its real and imaginary parts satisfy the Cauchy-Riemann relations and

More information

REPRESENTATIONS FOR A SPECIAL SEQUENCE

REPRESENTATIONS FOR A SPECIAL SEQUENCE REPRESENTATIONS FOR A SPECIAL SEQUENCE L. CARLITZ* RICHARD SCOVILLE Dyke University, Durham,!\!orth Carolina VERNERE.HOGGATTJR. San Jose State University, San Jose, California Consider the sequence defined

More information

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ I),..,.,,. II S I) ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Е2-95-457 M.V.Chizhov*. SEARCH FOR TENSOR INTERACTIONS IN KAON DECAYS AT DAONE Submitted to «Physics Letters B» *E-mail address: mih@phys.uni-sofia.bg

More information

INSTITUTE OF THEORETICAL ANO EXPERIMENTAL PHYSICS

INSTITUTE OF THEORETICAL ANO EXPERIMENTAL PHYSICS INSTITUTE OF THEORETICAL ANO EXPERIMENTAL PHYSICS 1ТЕР -77 V.A.Novikov, M.A.Shifman, A.I.Vainshtein, V.I.Zakharov INSTANTON EFFECTS IN SUPERSYMMETRIC THEORIES M O S C O W 1 9 8 3 УДК 530.145:538.3 Abstract

More information

We already came across a form of indistinguishably in the canonical partition function: V N Q =

We already came across a form of indistinguishably in the canonical partition function: V N Q = Bosons en fermions Indistinguishability We already came across a form of indistinguishably in the canonical partition function: for distinguishable particles Q = Λ 3N βe p r, r 2,..., r N ))dτ dτ 2...

More information

SUPERSYMMETRIC HADRONIC MECHANICAL HARMONIC OSCILLATOR

SUPERSYMMETRIC HADRONIC MECHANICAL HARMONIC OSCILLATOR SUPERSYMMETRIC HADRONIC MECHANICAL HARMONIC OSCILLATOR A.K.Aringazin Department of Theoretical Physics Karaganda State University Karaganda 470074, USSR 1990 Abstract Lie-isotopic lifting of the commutation

More information

XJ ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ. Дубна Е

XJ ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ. Дубна Е XJ0300016 ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна Е13-2002-136 L. S. Azhgirey, V. P. Ladygin, F. Lehar 1, A. N. Prokofiev 2, G. D. Stoletov, A. A. Zhdanov 2, V. N. Zhmyrov INTERMEDIATE-ENERGY

More information

Math-Net.Ru All Russian mathematical portal

Math-Net.Ru All Russian mathematical portal Math-Net.Ru All Russian mathematical portal N. R. Mohan, S. Ravi, Max Domains of Attraction of Univariate Multivariate p-max Stable Laws, Teor. Veroyatnost. i Primenen., 1992, Volume 37, Issue 4, 709 721

More information

EllipticK. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

EllipticK. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation EllipticK Notations Traditional name Complete elliptic integral of the first kind Traditional notation K Mathematica StandardForm notation EllipticK Primary definition 08.0.0.000.0 K F Specific values

More information

PHYS 705: Classical Mechanics. Rigid Body Motion Introduction + Math Review

PHYS 705: Classical Mechanics. Rigid Body Motion Introduction + Math Review 1 PHYS 705: Classical Mechanics Rigid Body Motion Introduction + Math Review 2 How to describe a rigid body? Rigid Body - a system of point particles fixed in space i r ij j subject to a holonomic constraint:

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K R MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND Second Online Version, December 998 Comments to the author at krm@mathsuqeduau All contents copyright c 99 Keith

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K. R. MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND Corrected Version, 7th April 013 Comments to the author at keithmatt@gmail.com Chapter 1 LINEAR EQUATIONS 1.1

More information

The groups SO(3) and SU(2) and their representations

The groups SO(3) and SU(2) and their representations CHAPTER VI The groups SO(3) and SU() and their representations Two continuous groups of transformations that play an important role in physics are the special orthogonal group of order 3, SO(3), and the

More information

Counterexamples in Analysis

Counterexamples in Analysis Counterexamples in Analysis Bernard R. Gelbaum University of California, Irvine John M. H. Olmsted Southern Illinois University Dover Publications, Inc. Mineola, New York Table of Contents Part I. Functions

More information

Here are brief notes about topics covered in class on complex numbers, focusing on what is not covered in the textbook.

Here are brief notes about topics covered in class on complex numbers, focusing on what is not covered in the textbook. Phys374, Spring 2008, Prof. Ted Jacobson Department of Physics, University of Maryland Complex numbers version 5/21/08 Here are brief notes about topics covered in class on complex numbers, focusing on

More information

SINGULAR PERTURBATIONS FOR QUASIUNEAR HYPERBOUC EQUATIONS. a " m a *-+».(«, <, <,«.)

SINGULAR PERTURBATIONS FOR QUASIUNEAR HYPERBOUC EQUATIONS. a  m a *-+».(«, <, <,«.) Chm. Am. of Math. 4B (3) 1983 SINGULAR PERTURBATIONS FOR QUASIUNEAR HYPERBOUC EQUATIONS G a o R ttxi ( «* * > ( Fudan University) Abstract This paper deals with the following mixed problem for Quasilinear

More information

METHOD OF CONVERGENT WEIGHTS- AN ITERATIVE PROCEDURE FOR SOLVING FREDHOLM'S INTEGRAL EQUATIONS OF THE FIRST KIND

METHOD OF CONVERGENT WEIGHTS- AN ITERATIVE PROCEDURE FOR SOLVING FREDHOLM'S INTEGRAL EQUATIONS OF THE FIRST KIND suite :: 1Щ1ННЫ1 шетшт Uipiux М6С11ДНШ1 дума El 1-82-853 A.Komdor METHOD OF CONVERGENT WEIGHTS- AN ITERATIVE PROCEDURE FOR SOLVING FREDHOLM'S INTEGRAL EQUATIONS OF THE FIRST KIND Submitted to "Nuclear

More information

Tibetan Unicode EWTS Help

Tibetan Unicode EWTS Help Tibetan Unicode EWTS Help Keyboard 2003 Linguasoft Overview Tibetan Unicode EWTS is based on the Extended Wylie Transliteration Scheme (EWTS), an approach that avoids most Shift, Alt, and Alt + Shift combinations.

More information

arxiv: v1 [hep-ph] 30 Dec 2015

arxiv: v1 [hep-ph] 30 Dec 2015 June 3, 8 Derivation of functional equations for Feynman integrals from algebraic relations arxiv:5.94v [hep-ph] 3 Dec 5 O.V. Tarasov II. Institut für Theoretische Physik, Universität Hamburg, Luruper

More information

Czechoslovak Mathematical Journal

Czechoslovak Mathematical Journal Czechoslovak Mathematical Journal Stanislav Jílovec On the consistency of estimates Czechoslovak Mathematical Journal, Vol. 20 (1970), No. 1, 84--92 Persistent URL: http://dml.cz/dmlcz/100946 Terms of

More information

M-6~ El STRANGENESS EXCHANGE IN HIGH ENERGY INTERACTIONS

M-6~ El STRANGENESS EXCHANGE IN HIGH ENERGY INTERACTIONS M-6~ El - 8794 A.Mih ul ', T.Angelescu STRANGENESS EXCHANGE IN HIGH ENERGY INTERACTIONS 1975 El - 8794 A.Mihul, T.Angelescu STRANGENESS EXCHANGE IN HIGH ENERGY INTERACTIONS Submitted to Physics Letters

More information

объединенный ИНСТИТУТ ядерных исследований cut OQ6'0 ДУШ Е V.S.Gerdjikov, M.LIvanov

объединенный ИНСТИТУТ ядерных исследований cut OQ6'0 ДУШ Е V.S.Gerdjikov, M.LIvanov cut OQ6'0 объединенный ИНСТИТУТ ядерных исследований ДУШ Е2-82-595 V.S.Gerdjikov, M.LIvanov THE QUADRATIC BUNDLE OF GENERAL FORM AND THE NONLINEAR EVOLUTION EQUATIONS. HIERARCHIES OF HAMILTONIAN STRUCTURES

More information

Particles I, Tutorial notes Sessions I-III: Roots & Weights

Particles I, Tutorial notes Sessions I-III: Roots & Weights Particles I, Tutorial notes Sessions I-III: Roots & Weights Kfir Blum June, 008 Comments/corrections regarding these notes will be appreciated. My Email address is: kf ir.blum@weizmann.ac.il Contents 1

More information

Chapter 1, Exercise 22

Chapter 1, Exercise 22 Chapter, Exercise 22 Let N = {,2,3,...} denote the set of positive integers. A subset S N is said to be in arithmetic progression if S = {a,a+d,a+2d,a+3d,...} where a,d N. Here d is called the step of

More information

NUMERICAL SIMULATION OF MHD-PROBLEMS ON THE BASIS OF VARIATIONAL APPROACH

NUMERICAL SIMULATION OF MHD-PROBLEMS ON THE BASIS OF VARIATIONAL APPROACH NUMERICAL SIMULATION OF MHD-PROBLEMS ON THE BASIS OF VARIATIONAL APPROACH V.M. G o lo v izn in, A.A. Sam arskii, A.P. Favor s k i i, T.K. K orshia In s t it u t e o f A p p lie d M athem atics,academy

More information

Hyperbolic-Type Orbits in the Schwarzschild Metric

Hyperbolic-Type Orbits in the Schwarzschild Metric Hyperbolic-Type Orbits in the Schwarzschild Metric F.T. Hioe* and David Kuebel Department of Physics, St. John Fisher College, Rochester, NY 468 and Department of Physics & Astronomy, University of Rochester,

More information

Math-Net.Ru All Russian mathematical portal

Math-Net.Ru All Russian mathematical portal Math-Net.Ru All Russian mathematical portal P. Masani, N. Wiener, On Bivariate Stationary Processes and the Factorization of Matrix-Valued Functions, Teor. Veroyatnost. i Primenen., 1959, Volume 4, Issue

More information

ESTIMATION OF POLYNOMIAL ROOTS BY CONTINUED FRACTIONS

ESTIMATION OF POLYNOMIAL ROOTS BY CONTINUED FRACTIONS KYBERNETIKA- VOLUME 21 (1985), NUMBER 6 ESTIMATION OF POLYNOMIAL ROOTS BY CONTINUED FRACTIONS PETR KLAN The article describes a method of polynomial root solving with Viskovatoff's decomposition (analytic

More information

Fusion Chain Reaction

Fusion Chain Reaction P/1941 Poland Fusion Chain Reaction By M. Gryziñski CHAIN REACTION WITH CHARGED PARTICLES With the discovery of the fission chain reaction with neutrons, the possibility of obtaining a chain reaction with

More information

MTS 105 LECTURE 5: SEQUENCE AND SERIES 1.0 SEQUENCE

MTS 105 LECTURE 5: SEQUENCE AND SERIES 1.0 SEQUENCE MTS 105 LECTURE 5: SEQUENCE AND SERIES 1.0 SEQUENCE A sequence is an endless succession of numbers placed in a certain order so that there is a first number, a second and so on. Consider, for example,

More information

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples

More information

arxiv:solv-int/ v1 4 Sep 1995

arxiv:solv-int/ v1 4 Sep 1995 Hidden symmetry of the quantum Calogero-Moser system Vadim B. Kuznetsov Institute of Mathematical Modelling 1,2,3 Technical University of Denmark, DK-2800 Lyngby, Denmark arxiv:solv-int/9509001v1 4 Sep

More information

V X Y Y X D Z D Z. D is V D Y Y D. ,, if,, V V X V X. f we will compare binary relation

V X Y Y X D Z D Z. D is V D Y Y D. ,, if,, V V X V X. f we will compare binary relation International Journal of Engineering Science and Innovative echnology (IJESI) Volume Issue 3 May 201 Finite semigroups of binary relations defined by semi lattices of the class Σ( ) Mzevinar Bakuridze

More information

The 6-vertex model of hydrogen-bonded crystals with bond defects

The 6-vertex model of hydrogen-bonded crystals with bond defects arxiv:cond-mat/9908379v [cond-mat.stat-mech] Oct 999 The 6-vertex model of hydrogen-bonded crystals with bond defects N. Sh. Izmailian, Chin-Kun Hu and F. Y. Wu Institute of Physics, Academia Sinica, Nankang,

More information

ИНСТИТУТ ТЕОРЕТИЧЕСКОЙ ФИЗИКИ

ИНСТИТУТ ТЕОРЕТИЧЕСКОЙ ФИЗИКИ АКАДЕМИЯ НАУК УКРАИНСКОЙ ССР к S к S ИНСТИТУТ ТЕОРЕТИЧЕСКОЙ ФИЗИКИ ITP-79-14-8E December, 1979 V.A.Miransky DYNAMIC MASS GENERATION AND RENQRMALI2ATICHS IN QUANTUM FIELD THEORIES В.А.Миранский 1ТР-79-148Е

More information

On the Onsager-Yang-Value of the Spontaneous Magnetization

On the Onsager-Yang-Value of the Spontaneous Magnetization On the Onsager-Yang-Value of the Spontaneous Magnetization G. Benettin, G. Gallavotti*, G. Jona-Lasinio, A. L. Stella Istituto di Fisica del Universita, Padova, Italy Received November 10, 1972 Abstract:

More information

Updates on ABJM Scattering Amplitudes

Updates on ABJM Scattering Amplitudes Updates on ABJM Scattering Amplitudes Sangmin Lee (Seoul National University) 17 June 2013 Exact Results in String/M Theory (pre Strings 2013 workshop) Korea Institute for Advanced Study Introduction Scattering

More information

Krammers-Wannier Duality in Lattice Systems

Krammers-Wannier Duality in Lattice Systems Krammers-Wannier Duality in Lattice Systems Sreekar Voleti 1 1 Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7. (Dated: December 9, 2018) I. INTRODUCTION It was shown by

More information

Properties of the stress tensor

Properties of the stress tensor Appendix C Properties of the stress tensor Some of the basic properties of the stress tensor and traction vector are reviewed in the following. C.1 The traction vector Let us assume that the state of stress

More information

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 26 May 1998

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 26 May 1998 Self-dual property of the Potts model in one dimension arxiv:cond-mat/9805301v2 [cond-mat.stat-mech] 26 May 1998 F. Y. Wu Department of Physics Northeastern University, Boston, Massachusetts 02115 Abstract

More information

The 1+1-dimensional Ising model

The 1+1-dimensional Ising model Chapter 4 The 1+1-dimensional Ising model The 1+1-dimensional Ising model is one of the most important models in statistical mechanics. It is an interacting system, and behaves accordingly. Yet for a variety

More information

GROUP THEORY PRIMER. New terms: tensor, rank k tensor, Young tableau, Young diagram, hook, hook length, factors over hooks rule

GROUP THEORY PRIMER. New terms: tensor, rank k tensor, Young tableau, Young diagram, hook, hook length, factors over hooks rule GROUP THEORY PRIMER New terms: tensor, rank k tensor, Young tableau, Young diagram, hook, hook length, factors over hooks rule 1. Tensor methods for su(n) To study some aspects of representations of a

More information

объединенный ИНСТИТУТ ' ядерных исследовании

объединенный ИНСТИТУТ ' ядерных исследовании объединенный ИНСТИТУТ ' ядерных исследовании Е2-94-337 S.V.AfanasJev, M.V.AltaiskJ, Yu.G.Zhestkov ON APPLICATION OF WAVELET ANALYSIS TO SEPARATION OF SECONDARY PARTICLES FROM NUCLEUS-NUCLEUS INTERACTIONS

More information

arxiv: v1 [math-ph] 24 Dec 2013

arxiv: v1 [math-ph] 24 Dec 2013 ITP-UU-13/32 SPIN-13/24 Twisted Heisenberg chain and the six-vertex model with DWBC arxiv:1312.6817v1 [math-ph] 24 Dec 2013 W. Galleas Institute for Theoretical Physics and Spinoza Institute, Utrecht University,

More information

PHYSICS OF QUANTUM COMPUTATION

PHYSICS OF QUANTUM COMPUTATION XJ0300180 Письма в ЭЧАЯ. 2003. 1 [116] Particles and Nuclei, Letters. 2003. No. 1[116] PHYSICS OF QUANTUM COMPUTATION V. V. Belokurov, O. A. Khrustalev, V. A. Sadovnichy, O. D. Timofeevskaya Lomonosov

More information

USSR STATE COMMITTEE FOR UTILIZATION OP ATOMIC ENERGY INSTITUTE FOR HIGH ENERGY PHYSICS. S.S.Gershtein, A.K.Llkhoded, S.R.

USSR STATE COMMITTEE FOR UTILIZATION OP ATOMIC ENERGY INSTITUTE FOR HIGH ENERGY PHYSICS. S.S.Gershtein, A.K.Llkhoded, S.R. USSR STATE COMMITTEE FOR UTILIZATION OP ATOMIC ENERGY INSTITUTE FOR HIGH ENERGY PHYSICS И Ф В Э 89-214 ОТФ S.S.Gershtein, A.K.Llkhoded, S.R.SlabospitsKy GENERAL CHARACTERISTICS OF В с -MESONS. PRODUCTION

More information

Products of random matrices

Products of random matrices PHYSICAL REVIEW E 66, 664 Products of random matrices A. D. Jackson* and B. Lautrup The Niels Bohr Institute, Copenhagen, Denmark P. Johansen The Institute of Computer Science, University of Copenhagen,

More information