CHAPTER 2 LIMITS AND CONTINUITY

Size: px
Start display at page:

Download "CHAPTER 2 LIMITS AND CONTINUITY"

Transcription

1 CHAPTER LIMITS AND CONTINUITY RATES OF CHANGE AND LIMITS (a) Does not eist As approaches from the right, g() approaches 0 As approaches from the left, g() approaches There is no single number L that all the values g() get arbitrarily close to as Ä (c) 0 (a) 0 (c) Does not eist As t approaches 0 from the left, f(t) approaches As t approaches 0 from the right, f(t) approaches There is no single number L that f(t) gets arbitrarily close to as t Ä 0 (a) True True (c) False (d) False (e) False (f) True (a) False False (c) True (d) True (e) True 5 lim does not eist because if 0 and if 0 As approaches 0 from the left, Ä 0 kk kk kk kkapproaches As approaches 0 from the right, kkapproaches There is no single number L that all the function values get arbitrarily close to as Ä 0 6 As approaches from the left, the values of become increasingly large and As approaches from the right, the values become increasingly large and positive There is no one number L that all the function values get arbitrarily close to as Ä, so lim does not eist Ä 7 Nothing can be said about f() because the eistence of a limit as Ä! does not depend on how the function is defined at! In order for a limit to eist, f() must be arbitrarily close to a single real number L when is close enough to! That is, the eistence of a limit depends on the values of f() for near!, not on the definition of f() at! itself 8 Nothing can be said In order for lim f() to eist, f() must close to a single value for near 0 regardless of Ä 0 the value f(0) itself 9 No, the definition does not require that f be defined at in order for a limiting value to eist there If f() is defined, it can be any real number, so we can conclude nothing about f() from lim f() 5 Ä 0 No, because the eistence of a limit depends on the values of f() when is near, not on f() itself If lim f() eists, its value may be some number other than f() 5 We can conclude nothing about lim f(), Ä Ä whether it eists or what its value is if it does eist, from knowing the value of f() alone

2 58 Chapter Limits and Continuity (a) f() a * b/( ) f() f() The estimate is lim f() 6 Ä$ 9 ( )( ) (c) f() if Á, and lim ( ) 6 Ä$ (a) g() a b/ Š È g() Š ÈŠ È (c) g() È if Á È, and lim È Š È È È È Š È Ä È (a) G() ( 6)/ a b G() G()

3 Section Rates of Change and Limits (c) G() a b (6)() if Á6, and lim ' 8 05 Ä' (a) h() a b/ a b h() h() ( )( ) (c) h() ()() if Á, and lim Ä$ 5 (a) f() a b/ akkb f() f()

4 60 Chapter Limits and Continuity ( )( ) (c) f(), 0 and Á kk ( )( ), and lim ( ) ( ), 0 and Á Ä ( ) 6 (a) F() a b/ a kkb F() F() ( )( ), 0 (c) F() kk ( )( ), and lim ( ), 0 and Á Ä 7 (a) g( )) (sin ))/) ) g( )) ) g( )) lim g( )) ) Ä! 8 (a) G(t) ( cos t)/t t G(t) t G(t) lim G(t) 05 t Ä!

5 Section Rates of Change and Limits 6 Graph is NOT TO SCALE 9 (a) f() f() f() lim f() Ä Graph is NOT TO SCALE Also the intersection of the aes is not the origin: the aes intersect at the point (ß 780) 0 (a) f() a b/ f() f() lim f() 0986 Ä! lim () lim (0) 0 Ä Ä! lim ( ) ˆ 0 lim Ä Ä () $

6 6 Chapter Limits and Continuity ( ) 5 lim ( ) ( )(( ) ) 9 6 lim Ä Ä ( ) 7 lim sin sin 8 lim Ä Ä cos cos? f f() f() 8 9? f f() f( ) 0?? ( ) 9 (a) 9? g g() g( )? g g(0) g( ) 0? ( )? 0 ( ) 0 (a) 0? h hˆ hˆ? h hˆ hˆ 0È È? t? t 6 6 (a)? g g( ) g(0) ( ) ( )? g g( ) g( ) ( ) ( )? t 0 0? t ( ) (a) 0? R R() R(0) È8È?) 0? P P() P() (8 6 0) (%&)?) 0 5 (a) Q Slope of PQ 650 5? p? t Q (0ß5) m/sec Q (ß75) 0 58 m/sec Q $ (65ß75) m/sec Q %(8ß550) m/sec At t 0, the Cobra was traveling approimately 50 m/sec or 80 km/h 6 (a) Q Slope of PQ 7 (a) 80 0? p? t Q (5ß0) 0 5 m/sec 80 9 Q (7ß9) m/sec Q $ (85ß58) m/sec 80 7 Q %(95ß7) m/sec Approimately 6 m/sec? p 7 6? t thousand dollars per year (c) The average rate of change from 99 to 99 is The average rate of change from 99 to 99 is? p 6 7? t 99 99? p 6? t thousand dollars per year 9 thousand dollars per year So, the rate at which profits were changing in 99 is approimatley a 5 9 b thousand dollars per year

7 8 (a) F() ( )/( ) F() ? F 0 ( )? F ( )??? F 0 ( )? F 00 ( )? 0? 00? F!!!% ( )? 000!!!%; 50; ; 0;!!%; The rate of change of F() at is? g g() g() È? g g(5) g() È5?? 5 05? h) g() Èh? (h) h Section Rates of Change and Limits 6 9 (a) g() È h È h Š È h /h (c) The rate of change of g() at is 05 Èh (d) The calculator gives lim h h Ä! 0 (a) i) c f() f() 6 6 T f(t) f() T T T T T T T T T(T) T( T) T ii), T Á T f(t) af(t) f() b/ at b (c) The table indicates the rate of change is 05 at t (d) lim T Ĉ T -6 Eample CAS commands: Maple: f := -> (^ 6)/( ); 0 := ; plot( f(), 0-0+, color black, title Section, (a) ); limit( f(), 0 ); In Eercise, note that the standard cube root, ^(/), is not defined for <0 in many CASs This can be overcome in Maple by entering the function as f := -> (surd(+, ) )/ Mathematica: (assigned function and values for 0 and h may vary) Clear[f, ] f[_]:=( 5 )/( ) 0= ; h = 0; Plot[f[],{, 0 h, 0 h}] Limit[f[], Ä 0]

8 6 Chapter Limits and Continuity CALCULATING LIMITS USING THE LIMIT LAWS lim ( 5) ( 7) lim (0 ) 0 () Ä( Ä lim a 5 b () 5() 0 Ä $ $ lim a 8 b ( ) ( ) ( ) Ä 5 lim 8(t 5)(t 7) 8(6 5)(6 7) 8 6 lim s(s ) ˆ ˆ ˆ t Ä' s Ä 5 7 lim 8 lim Ä Ä& 7 57 $ 9 lim y Ä& y ( 5) 5 5 5y 5 ( 5) 0 0 lim y Ä y y 5y6 () 5( ) lim ( ) (( ) ) ( ) 7 Ä *)% *)% *)% lim ( ) ( ) ( ) Ä% %Î$ %Î$ %Î$ lim (5 y) [5 ( )] (8) ˆ Î$ (8) % 6 y Ä$ Î$ Î$ Î$ lim (z 8) ((0) 8) ( 8) z Ä! % 5 lim h Ä! 6 lim h Ä! È h È (0) È È 5h È 5(0) È Èh Èh Èh ah b h h h h Èh 7 lim lim lim lim lim h Ä 0 h Ä 0 È h Ä 0 hš Èh h Ä 0 hš Èh h Ä 0 $ È È5h È5h È5h a5hb 5h 5 h h 5h È5h 8 lim lim lim lim lim h Ä 0 h Ä 0 È h Ä 0 hš È5h h Ä 0 hš È5h h Ä È ( 5)( 5) lim lim lim Ä& Ä& Ä& ( )( ) 0 lim lim lim Ä$ Ä$ Ä$ 0 ( 5)( ) lim lim lim ( ) 7 Ä& 5 Ä& 5 & Ä&

9 7 0 ( 5)( ) lim lim lim ( 5) 5 Ä Ä Ä t t (t )(t ) t lim lim lim t Ä t t Ä (t )(t ) t Ä t t t (t )(t ) t t t (t )(t ) t lim lim lim t Ä t Ä t Ä ( ) ( ) 5 lim $ lim lim Ä Ä Ä 5y 8y y (5y 8) 5y 8 $ 8 6 lim lim lim y Ä 0 y% 6y y Ä! y y 6 y Ä! y 6 6 a b Section Calculating Limits Using the Limit Laws 65 u au b(u)(u) au b(u) ( )( ) u u u (u ) u u % 7 lim $ lim lim u Ä u Ä a b u Ä v 8 (v ) av v b v v (v )(v ) v (v ) v ()(8) 8 $ 8 lim lim lim v Ä v% 6 v Ä a b v Ä a b È È lim lim lim Ä* Ä* ˆ È ˆ È Ä* È È 9 ( ) ˆ È ˆ È 0 lim lim lim lim ( ) 6 Ä% È Ä% È Ä% È ˆ È Ä% ˆ È ˆ È () () lim lim lim lim Ä È Ä È È Ä ( ) Š È ˆ ˆ Ä È È Š È Š È $ $ a 8b* ( ) Š 8 $ ( ) Š È 8 $ lim lim lim Ä Ä È Ä ( )( ) lim lim Ä ( ) Š È )$ Ä È )$ È Š È Š È a b6 ( ) Š ( ) Š È lim lim lim Ä Ä È Ä ( )( ) 6 lim lim Ä ( ) Š È Ä È È abš È 5 abš È 5 lim lim lim Ä È 5 Ä Š Š Ä È 5 È 5 a 5b9 abš È 5 È 5 È9 ( )( ) lim lim Ä Ä È 5 Š È 5Š È 5 a 5b ( ) Š 5 ( ) Š È 5 5 lim lim lim Ä Ä È Ä 9 ( )( ) 6 5 lim lim lim Ä ( ) 5 Ä ( ) 5 Ä Š È Š È È È

10 66 Chapter Limits and Continuity abš 5È 9 abš 5È 9 6 lim lim lim Ä 5È 9 Ä Š Š Ä 5 È 9 5 È 9 5 a 9 b abš 5È 9 abš 5È 9 5È 9 5 È5 5 6 ( )( ) 8 lim lim lim Ä Ä Ä 7 (a) quotient rule difference and power rules (c) sum and constant multiple rules 8 (a) quotient rule power and product rules (c) difference and constant multiple rules 9 (a) lim f() g() lim f() lim g() (5)( ) 0 Ä c Ä c Ä c lim f() g() lim f() lim g() (5)( ) 0 Ä c Ä c Ä c (c) lim [f() g()] lim f() lim g() 5 ( ) Ä c Ä c Ä c f() (d) lim lim f() 5 5 Ä c f() g() Äc lim f() lim g() 5 ( ) 7 Äc Äc 0 (a) lim [g() ] lim g() lim $$! Ä% Ä% Ä% lim f() lim lim f() ()(0) 0 Ä% Ä% Ä% (c) lim [g()] lim g() [ ] 9 Ä% Ä% g() lim g() (d) lim Ä% f() Ä% lim f() lim 0 Ä% Ä% (a) lim [f() g()] lim f() lim g() 7 ( ) Ä b Ä b Ä b lim f() g() lim f() lim g() (7)( ) Ä b Ä b Ä b (c) lim g() lim lim g() ()( ) Ä b Ä b Ä b 7 7 (d) lim f()/g() lim f()/ lim g() Ä b Ä b Ä b (a) lim [p() r() s()] lim p() lim r() lim s() 0 ( ) Ä Ä Ä Ä lim p() r() s() lim p() lim r() lim s() ()(0)( ) 0 Ä Ä Ä Ä (c) lim [ p() 5r()]/s() lim p() 5 lim r() lim s() [ () 5(0)]/ Ä Ä Ä Ä ( h) hh h( h) lim lim lim lim ( h) h Ä! h h Ä! h h Ä! h h Ä! ( h) ( ) hh h(h) lim lim lim lim (h ) h Ä! h h Ä! h h Ä! h h Ä! [( h) ] [() ] 5 lim lim h Ä! h h Ä! h h ˆ ˆ c ( h) h h h h( h) h( h) c b h c cb h 6 lim lim lim lim h Ä! h Ä! h Ä! h Ä! 6

11 È È Š È È Š È È 7h 7 7h 7 7h 7 (7 h) 7 hš 7h 7 hš È7hÈ7 7 lim lim lim h Ä! h h Ä! È È h Ä! h h È7 h È7 È7h È7 È7 lim lim h Ä! Š h Ä! Section Calculating Limits Using the Limit Laws 67 È È Š È Š È (0 h) (0) h h (h ) hš h hš Èh 8 lim lim lim h Ä! h h Ä! È h Ä! h lim lim h Ä! hš Èh h Ä! Èh 9 lim È5 È5 (0) È5 and lim È5 È5 (0) È5; by the sandwich theorem, Ä! Ä! lim f() È 5 Ä! 50 lim a b 0 and lim cos () ; by the sandwich theorem, lim g() Ä! Ä! Ä! 0 sin 5 (a) lim Š and lim ; by the sandwich theorem, lim Ä! 6 6 Ä! Ä! cos For Á 0, y ( sin )/( cos ) lies between the other two graphs in the figure, and the graphs converge as Ä 0 5 (a) lim Š lim lim 0 and lim ; by the sandwich theorem, Ä! Ä! Ä! Ä! cos lim Ä! For all Á 0, the graph of f() ( cos )/ lies between the line y and the parabola y /, and the graphs converge as Ä 0 % % 5 lim f() eists at those points c where lim lim Thus, c c Ê c a c b 0 Ä c Ä c Ä c Ê c 0,, or Moreover, lim f() lim 0 and lim f() lim f() Ä! Ä! Ä Ä 5 Nothing can be concluded about the values of f, g, and h at Yes, f() could be 0 Since the conditions of the sandwich theorem are satisfied, lim f() 5Á 0 Ä lim f() lim 5 lim f() 5 f() 5 55 lim Ä% Ä% Ä% Ê lim f() 5 () Ê lim f() 5 7 Ä% lim lim % Ä% Ä% Ä% Ä%

12 68 Chapter Limits and Continuity f() lim f() lim f() Äc Äc 56 (a) lim Ê lim f() Ä lim % Ä Äc f() f() f() f() lim lim lim lim Ê lim Ä Ä Ä ˆ Ä Ä f() 5 f() 5 57 (a) 0 0 lim lim ( ) lim Š ( ) lim [f() 5] lim f() 5 Ä Ä Ä Ä Ä Ê lim f() 5 Ä f() lim lim ( ) Ê lim f() 5 as in part (a) Ä Ä Ä f() f() f() 58 (a) 0 0 lim lim lim lim lim lim f() That is, lim f( Ä! Ä! Ä! Ä! Ä! ) 0 Ä! Ä! f() f() f() f() 0 0 lim lim lim lim That is, lim 0 Ä! Ä! Ä! Ä! Ä! 59 (a) lim sin 0 Ä! Ÿ sin Ÿ for Á 0: 0 Ê Ÿ sin Ÿ Ê lim sin 0 by the sandwich theorem; Ä! 0 Ê sin Ê lim sin 0 by the sandwich theorem Ä! 60 (a) lim cos ˆ 0 Ä! $ Ÿ cos ˆ Ÿ for Á 0 Ê Ÿ cos ˆ Ÿ Ê lim cos ˆ $ $ $ 0 by the sandwich Ä! theorem since lim 0 Ä! THE PRECISE DEFINITION OF A LIMIT Step : k5 k $ Ê $ 5 $ Ê $ 5 $ 5 Step : $ 5 7 Ê $, or $ 5 Ê $ The value of $ which assures k 5 k $ Ê 7 is the smaller value, $

13 Section The Precise Definition of a Limit 69 Step : k k $ Ê $ $ Ê $ $ Step : $ Ê $, or $ 7 Ê $ 5 The value of $ which assures k k $ Ê 7 is the smaller value, $ Step : k ( ) k $ Ê $ $ $ Ê $ $ 7 5 Step : $ Ê $, or $ $ Ê $ 7 $ k k $ Ê $ The value of which assures ( ) is the smaller value, Step : ˆ $ Ê $ $ Ê $ $ 7 ˆ 7 Step : $ Ê $, or $ Ê $ The value of $ which assures $ Ê is the smaller value, $ 5 Step : $ Ê $ $ Ê $ $ $ $ Ê 9 7 $ 8 Step : $ Ê $, or $ Ê $ The value of which assures is the smaller value, 6 Step : k k $ Ê $ $ Ê $ $ Step : $ $ 759 Ê $ 009, or $ $ 9 Ê $ 09 The value of $ which assures k k $ Ê is the smaller value, $ 09 7 Step : k 5 k $ Ê $ 5 $ Ê $ 5 $ 5 Step : From the graph, $ 5 9 Ê $ 0, or $ 5 5 Ê $ 0; thus $ 0 in either case 8 Step : k ( ) k $ Ê $ $ Ê $ $ Step : From the graph, $ Ê $ 0, or $ 9 Ê $ 0; thus $ 0 9 Step : k k $ Ê $ $ Ê $ $ Step : From the graph, $ Ê $, or $ Ê $ ; thus $ 0 Step : k k $ Ê $ $ Ê $ $ Step : From the graph, $ 6 Ê $ 09, or $ Ê $ 0; thus $ 09 Step : k k $ Ê $ $ Ê $ $ Step : From the graph, $ È Ê $ È 0679, or $ È5 Ê $ È5 06; thus $ È5

14 70 Chapter Limits and Continuity Step : k ( ) k $ Ê $ $ Ê $ $ È 5 È 5 È È Step : From the graph, $ Ê $ 080, or $ Ê $ 00; thus $ È 5 Step : k ( ) k $ Ê $ $ Ê $ $ Step : From the graph, $ Ê $ 077, or $ Ê 06; thus $ 06 Step : Ê Ê $ $ $ $ $ Step : From the graph, $ 0 Ê $ , or $ 99 Ê $ ; thus $ Step : k( ) 5k 00 Ê k k 00 Ê Ê 99 0 Step : k k $ Ê $ $ Ê $ $ Ê $ 00 6 Step : k( ) ( 6) k 00 Ê k k 00 Ê Ê 0 98 Ê 0 99 Step : k ( ) k $ Ê $ $ Ê $ $ Ê $ 00 7 Step : ¹ È ¹ 0 Ê 0 È 0 Ê 09 È Ê 08 Ê 09 0 Step : k 0 k $ Ê $ $ Then, $!Þ* Ê $!Þ* or $!Þ; thus, $ 09 8 Step : È 0 0 È 0 0 È Ê Ê 06 Ê Step : Ê Ê $ $ $ $ $ Then, $ 06 Ê $ 009 or $ 06 Ê $ 0; thus $ Step : ¹ È9 $ ¹ Ê È9 $ Ê È9 % Ê 9 6 Ê % 9 6 Ê 5 or 5 Step : k 0 k $ Ê $ 0 $ Ê $ 0 $ 0 Then $ 0 Ê $ 7, or $ 0 5 Ê $ 5; thus $ 5 0 Step : ¹ È 7 ¹ Ê È 7 % Ê È 7 5 Ê Ê 6 Step : k k $ Ê $ $ Ê $ $ Then $ 6 Ê $ 7, or $ Ê $ 9; thus $ 7 Step : Ê Ê 0 0 Ê or 5 Step : k k $ Ê $ $ Ê $ $ 0 Then $ % or $, or $ 5 or $ ; thus $ Step : k k! Ê 0 0 Ê 9 Ê È9 È Step : ¹ È ¹ $ Ê $ È $ Ê $ È $ È Then $ È È9 Ê $ È È9 009, or $ È È Ê $ È È 0086; thus $ 0086

15 Section The Precise Definition of a Limit 7 Step : k k 05 Ê Ê 5 5 Ê È 5 kk È 5 Ê È 5 È 5, for near Step : k ( ) k $ Ê $ $ Ê $ $ Then $ È5 Ê $ È5 0, or $ È5 Ê $ È5 09; thus $ È5 0 Step : ( ) Ê 0 0 Ê 0 0 Ê 9 or 9 Step : k ( ) k $ Ê $ $ Ê $ $ Then $ Ê $, or $ Ê $ ; thus $ 5 Step : ka 5b k Ê k 6k Ê 6 Ê 5 7 Ê È5 È7 Step : k k $ Ê $ $ Ê $ % $ % Then $ %È5 Ê $ %È5 070, or $ %È7 Ê $ È7 % 0; thus $ È7 0 6 Step : Ê & Ê 6 Ê 0 6 Ê 0 0 or 0 0 Step : k k $ Ê $ $ Ê $ $ Then $ 0 Ê $, or $ 0 Ê $ 6; thus Ê $ 7 Step : km mk 00 Ê 00 m m 00 Ê 00 m m 00 m Ê m m Step : k k $ Ê $ $ Ê $ $ m m m m m Then $ Ê $, or $ Ê $ In either case, $ 8 Step : km mk c Ê c m m c Ê c m m c m Ê m Step : k k $ Ê $ $ Ê $ $ B $ $ c Then $ $ $ Ê $ c c, or $ $ $ Ê $ c In either case, $ c m m m m m 9 Step : (m b) ˆ m b m m m c c - Ê c m c Ê c m c Ê m m Step : Ê Ê $ $ $ $ $ c Then $ Ê $ c c, or $ Ê $ c In either case, $ c m m m m m 0 Step : k(m b) (m b) k 005 Ê 005 m m 005 Ê 005 m m 005 m Ê m m Step : k k $ Ê $ $ Ê $ $ m m m m m Then $ Ê $, or $ Ê $ In either case, $ lim ( ) () Ä Step : ka b( ) k 00 Ê Ê Ê 0 99 or 99 0 Step : 0 k k $ Ê $ $ Ê $ $ $ $ Then $ $ 99 Ê $ 00, or $ $ 0 Ê $ 00; thus $ 00 lim ( ) ( )( ) Ä Step : k( ) k 00 Ê Ê Ê c c m

16 7 Chapter Limits and Continuity Step : k ( ) k $ Ê $ $ Ê $ $ Then $ 0 Ê $ 00, or $ 099 Ê $ 00; thus $ 00 ( )( ) lim lim lim ( ), Ä Ä () Á Ä ( )( ) Step : ¹ Š ¹ 005 Ê 005 () % 005 Ê 95 05, Á Ê 95 05, Á Step : k k $ Ê $ $ Ê $ $ Then $ 95 Ê $ 005, or $ 05 Ê $ 005; thus $ ( 5)( ) lim lim lim ( ), 5 Ä& 5 Ä& (5) Á Ä& 65 ( 5)( ) Step : ¹ Š 5 ( ) ¹ 005 Ê 005 (5) 005 Ê 05 95, Á 5 Ê , Á 5 Step : k ( 5) k $ Ê $ 5 $ Ê $ & $ & Then $ &505 Ê $ 005, or $ &95 Ê $ 005; thus $ lim È 5 È 5( ) È6 Ä$ Step : ¹ È 5 ¹ 05 Ê 05 È 5 05 Ê 5 È 5 5 Ê Ê Ê 85 5 Step : k ( ) k $ Ê $ $ Ê $ $ $ $ Then $ $85 Ê $ 085, or $ $5 Ê 075; thus $ lim Ä Step : Ê 0 0 Ê 6 Ê 6 Ê 6 or Step : k k $ Ê $ $ Ê $ $ 5 Then $ Ê 5 $, or $ Ê $ ; thus $ 7 Step : k(9 ) 5k % Ê % % Ê % % Ê % % % Ê %% % Step : k k $ Ê $ $ Ê $ % $ % Then $ % Ê $ %, or $ % % % Ê $ % Thus choose $ % 8 Step : % % k( 7) k % Ê % 9 % Ê 9 % *% Ê Step : k k $ Ê $ $ Ê $ $ % Then $ $ Ê % % $, or $ Ê % % $ Thus choose $ 9 Step : ¹ È 5 ¹ % Ê % È 5 % Ê % È 5 % Ê (%) 5 (%) Ê (%) & (%) 5 Step : k 9 k $ Ê $ 9 $ Ê $ 9 $ 9 Then $ *% % % * Ê $ % % %, or $ *% % % * Ê $ % % % Thus choose the smaller distance, $ % % % 0 Step : ¹ È ¹ % Ê % È % Ê % È % Ê (%) % (%) Ê ( %) ( %) Ê ( %) % ( %) % Step : k 0 k $ Ê $ $

17 Section The Precise Definition of a Limit 7 Then $ ( %) % % % Ê $ % % %, or $ ( %) % % Thus choose the smaller distance, $ % % Step : For Á, k k % Ê % % Ê % % Ê È % kk È % Ê È% È % near B Step : k k $ Ê $ $ Ê $ $ Then $ È % Ê $ È %, or $ È% Ê $ È% Choose $ min š È % ßÈ %, that is, the smaller of the two distances Step : For Á, k k % Ê % % Ê % % Ê È % kk È % Ê È % È % near B Step : k ( ) k $ Ê $ $ Ê $ $ Then $ È%% Ê $ È%%, or $ È%% Ê $ È%% Choose $ min š È%% ß È%% Step : % Ê % % Ê % % Ê % % Step : k k $ Ê $ $ Ê $ $ Then $ Ê $ %, or $ Ê $ % Choose $ % % % % % % % %, the smaller of the two distances Step : % $ % % Ê % % Ê % % Ê Ê $% $% Ê É k k É, or É É for near È$ $ % $% $% $% Step : ¹ È ¹ $ Ê $ È $ Ê È$ È $ Then È È, or È $ É Ê $ É $ É Ê $ É È $% $% $% $% Choose $ min š È É ßÉ È $% $% * 5 Step : ¹ Š ( 6) ¹ % Ê % ( ) 6 %, Á Ê % % Ê % $ % $ Step : k ( ) k $ Ê $ $ Ê $ $ $ Then $ $% $ Ê $ %, or $ $% $ Ê $ % Choose $ % 6 Step : ¹ Š ¹ % Ê % ( ) %, Á Ê % % Step : k k $ Ê $ $ Ê $ $ Then $ % Ê $ %, or $ % Ê $ % Choose $ % % 7 Step : : l( ) l % Ê! % since Þ Thus,!; % : l(6 ) l % Ê! Ÿ 6 6 % since Thus, Ÿ 6 Step : k k $ Ê $ $ Ê $ $ % % % % % Then $ Ê $, or $ Ê $ Choose $ % 8 Step :!: k 0 k % Ê %! Ê 0; 0:! % Ê! Ÿ %

18 7 Chapter Limits and Continuity Step : k 0 k $ Ê $ $ % % % Then $ Ê $, or $ % Ê $ % Choose $ 9 By the figure, Ÿ sin Ÿ for all 0 and sin for 0 Since lim ( ) lim 0, Ä! Ä! then by the sandwich theorem, in either case, lim sin 0 Ä! 50 By the figure, Ÿ sin Ÿ for all ecept possibly at 0 Since lim a b lim 0, then Ä! Ä! by the sandwich theorem, lim sin 0 Ä! 5 As approaches the value 0, the values of g() approach k Thus for every number % 0, there eists a $! such that! k 0 k $ Ê kg() k k % 5 Write h c Then!lcl$ Í$ c $, Ác Í$ ah cbc $, h c Ác Í$ h $, h Á!Í!lh!l$ Thus, limf a b L Ífor any %!, there eists $! such that lf a b L l % whenever!lcl $ Äc ÍlfahcbL l % whenever!lh!l$ Ílim fah cb L 5 Let f() The function values do get closer to as approaches 0, but lim f() 0, not The Ä! function f() never gets arbitrarily close to for near 0 hä! 5 Let f() sin, L, and 0 There eists a value of (namely, ) for which sin % for any! 6 % Ä!!! Ä! given 0 However, lim sin 0, not The wrong statement does not require to be arbitrarily close to As another eample, let g() sin, L, and 0 We can choose infinitely many values of near 0 such that sin as you can see from the accompanying figure However, lim sin fails to eist The wrong statement does not require all values of arbitrarily close to! 0 to lie within % 0 of L Again you can see from the figure that there are also infinitely many values of near 0 such that sin 0 If we choose % we cannot satisfy the inequality sin % for all values of sufficiently near 0! 55 ka * k Ÿ 00 Ê 00 Ÿ ˆ 9 Ÿ 00 Ê 899 Ÿ Ÿ 90 Ê (899) Ÿ Ÿ (90) Ê É Ÿ Ÿ É or 8 Ÿ Ÿ 87 To be safe, the left endpoint was rounded up and the right endpoint was rounded down V 56 V RI Ê I Ê V R 0 Ÿ 0 Ê 0 Ÿ 5 Ÿ 0 Ê 9 Ÿ Ÿ 5 Ê Ê R R R R (0)(0) R (0)(0) 5 Ÿ Ÿ 9 Ê 5 Ÿ R Ÿ 8

19 To be safe, the left endpoint was rounded up and the right endpoint was rounded down Section The Precise Definition of a Limit (a) $ 0 Ê $ Ê f() Then kf() k k k That is, kf() k no matter how small $ is taken when $ Ê lim f() Á Ä 0 $ Ê $ Ê f() Then kf() k k( ) k kk That is, kf() k no matter how small $ is taken when $ Ê lim f() Á Ä (c) $! Ê $ Ê f() Then kf() 5k k 5k Also,! $ Ê $ Ê f() Then kf() 5 k k( ) 5k k 05k Thus, no matter how small $ is taken, there eists a value of such that $ $ but kf() 5 k Ê lim f() Á 5 Ä 58 (a) For $ Ê h() Ê kh() k Thus for %, kh() k % whenever $ no matter how small we choose $ 0 Ê lim h() Á Ä For $ Ê h() Ê kh() k Thus for %, kh() k % whenever $ no matter how small we choose $ 0 Ê lim h() Á Ä (c) For $ Ê h() so kh() k k k No matter how small $ 0 is chosen, is close to when is near and to the left on the real line Ê k kwill be close to Thus if %, kh() k % whenever $ no mater how small we choose $ 0 Ê lim h() Á Ä 59 (a) For $ Ê f() 8 Ê kf() k 08 Thus for % 08, kf() k % whenever $ no matter how small we choose $ 0 Ê lim f() Á Ä$ For $ Ê f() Ê kf() 8k 8 Thus for % 8, kf() 8 k % whenever $ no matter how small we choose $ 0 Ê lim f() Á 8 Ä$ (c) For $ Ê f() 8 Ê kf() k 8 Again, for % 8, kf() k % whenever $$ no matter how small we choose $ 0 Ê lim f() Á Ä$ 60 (a) No matter how small we choose $ 0, for near satisfying $ $, the values of g() are near Ê kg() kis near Then, for % we have kg() k for some satisfying $ $, or! k k $ Ê lim g() Á Ä Yes, lim g() because from the graph we can find a $! such that kg() k % if! k ( ) k $ Ä 6-66 Eample CAS commands (values of del may vary for a specified eps): Maple: f := -> (^-8)/(-);0 := ; plot( f(), =0-0+, color=black, (a) title=section, 6(a) ); L := limit( f(), =0 ); epsilon := 0; (c) plot( [f(),l-epsilon,l+epsilon], = , color=black, linestyle=[,,], title=section, 6(c) ); q := fsolve( abs( f()-l ) = epsilon, =0-0+ ); (d) delta := abs(0-q); plot( [f(),l-epsilon,l+epsilon], =0-delta0+delta, color=black, title=section, 6(d) ); for eps in [0, 0005, 000 ] do (e) q := fsolve( abs( f()-l ) = eps, =0-0+ );

20 76 Chapter Limits and Continuity delta := abs(0-q); head := sprintf(section, 6(e)\n epsilon = %5f, delta = %5f\n, eps, delta ); print(plot( [f(),l-eps,l+eps], =0-delta0+delta, color=black, linestyle=[,,], title=head )); end do: Mathematica (assigned function and values for 0, eps and del may vary): Clear[f, ] y: L eps; y: L eps; 0 ; f[_]: ( (7 )Sqrt[] 5)/( ) Plot[f[], {, 0 0, 0 0}] L: Limit[f[], Ä 0] eps 0; del 0; Plot[{f[], y, y},{, 0 del, 0 del}, PlotRange Ä {L eps, L eps}] ONE-SIDED LIMITS AND LIMITS AT INFINITY (a) True True (c) False (d) True (e) True (f) True (g) False (h) False (i) False (j) False (k) True (l) False (a) True False (c) False (d) True (e) True (f) True (g) True (h) True (i) True (j) False (k) True (a) lim f(), lim f() Ä b Ä c $ No, lim f() does not eist because lim f() lim f() Ä Ä b Á Ä c (c) lim f(), lim f() Ä% c Ä% b $ (d) Yes, lim f() because lim f() lim f() Ä% Ä% c Ä% b (a) lim f(), lim f(), f() Ä b Ä c $ Yes, lim f() because lim f() lim f() Ä Ä b Ä c (c) lim f() ( ), lim f() ( ) Ä c Ä b (d) Yes, lim f() because lim f() lim f() Ä Ä c Ä b 5 (a) No, lim f() does not eist since sin ˆ does not approach any single value as approaches 0 Ä! b lim f() lim 0 0 Ä! c Ä! c (c) lim f() does not eist because lim f() does not eist Ä! Ä! b 6 (a) Yes, lim g() 0 by the sandwich theorem since g() when 0 Ä! b È Ÿ Ÿ È No, lim g() does not eist since È is not defined for 0 Ä! c (c) No, lim g() does not eist since lim g() does not eist Ä! Ä! c

21 Section One-Sided Limits and Limits at Infinity 77 7 (a Ñ lim f() lim f() Ä c Ä b (c) Yes, lim f() since the right-hand and left-hand Ä limits eist and equal 8 (a) lim f() 0 lim f() Ä b Ä c (c) Yes, lim f() 0 since the right-hand and left-hand Ä limits eist and equal 0 9 (a) domain: 0 Ÿ Ÿ range: 0 y Ÿ and y lim f() eists for c belonging to Ä c (0ß ) (ß ) (c) (d) 0 0 (a) domain: range: Ÿ y Ÿ lim f() eists for c belonging to Ä c ( _ß ) ( ß ) (ß _) (c) none (d) none 05 / lim lim 0 Ä!Þ& c É É É È É É È 05 / Ä b! lim ˆ ˆ 5 ˆ () ˆ Ä b Š ( ) 5 ( ) ( ) lim ˆ ˆ 6 ˆ ˆ ˆ 6 ˆ ˆ ˆ 7 ˆ Ä c Èh h5è5 Èh h5è5 Èh h5è5 5 lim lim h Ä! b h Š h Ä! b h Š Èh h5è 5 ah h5b5 h(h ) 0 È È È5 È5 È5 lim lim h Ä! b hš Èh h5 5 h Ä! b hš Èh h5 5

22 78 Chapter Limits and Continuity È6 È5h h 6 È6 È5h h 6 È6 È5h h 6 6 lim lim h Ä! c h h Ä! c Š h Š È6 È 5h h 6 6 a5h h 6b h(5h ) (0 ) È È È6 È6 È6 lim lim h Ä! c h Š È6 5h h 6 h Ä! c h Š È6 5h h 6 kk () 7 (a) lim ( ) lim ( ) for Ä b Ä b ( ) ak k b lim ( ) ( ) Ä b k k ( ) lim ( ) lim ( ) ( ) for Ä c Ä c ( ) ak k b lim ( )( ) ( ) Ä c È ( ) È ( ) 8 (a) lim lim for Ä b k k Ä b () ak k b lim È È Ä b È ( ) È ( ) lim lim ( ) for Ä c k k Ä c () ak k b lim È È Ä c ÚÛ ) ÚÛ ) 9 (a) lim lim ) Ä$ b ) ) Ä$ c ) 0 (a) lim at ÚtÛb 0 lim t t t Ä% b t Ä% c a Ú Ûb È sin ) sin lim lim (where ) ) Ä! È ) Ä! È ) sin kt k sin kt k sin ) sin ) lim lim lim k lim k k (where kt) t Ä! t t Ä! kt ) Ä! ) ) Ä! ) ) sin y sin y sin y sin ) lim lim lim lim (where y) y Ä! y y Ä! y y Ä! y Ä! ) ) ) h h lim lim lim (where h) h Ä! c sin h ˆ h Ä! c sin h h Ä! c ˆ sin h Œ sin ) lim ) h ) Ä! c ) tan ˆ sin sin sin cos 5 lim lim lim lim lim Ä! Ä! Ä! cos Š Ä! cos Š Ä! t t t cos t 6 lim lim lim lim cos t t Ä! tan t t Ä! ˆ sin t t Ä! sin t Š Œ sin t t Ä! lim cos t tä! t csc 7 lim lim lim lim () Ä! cos 5 ˆ Ä! sin cos 5 Š Ä! sin Š Ä! cos 5 ˆ 6 cos 8 lim 6 (cot )(csc ) lim lim ˆ cos Ä! Ä! sin sin Ä! sin sin 9 lim lim ˆ lim ˆ lim Ä! Ä! Ä! Ä! lim Š lim ˆ sin lim Š ()() Ä! Ä! cos sin Ä! cos cos sin cos sin cos sin cos sin cos sin sin sin 0 lim lim 0 () 0 Ä! ˆ Ä! ˆ

23 sin( cos t) sin ) lim lim since cos t 0 as t 0 t Ä! cos t Ä Ä ) Ä! ) ) sin (sin h) sin ) lim lim since sin h 0 as h 0 h Ä! sin h Ä Ä ) Ä! ) ) sin ) sin ) ) sin ) ) lim lim lim ) Ä! sin ) ˆ ) Ä! sin ) ) ˆ ) Ä! ) sin ) lim lim ˆ lim ˆ Ä! Ä! Ä! sin 5 sin sin sin sin 5 5 sin 5 lim tan lim sin lim sin 8 Ä! sin 8 ˆ Ä! cos sin 8 ˆ Ä! cos sin 8 8 lim ˆ ˆ sin ˆ 8 8 Ä! cos sin sin y cot 5y sin y sin y cos 5y sin y sin y cos 5y 5y 6 lim lim lim y Ä! y cot y y Ä! y cos y sin 5y y Ä! Š y Š cos y Š sin 5y Š 5y lim y Ä! Š sin y Š sin y Š 5y Š cos 5y ˆ y y sin 5y cos y Section One-Sided Limits and Limits at Infinity 79 Note: In these eercises we use the result lim 0 whenever 0 This result follows immediately from Ä _ mn Î n Eample 6 and the power rule in Theorem 8: lim ˆ lim ˆ lim 0 0 Ä _ Ä _ Š Ä _ mn Î mn Î mn Î mn Î 7 (a) m 8 (a) 9 (a) 0 (a) (a) (a) sin sin Ÿ Ÿ Ê lim 0 by the Sandwich Theorem Ä_ cos ) cos ) ) Ÿ ) Ÿ ) Ê lim ) 0 by the Sandwich Theorem ) Ä_ tsin t ˆ sin t 00 t t 5 lim lim t Ä_ tcos t t Ä_ ˆ cos t 0 6 lim lim lim r Ä_ r 7 5 sin r r r Ä_ 5ˆ r Ä_ sin r t rsin r ˆ sin r 0 r r sin 7 e Ÿ e Ÿ e Ê lim e sin 0 by the Sandwich Theorem Ä_ 8 lim e cos 0 cos Ä_ a bˆ ˆ e e e e c c e 0 e e 9 lim lim lim lim Ä_ eec Ä_ e Ä_ e Ä_ e b 0 e e

24 80 Chapter Limits and Continuity e c 0 sin / 0 e 50 lim lim Ä_ a b sina/b Ä_ 5 (a) lim lim (same process as part (a)) Ä_ Ä_ Š $ $ 5 (a) lim lim Ä_ $ 7 7 Ä_ (same process as part (a)) $ 5 (a) lim lim 0 0 (same process as part (a)) Ä_ Ä_ (a) lim lim 0 0 (same process as part (a)) Ä_ Ä_ 7 7 $ 55 (a) lim lim 7 (same process as part (a)) Ä_ $ 6 6 ( Ä_ $ 56 (a) lim lim 0 (same process as part (a)) Ä_ $! Ä_ $ 0 0 & % ' 57 (a) lim lim 0 Ä_ ' Ä_ 0 (same process as part (a)) 9 9 $ $ % % 58 (a) lim lim Ä_ % 5 6 Ä_ 9 (same process as part (a)) $ 5 5 $ 59 (a) lim $ lim Ä_ Ä_ (same process as part (a)) % 60 (a) lim lim Ä_ % 7$ Ä_ (same process as part (a)) % È c Š Š È Š 7 Š Î Î Î 6 lim lim 0 6 lim lim Ä_ 7 Ä_ Ä_ È Ä_ $ & È È Š 6 lim Ä_ ÐÎ&Ñ cðî$ñ Î& $ & È È lim ÐÎ&Ñ cðî$ñ lim Ä_ Ä_ Š Î& c c% 6 lim c c$ lim Ä_ Ä 7 &Î$ Î$ *Î& )Î& 65 lim lim )Î& Ä_ È Ä Î& $Î& Î! 7 $ È5 66 lim Î$ lim Ä_ Ä_ 5 5 Î$ Î$

25 Section One-Sided Limits and Limits at Infinity 8 67 Yes If lim f() L lim f(), then lim f() L If lim f() lim f(), then lim f() does not ei Ä ab Ä ac Á Ä a Ä ab Ä ac st Ä a 68 Since lim f() L if and only if lim f() L and lim f() L, then lim f() can be found by calculating Ä c Ä cb Ä cc Ä c lim f() Ä c b 69 If f is an odd function of, then f( ) f() Given lim f(), then lim f() $ Ä! b Ä! c 70 If f is an even function of, then f( ) f() Given lim f() 7 then lim f() 7 However, nothing Ä c Ä b can be said about lim f() because we don't know lim f() Ä c Ä b f() 7 Yes If lim then the ratio of the polynomials' leading coefficients is, so lim as well Ä_ g() Ä_ g() 7 Yes, it can have a horizontal or oblique asymptote f() f() 7 At most horizontal asymptote: If lim L, then the ratio of the polynomials' leading coefficients is L, so Ä_ g() f() lim L as well Ä_ g() È a ba b È È 7 lim È È lim È È È lim Ä_ Ä_ È È Ä_ É É lim lim Ä_ È È Ä_ 75 For any % 0, take N Then for all N we have that kf() kk kk kk 0 % 76 For any % 0, take N Then for all y N we have that kf() kk kk kk 0 % È 77 I (5ß5 $ ) Ê 5 &$ Also, 5 % Ê 5 % Ê &% Choose $ % Ê lim È 5 0 Ä& b È 78 I (%$ ß% ) Ê %$ Also, % % Ê % % Ê %% Choose $ % Ê lim È % 0 Ä% c 79 As Ä 0 the number is always Thus, ¹ ( ) ¹ Ê kk % % Ê 0 % which is always true independent of the value of Hence we can choose any $ 0 with $! Ê lim Ä! c k k 80 Since Ä we have and k k Then, ¹ ¹ k k % Ê 0 % which is always true so long as Hence we can choose any $!, and thus $ Ê ¹ kk ¹ % Thus, lim kk Ä b 8 (a) lim ÚÛ 00 Just observe that if 00 0, then ÚÛ 00 Thus if we choose, we have for any Ä %!! b $ number %! that $ ÊlÚÛ00ll00 00 l!% lim 99 Just observe that if then 99 Thus if we choose, we have for any Ä %!! c ÚÛ ÚÛ $ number %! that 00 $ 00 ÊlÚÛ99ll99 99 l!%

26 8 Chapter Limits and Continuity (c) Since lim ÚÛÁ lim we conclude that lim does not eist Ä %!! b Ä %!! c ÚÛ ÚÛ Ä %!! 8 (a) lim f() lim È È0 0; È 0 % Ê % È % Ê! % for positive Choose $ % Ä! b Ä! b Ê lim f() 0 Ä! b lim f() lim sin 0 by the sandwich theorem since sin for all 0 Ä! c ˆ Ä! c Ÿ ˆ Ÿ Á Since k 0k k 0k whenever k k È, we choose È and obtain sin ˆ % % $ % 0 % if $ 0 (c) The function f has limit 0 at! 0 since both the right-hand and left-hand limits eist and equal 0 cos ) 8 lim sin lim sin, 8 lim lim, Ä _ Ä 0 Ä_ Ä! ) ) ) ˆ ) ˆ ) ) ) c t 85 lim lim lim, t Ä _ 5 Ä _ t Ä 0 5t ˆ 5 Î 86 lim ˆ z lim z, ˆ z Ä_ z Ä! b 87 lim ˆ ˆ cos lim ( )(cos ) ()(), ˆ Ä _ ) ) ) ) Ä 0 88 lim ˆ cos ˆ sin lim a cos b( sin ) (0 )( 0), ˆ Ä_ ) ) ) ) ) Ä! b 5 INFINITE LIMITS AND VERTICAL ASYMPTOTES cos positive positive lim lim Ä! b _ Š positive Ä! c _ Š positive lim lim Ä c _ Š Ä$ b _ Š positive 5 positive 5 lim 6 lim Ä) b 8 _ Š positive Ä& c 0 _ Š positive 7 lim 8 lim Ä( (7) _ Š positive Ä! () _ Š positive positive c 9 (a) lim lim Ä! b Î$ _ Ä! c 0 (a) lim lim Ä! b Î& _ Ä! Î$ Î& lim lim lim lim Ä! Î& Ä! Î& _ Ä! Î$ Ä! Î$ _ a b a b lim tan _ lim sec _ Ä ˆ c Ä ˆ c b 5 lim ( csc )) _ ) Ä! c 6 lim ( cot )) _ and lim ( cot ), so the limit does not eist ) Ä! b ) Ä! c ) _

27 Section 5 Infinite Limits and Vertical Asymptotes 8 7 (a) lim lim Ä b Ä b ()() _ Š positive positive lim lim Ä c Ä c ()() _ Š positive (c) lim lim Ä b Ä b ()() _ Š positive (d) lim lim Ä c Ä c ()() _ Š positive 8 (a) lim lim Ä b Ä b ()() _ Š positive positive positive lim lim Ä c Ä c ()() _ Š positive (c) lim lim Ä b Ä b ()() _ Š positive (d) lim lim Ä c Ä c ()() _ Š 9 (a) lim 0 lim Ä! b Ä! b _ Š lim 0 lim Ä! c Ä! c _ Š positive Î$ Î$ Î$ (c) lim 0 Ä $ È Î$ (d) lim Ä ˆ positive 0 (a) lim lim Ä b _ Š positive Ä c _ Š ( )( ) 0 (c) lim lim 0 Ä b Ä b (d) lim Ä! c positive ( )( ) (a) lim lim Ä! b $ Ä! b ( ) _ Š positive ( )( ) lim lim lim, Ä b $ Ä b () Ä b Á ( )( ) (c) lim lim lim, Ä c $ Ä c () Ä c Á ( )( ) (d) lim lim lim, Ä $ Ä () Ä Á ( )( ) (e) lim lim Ä! $ Ä! ( ) _ Š positive ( )( ) ( ) ( )( ) ( ) () 8 (a) lim $ lim lim Ä b Ä b Ä b ( )( ) ( ) lim lim lim Ä b $ Ä b ( )( ) Ä b ( ) _ Š positive ( )( ) ( ) (c) lim lim lim Ä 0c $ Ä! c ( )( ) Ä! c ( ) _ Š positive ( )( ) ( ) 0 (d) lim lim lim 0 Ä b $ Ä b ( )( ) Ä b ( ) ()() (e) lim Ä! b ( ) _ Š positive positive and lim Ä! c ( ) _ Š positive so the function has no limit as Ä 0 (a) lim lim _ t Ä! b t Ä! c _ tî$ tî$

CHAPTER 1 Limits and Their Properties

CHAPTER 1 Limits and Their Properties CHAPTER Limits and Their Properties Section. A Preview of Calculus................... 305 Section. Finding Limits Graphically and Numerically....... 305 Section.3 Evaluating Limits Analytically...............

More information

236 Chapter 4 Applications of Derivatives

236 Chapter 4 Applications of Derivatives 26 Chapter Applications of Derivatives Î$ &Î$ Î$ 5 Î$ 0 "Î$ 5( 2) $È 26. (a) g() œ ( 5) œ 5 Ê g () œ œ Ê critical points at œ 2 and œ 0 Ê g œ ± )(, increasing on ( _ß 2) and (!ß _), decreasing on ( 2 ß!)!

More information

C) 2 D) 4 E) 6. ? A) 0 B) 1 C) 1 D) The limit does not exist.

C) 2 D) 4 E) 6. ? A) 0 B) 1 C) 1 D) The limit does not exist. . The asymptotes of the graph of the parametric equations = t, y = t t + are A) =, y = B) = only C) =, y = D) = only E) =, y =. What are the coordinates of the inflection point on the graph of y = ( +

More information

Limits and Their Properties

Limits and Their Properties Chapter 1 Limits and Their Properties Course Number Section 1.1 A Preview of Calculus Objective: In this lesson you learned how calculus compares with precalculus. I. What is Calculus? (Pages 42 44) Calculus

More information

Chapter 5: Introduction to Limits

Chapter 5: Introduction to Limits Chapter 5: Introduction to Limits Lesson 5.. 5-. 3. Decreases 4. Decreases 5. y = 5-3. a. y = k b. 3 = k! 3 4 = k c. y = 3 4!("3) # y = 3 4! 9 = 7 4 y = 3 4 Review and Preview 5.. 5-4. f () = f () = 5-5.

More information

130 Chapter 3 Differentiation

130 Chapter 3 Differentiation 0 Capter Differentiation 20. (a) (b) 2. C position, A velocity, an B acceleration. Neiter A nor C can be te erivative of B because B's erivative is constant. Grap C cannot be te erivative of A eiter, because

More information

Chapter 2 Limits and Continuity

Chapter 2 Limits and Continuity 4 Section. Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 6) Quick Review.. f () ( ) () 4 0. f () 4( ) 4. f () sin sin 0 4. f (). 4 4 4 6. c c c 7. 8. c d d c d d c d c 9. 8 ( )(

More information

In this note we will evaluate the limits of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0. f(x)

In this note we will evaluate the limits of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0. f(x) L Hôpital s Rule In this note we will evaluate the its of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0 f() Suppose a f() = 0 and a g() = 0. Then a g() the indeterminate

More information

CHAPTER 2 Limits and Their Properties

CHAPTER 2 Limits and Their Properties CHAPTER Limits and Their Properties Section. A Preview of Calculus...5 Section. Finding Limits Graphically and Numerically...5 Section. Section. Evaluating Limits Analytically...5 Continuity and One-Sided

More information

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1 Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 969) Quick Review..... f ( ) ( ) ( ) 0 ( ) f ( ) f ( ) sin π sin π 0 f ( ). < < < 6. < c c < < c 7. < < < < < 8. 9. 0. c < d d < c

More information

668 Chapter 11 Parametric Equatins and Polar Coordinates

668 Chapter 11 Parametric Equatins and Polar Coordinates 668 Chapter Parametric Equatins and Polar Coordinates 5. sin ( sin Á r and sin ( sin Á r Ê not symmetric about the x-axis; sin ( sin r Ê symmetric about the y-axis; therefore not symmetric about the origin

More information

Directions: Please read questions carefully. It is recommended that you do the Short Answer Section prior to doing the Multiple Choice.

Directions: Please read questions carefully. It is recommended that you do the Short Answer Section prior to doing the Multiple Choice. AP Calculus AB SUMMER ASSIGNMENT Multiple Choice Section Directions: Please read questions carefully It is recommended that you do the Short Answer Section prior to doing the Multiple Choice Show all work

More information

MATH140 Exam 2 - Sample Test 1 Detailed Solutions

MATH140 Exam 2 - Sample Test 1 Detailed Solutions www.liontutors.com 1. D. reate a first derivative number line MATH140 Eam - Sample Test 1 Detailed Solutions cos -1 0 cos -1 cos 1 cos 1/ p + æp ö p æp ö ç è 4 ø ç è ø.. reate a second derivative number

More information

SEE and DISCUSS the pictures on pages in your text. Key picture:

SEE and DISCUSS the pictures on pages in your text. Key picture: Math 6 Notes 1.1 A PREVIEW OF CALCULUS There are main problems in calculus: 1. Finding a tangent line to a curve though a point on the curve.. Finding the area under a curve on some interval. SEE and DISCUSS

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval................... 0 Section. Rolle s Theorem and the Mean Value Theorem...... 0 Section. Increasing and Decreasing Functions and

More information

An Intro to Limits Sketch to graph of 3

An Intro to Limits Sketch to graph of 3 Limits and Their Properties A Preview of Calculus Objectives: Understand what calculus is and how it compares with precalculus.understand that the tangent line problem is basic to calculus. Understand

More information

698 Chapter 11 Parametric Equations and Polar Coordinates

698 Chapter 11 Parametric Equations and Polar Coordinates 698 Chapter Parametric Equations and Polar Coordinates 67. 68. 69. 70. 7. 7. 7. 7. Chapter Practice Eercises 699 75. (a Perihelion a ae a( e, Aphelion ea a a( e ( Planet Perihelion Aphelion Mercur 0.075

More information

The main way we switch from pre-calc. to calc. is the use of a limit process. Calculus is a "limit machine".

The main way we switch from pre-calc. to calc. is the use of a limit process. Calculus is a limit machine. A Preview of Calculus Limits and Their Properties Objectives: Understand what calculus is and how it compares with precalculus. Understand that the tangent line problem is basic to calculus. Understand

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval.............. Section. Rolle s Theorem and the Mean Value Theorem. 7 Section. Increasing and Decreasing Functions and the First Derivative

More information

Math Exam 1a. c) lim tan( 3x. 2) Calculate the derivatives of the following. DON'T SIMPLIFY! d) s = t t 3t

Math Exam 1a. c) lim tan( 3x. 2) Calculate the derivatives of the following. DON'T SIMPLIFY! d) s = t t 3t Math 111 - Eam 1a 1) Evaluate the following limits: 7 3 1 4 36 a) lim b) lim 5 1 3 6 + 4 c) lim tan( 3 ) + d) lim ( ) 100 1+ h 1 h 0 h ) Calculate the derivatives of the following. DON'T SIMPLIFY! a) y

More information

Things to remember: x n a 1. x + a 0. x n + a n-1. P(x) = a n. Therefore, lim g(x) = 1. EXERCISE 3-2

Things to remember: x n a 1. x + a 0. x n + a n-1. P(x) = a n. Therefore, lim g(x) = 1. EXERCISE 3-2 lim f() = lim (0.8-0.08) = 0, " "!10!10 lim f() = lim 0 = 0.!10!10 Therefore, lim f() = 0.!10 lim g() = lim (0.8 - "!10!10 0.042-3) = 1, " lim g() = lim 1 = 1.!10!0 Therefore, lim g() = 1.!10 EXERCISE

More information

Set 3: Limits of functions:

Set 3: Limits of functions: Set 3: Limits of functions: A. The intuitive approach (.): 1. Watch the video at: https://www.khanacademy.org/math/differential-calculus/it-basics-dc/formal-definition-of-its-dc/v/itintuition-review. 3.

More information

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions Summer Review Packet for Students Entering AP Calculus BC Comple Fractions When simplifying comple fractions, multiply by a fraction equal to 1 which has a numerator and denominator composed of the common

More information

Limits and Continuous Functions. 2.2 Introduction to Limits. We first interpret limits loosely. We write. lim f(x) = L

Limits and Continuous Functions. 2.2 Introduction to Limits. We first interpret limits loosely. We write. lim f(x) = L 2 Limits and Continuous Functions 2.2 Introduction to Limits We first interpret limits loosel. We write lim f() = L and sa the limit of f() as approaches c, equals L if we can make the values of f() arbitraril

More information

2.1 Limits, Rates of Change and Slopes of Tangent Lines

2.1 Limits, Rates of Change and Slopes of Tangent Lines 2.1 Limits, Rates of Change and Slopes of Tangent Lines (1) Average rate of change of y f x over an interval x 0,x 1 : f x 1 f x 0 x 1 x 0 Instantaneous rate of change of f x at x x 0 : f x lim 1 f x 0

More information

Chapter 2: Functions, Limits and Continuity

Chapter 2: Functions, Limits and Continuity Chapter 2: Functions, Limits and Continuity Functions Limits Continuity Chapter 2: Functions, Limits and Continuity 1 Functions Functions are the major tools for describing the real world in mathematical

More information

1969 AP Calculus BC: Section I

1969 AP Calculus BC: Section I 969 AP Calculus BC: Section I 9 Minutes No Calculator Note: In this eamination, ln denotes the natural logarithm of (that is, logarithm to the base e).. t The asymptotes of the graph of the parametric

More information

With topics from Algebra and Pre-Calculus to

With topics from Algebra and Pre-Calculus to With topics from Algebra and Pre-Calculus to get you ready to the AP! (Key contains solved problems) Note: The purpose of this packet is to give you a review of basic skills. You are asked not to use the

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval.............. 0 Section. Rolle s Theorem and the Mean Value Theorem. 07 Section. Increasing and Decreasing Functions and the First

More information

Review Exercises for Chapter 2

Review Exercises for Chapter 2 Review Eercises for Chapter 367 Review Eercises for Chapter. f 1 1 f f f lim lim 1 1 1 1 lim 1 1 1 1 lim 1 1 lim lim 1 1 1 1 1 1 1 1 1 4. 8. f f f f lim lim lim lim lim f 4, 1 4, if < if (a) Nonremovable

More information

Calculus - Chapter 2 Solutions

Calculus - Chapter 2 Solutions Calculus - Chapter Solutions. a. See graph at right. b. The velocity is decreasing over the entire interval. It is changing fastest at the beginning and slowest at the end. c. A = (95 + 85)(5) = 450 feet

More information

Chapter 8: More on Limits

Chapter 8: More on Limits Chapter 8: More on Limits Lesson 8.. 8-. a. 000 lim a() = lim = 0 b. c. lim c() = lim 3 +7 = 3 +000 lim b( ) 3 lim( 0000 ) = # = " 8-. a. lim 0 = " b. lim (#0.5 ) = # lim c. lim 4 = lim 4(/ ) = " d. lim

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval.............. 78 Section. Rolle s Theorem and the Mean Value Theorem. 8 Section. Increasing and Decreasing Functions and the First

More information

Math 261 Final Exam - Practice Problem Solutions. 1. A function f is graphed below.

Math 261 Final Exam - Practice Problem Solutions. 1. A function f is graphed below. Math Final Eam - Practice Problem Solutions. A function f is graphed below. f() 8 7 7 8 (a) Find f(), f( ), f(), and f() f() = ;f( ).;f() is undefined; f() = (b) Find the domain and range of f Domain:

More information

Calculus I. 1. Limits and Continuity

Calculus I. 1. Limits and Continuity 2301107 Calculus I 1. Limits and Continuity Outline 1.1. Limits 1.1.1 Motivation:Tangent 1.1.2 Limit of a function 1.1.3 Limit laws 1.1.4 Mathematical definition of a it 1.1.5 Infinite it 1.1. Continuity

More information

EQ: What are limits, and how do we find them? Finite limits as x ± Horizontal Asymptote. Example Horizontal Asymptote

EQ: What are limits, and how do we find them? Finite limits as x ± Horizontal Asymptote. Example Horizontal Asymptote Finite limits as x ± The symbol for infinity ( ) does not represent a real number. We use to describe the behavior of a function when the values in its domain or range outgrow all finite bounds. For example,

More information

AP Calculus AB/IB Math SL2 Unit 1: Limits and Continuity. Name:

AP Calculus AB/IB Math SL2 Unit 1: Limits and Continuity. Name: AP Calculus AB/IB Math SL Unit : Limits and Continuity Name: Block: Date:. A bungee jumper dives from a tower at time t = 0. Her height h (in feet) at time t (in seconds) is given by the graph below. In

More information

Slopes and Rates of Change

Slopes and Rates of Change Slopes and Rates of Change If a particle is moving in a straight line at a constant velocity, then the graph of the function of distance versus time is as follows s s = f(t) t s s t t = average velocity

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus.1 Worksheet Day 1 All work must be shown in this course for full credit. Unsupported answers may receive NO credit. 1. The only way to guarantee the eistence of a it is to algebraically prove

More information

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26.

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26. Answer Key 969 BC 97 BC. C. E. B. D 5. E 6. B 7. D 8. C 9. D. A. B. E. C. D 5. B 6. B 7. B 8. E 9. C. A. B. E. D. C 5. A 6. C 7. C 8. D 9. C. D. C. B. A. D 5. A 6. B 7. D 8. A 9. D. E. D. B. E. E 5. E.

More information

Pre-Calculus Mathematics Limit Process Calculus

Pre-Calculus Mathematics Limit Process Calculus NOTES : LIMITS AND DERIVATIVES Name: Date: Period: Mrs. Nguyen s Initial: LESSON.1 THE TANGENT AND VELOCITY PROBLEMS Pre-Calculus Mathematics Limit Process Calculus The type of it that is used to find

More information

MATH section 3.4 Curve Sketching Page 1 of 29

MATH section 3.4 Curve Sketching Page 1 of 29 MATH section. Curve Sketching Page of 9 The step by step procedure below is for regular rational and polynomial functions. If a function contains radical or trigonometric term, then proceed carefully because

More information

3.5 Continuity of a Function One Sided Continuity Intermediate Value Theorem... 23

3.5 Continuity of a Function One Sided Continuity Intermediate Value Theorem... 23 Chapter 3 Limit and Continuity Contents 3. Definition of Limit 3 3.2 Basic Limit Theorems 8 3.3 One sided Limit 4 3.4 Infinite Limit, Limit at infinity and Asymptotes 5 3.4. Infinite Limit and Vertical

More information

Chapter 2 Section 3. Partial Derivatives

Chapter 2 Section 3. Partial Derivatives Chapter Section 3 Partial Derivatives Deinition. Let be a unction o two variables and. The partial derivative o with respect to is the unction, denoted b D1 1 such that its value at an point (,) in the

More information

Topics from Algebra and Pre-Calculus. (Key contains solved problems)

Topics from Algebra and Pre-Calculus. (Key contains solved problems) Topics from Algebra and Pre-Calculus (Key contains solved problems) Note: The purpose of this packet is to give you a review of basic skills. You are asked not to use the calculator, except on p. (8) and

More information

THE UNIVERSITY OF TORONTO UNDERGRADUATE MATHEMATICS COMPETITION March, 2005

THE UNIVERSITY OF TORONTO UNDERGRADUATE MATHEMATICS COMPETITION March, 2005 THE UNIVERSITY OF TORONTO UNDERGRADUATE MATHEMATICS COMPETITION March, 5 Time: 3 1 hours No aids or calculators permitted. It is not necessary to do all the problems. Complete solutions to fewer problems

More information

Lecture Notes for Math 1000

Lecture Notes for Math 1000 Lecture Notes for Math 1000 Dr. Xiang-Sheng Wang Memorial University of Newfoundland Office: HH-2016, Phone: 864-4321 Office hours: 13:00-15:00 Wednesday, 12:00-13:00 Friday Email: swang@mun.ca Course

More information

MATH section 3.1 Maximum and Minimum Values Page 1 of 7

MATH section 3.1 Maximum and Minimum Values Page 1 of 7 MATH section. Maimum and Minimum Values Page of 7 Definition : Let c be a number in the domain D of a function f. Then c ) is the Absolute maimum value of f on D if ) c f() for all in D. Absolute minimum

More information

10.1 COMPOSITION OF FUNCTIONS

10.1 COMPOSITION OF FUNCTIONS 0. COMPOSITION OF FUNCTIONS Composition of Functions The function f(g(t)) is said to be a composition of f with g. The function f(g(t)) is defined by using the output of the function g as the input to

More information

THS Step By Step Calculus Chapter 1

THS Step By Step Calculus Chapter 1 Name: Class Period: Throughout this packet there will be blanks you are epected to fill in prior to coming to class. This packet follows your Larson Tetbook. Do NOT throw away! Keep in 3 ring binder until

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 2 Limits 2.1 The Tangent Problems The word tangent is derived from the Latin word tangens, which means touching. A tangent line to a curve is a line that touches the curve and a secant line is a line that

More information

C H A P T E R 9 Topics in Analytic Geometry

C H A P T E R 9 Topics in Analytic Geometry C H A P T E R Topics in Analtic Geometr Section. Circles and Parabolas.................... 77 Section. Ellipses........................... 7 Section. Hperbolas......................... 7 Section. Rotation

More information

Section 1.3 Functions and Their Graphs 19

Section 1.3 Functions and Their Graphs 19 23. 0 1 2 24. 0 1 2 y 0 1 0 y 1 0 0 Section 1.3 Functions and Their Graphs 19 3, Ÿ 1, 0 25. y œ 26. y œ œ 2, 1 œ, 0 Ÿ " 27. (a) Line through a!ß! band a"ß " b: y œ Line through a"ß " band aß! b: y œ 2,

More information

Chapter 2 Differentiation. 2.1 Tangent Lines and Their Slopes. Calculus: A Complete Course, 8e Chapter 2: Differentiation

Chapter 2 Differentiation. 2.1 Tangent Lines and Their Slopes. Calculus: A Complete Course, 8e Chapter 2: Differentiation Chapter 2 Differentiation 2.1 Tangent Lines and Their Slopes 1) Find the slope of the tangent line to the curve y = 4x x 2 at the point (-1, 0). A) -1 2 C) 6 D) 2 1 E) -2 2) Find the equation of the tangent

More information

Review: Limits of Functions - 10/7/16

Review: Limits of Functions - 10/7/16 Review: Limits of Functions - 10/7/16 1 Right and Left Hand Limits Definition 1.0.1 We write lim a f() = L to mean that the function f() approaches L as approaches a from the left. We call this the left

More information

Summer AP Assignment Coversheet Falls Church High School

Summer AP Assignment Coversheet Falls Church High School Summer AP Assignment Coversheet Falls Church High School Course: AP Calculus AB Teacher Name/s: Veronica Moldoveanu, Ethan Batterman Assignment Title: AP Calculus AB Summer Packet Assignment Summary/Purpose:

More information

October 27, 2018 MAT186 Week 3 Justin Ko. We use the following notation to describe the limiting behavior of functions.

October 27, 2018 MAT186 Week 3 Justin Ko. We use the following notation to describe the limiting behavior of functions. October 27, 208 MAT86 Week 3 Justin Ko Limits. Intuitive Definitions of Limits We use the following notation to describe the iting behavior of functions.. (Limit of a Function A it is written as f( = L

More information

Indeterminate Forms and L Hospital s Rule

Indeterminate Forms and L Hospital s Rule APPLICATIONS OF DIFFERENTIATION Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at certain points. INDETERMINATE FORM TYPE

More information

AP Calculus AB Chapter 1 Limits

AP Calculus AB Chapter 1 Limits AP Calculus AB Chapter Limits SY: 206 207 Mr. Kunihiro . Limits Numerical & Graphical Show all of your work on ANOTHER SHEET of FOLDER PAPER. In Exercises and 2, a stone is tossed vertically into the air

More information

Calculus I Exam 1 Review Fall 2016

Calculus I Exam 1 Review Fall 2016 Problem 1: Decide whether the following statements are true or false: (a) If f, g are differentiable, then d d x (f g) = f g. (b) If a function is continuous, then it is differentiable. (c) If a function

More information

211 Real Analysis. f (x) = x2 1. x 1. x 2 1

211 Real Analysis. f (x) = x2 1. x 1. x 2 1 Part. Limits of functions. Introduction 2 Real Analysis Eample. What happens to f : R \ {} R, given by f () = 2,, as gets close to? If we substitute = we get f () = 0 which is undefined. Instead we 0 might

More information

AP Calculus I Summer Packet

AP Calculus I Summer Packet AP Calculus I Summer Packet This will be your first grade of AP Calculus and due on the first day of class. Please turn in ALL of your work and the attached completed answer sheet. I. Intercepts The -intercept

More information

CLEP Calculus. Time 60 Minutes 45 Questions. For each question below, choose the best answer from the choices given. 2. If f(x) = 3x, then f (x) =

CLEP Calculus. Time 60 Minutes 45 Questions. For each question below, choose the best answer from the choices given. 2. If f(x) = 3x, then f (x) = CLEP Calculus Time 60 Minutes 5 Questions For each question below, choose the best answer from the choices given. 7. lim 5 + 5 is (A) 7 0 (C) 7 0 (D) 7 (E) Noneistent. If f(), then f () (A) (C) (D) (E)

More information

CHAPTER 8 Quadratic Equations, Functions, and Inequalities

CHAPTER 8 Quadratic Equations, Functions, and Inequalities CHAPTER Quadratic Equations, Functions, and Inequalities Section. Solving Quadratic Equations: Factoring and Special Forms..................... 7 Section. Completing the Square................... 9 Section.

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Fall, 2016, WEEK 4 JoungDong Kim Week4 Section 2.6, 2.7, 3.1 Limits at infinity, Velocity, Differentiation Section 2.6 Limits at Infinity; Horizontal Asymptotes Definition.

More information

Calculus I Sample Exam #01

Calculus I Sample Exam #01 Calculus I Sample Exam #01 1. Sketch the graph of the function and define the domain and range. 1 a) f( x) 3 b) g( x) x 1 x c) hx ( ) x x 1 5x6 d) jx ( ) x x x 3 6 . Evaluate the following. a) 5 sin 6

More information

QUIZ ON CHAPTERS 1 AND 2 - SOLUTIONS REVIEW / LIMITS AND CONTINUITY; MATH 150 SPRING 2017 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100%

QUIZ ON CHAPTERS 1 AND 2 - SOLUTIONS REVIEW / LIMITS AND CONTINUITY; MATH 150 SPRING 2017 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100% QUIZ ON CHAPTERS AND 2 - SOLUTIONS REVIEW / LIMITS AND CONTINUITY; MATH 50 SPRING 207 KUNIYUKI 05 POINTS TOTAL, BUT 00 POINTS = 00% ) For a), b), and c) below, bo in the correct answer. (6 points total;

More information

McKinney High School AP Calculus Summer Packet

McKinney High School AP Calculus Summer Packet McKinne High School AP Calculus Summer Packet (for students entering AP Calculus AB or AP Calculus BC) Name:. This packet is to be handed in to our Calculus teacher the first week of school.. ALL work

More information

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x Assignment 5 Name Find the indicated derivative. ) Find y(4) if y = sin x. ) A) y(4) = cos x B) y(4) = sin x y(4) = - cos x y(4) = - sin x ) y = (csc x + cot x)(csc x - cot x) ) A) y = 0 B) y = y = - csc

More information

dx dx x sec tan d 1 4 tan 2 2 csc d 2 ln 2 x 2 5x 6 C 2 ln 2 ln x ln x 3 x 2 C Now, suppose you had observed that x 3

dx dx x sec tan d 1 4 tan 2 2 csc d 2 ln 2 x 2 5x 6 C 2 ln 2 ln x ln x 3 x 2 C Now, suppose you had observed that x 3 CHAPTER 8 Integration Techniques, L Hôpital s Rule, and Improper Integrals Section 8. Partial Fractions Understand the concept of a partial fraction decomposition. Use partial fraction decomposition with

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.4 Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at

More information

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall. Chapter 5 Review 95 (c) f( ) f ( 7) ( 7) 7 6 + ( 6 7) 7 6. 96 Chapter 5 Review Eercises (pp. 60 6). y y ( ) + ( )( ) + ( ) The first derivative has a zero at. 6 Critical point value: y 9 Endpoint values:

More information

Summer AP Assignment Coversheet Falls Church High School

Summer AP Assignment Coversheet Falls Church High School Summer AP Assignment Coversheet Falls Church High School Course: AP Calculus AB Teacher Name/s: Veronica Moldoveanu, Ethan Batterman Assignment Title: AP Calculus AB Summer Packet Assignment Summary/Purpose:

More information

Calculus Problem Sheet Prof Paul Sutcliffe. 2. State the domain and range of each of the following functions

Calculus Problem Sheet Prof Paul Sutcliffe. 2. State the domain and range of each of the following functions f() 8 6 4 8 6-3 - - 3 4 5 6 f().9.8.7.6.5.4.3.. -4-3 - - 3 f() 7 6 5 4 3-3 - - Calculus Problem Sheet Prof Paul Sutcliffe. By applying the vertical line test, or otherwise, determine whether each of the

More information

Partial Fractions. dx dx x sec tan d 1 4 tan 2. 2 csc d. csc cot C. 2x 5. 2 ln. 2 x 2 5x 6 C. 2 ln. 2 ln x

Partial Fractions. dx dx x sec tan d 1 4 tan 2. 2 csc d. csc cot C. 2x 5. 2 ln. 2 x 2 5x 6 C. 2 ln. 2 ln x 460_080.qd //04 :08 PM Page CHAPTER 8 Integration Techniques, L Hôpital s Rule, and Improper Integrals Section 8. Partial Fractions Understand the concept of a partial fraction decomposition. Use partial

More information

1.3 LIMITS AT INFINITY; END BEHAVIOR OF A FUNCTION

1.3 LIMITS AT INFINITY; END BEHAVIOR OF A FUNCTION . Limits at Infinit; End Behavior of a Function 89. LIMITS AT INFINITY; END BEHAVIOR OF A FUNCTION Up to now we have been concerned with its that describe the behavior of a function f) as approaches some

More information

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12 NAME DATE PERIOD AP CALCULUS AB UNIT ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT 0 0 0/6 0/8 0/9 0/0 X X X X 0/ 0/ 0/5 0/6 QUIZ X X X 0/7 0/8 0/9 0/ 0/ 0/ 0/5 UNIT EXAM X X X TOTAL AP Calculus

More information

TRIG REVIEW NOTES. Co-terminal Angles: Angles that end at the same spot. (sines, cosines, and tangents will equal)

TRIG REVIEW NOTES. Co-terminal Angles: Angles that end at the same spot. (sines, cosines, and tangents will equal) TRIG REVIEW NOTES Convert from radians to degrees: multiply by 0 180 Convert from degrees to radians: multiply by 0. 180 Co-terminal Angles: Angles that end at the same spot. (sines, cosines, and tangents

More information

MATH 1325 Business Calculus Guided Notes

MATH 1325 Business Calculus Guided Notes MATH 135 Business Calculus Guided Notes LSC North Harris By Isabella Fisher Section.1 Functions and Theirs Graphs A is a rule that assigns to each element in one and only one element in. Set A Set B Set

More information

CHAPTER 11 Vector-Valued Functions

CHAPTER 11 Vector-Valued Functions CHAPTER Vector-Valued Functions Section. Vector-Valued Functions...................... 9 Section. Differentiation and Integration of Vector-Valued Functions.... Section. Velocit and Acceleration.....................

More information

Infinite Limits. Let f be the function given by. f x 3 x 2.

Infinite Limits. Let f be the function given by. f x 3 x 2. 0_005.qd //0 :07 PM Page 8 SECTION.5 Infinite Limits 8, as Section.5, as + f() = f increases and decreases without bound as approaches. Figure.9 Infinite Limits Determine infinite its from the left and

More information

Let y = f (t) be a function that gives the position at time t of an object moving along the y-axis. Then

Let y = f (t) be a function that gives the position at time t of an object moving along the y-axis. Then Limits From last time... Let y = f (t) be a function that gives the position at time t of an object moving along the y-ais. Then Ave vel[t, t 2 ] = f (t 2) f (t ) t 2 t f (t + h) f (t) Velocity(t) =. h!0

More information

Solutions to the Exercises of Chapter 8

Solutions to the Exercises of Chapter 8 8A Domains of Functions Solutions to the Eercises of Chapter 8 1 For 7 to make sense, we need 7 0or7 So the domain of f() is{ 7} For + 5 to make sense, +5 0 So the domain of g() is{ 5} For h() to make

More information

TEXT AND OTHER MATERIALS:

TEXT AND OTHER MATERIALS: 1. TEXT AND OTHER MATERIALS: Check Learning Resources in shared class files Calculus Wiki-book: https://en.wikibooks.org/wiki/calculus (Main Reference e-book) Paul s Online Math Notes: http://tutorial.math.lamar.edu

More information

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows:

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows: MAT 4 Solutions Eam 4 (Applications of Differentiation) a Applying the Quotient Rule we compute the derivative function of f as follows: f () = 43 e 4 e (e ) = 43 4 e = 3 (4 ) e Hence f '( ) 0 for = 0

More information

Announcements. Topics: Homework:

Announcements. Topics: Homework: Topics: Announcements - section 2.6 (limits at infinity [skip Precise Definitions (middle of pg. 134 end of section)]) - sections 2.1 and 2.7 (rates of change, the derivative) - section 2.8 (the derivative

More information

Introduction to Rational Functions

Introduction to Rational Functions Introduction to Rational Functions The net class of functions that we will investigate is the rational functions. We will eplore the following ideas: Definition of rational function. The basic (untransformed)

More information

AP Calculus BC Prerequisite Knowledge

AP Calculus BC Prerequisite Knowledge AP Calculus BC Prerequisite Knowledge Please review these ideas over the summer as they come up during our class and we will not be reviewing them during class. Also, I feel free to quiz you at any time

More information

4. (6 points) Express the domain of the following function in interval notation:

4. (6 points) Express the domain of the following function in interval notation: Eam 1-A L. Ballou Name Math 131 Calculus I September 1, 016 NO Calculator Allowed BOX YOUR ANSWER! Show all work for full credit! 1. (4 points) Write an equation of a line with y-intercept 4 and -intercept

More information

Chapter 5: Limits, Continuity, and Differentiability

Chapter 5: Limits, Continuity, and Differentiability Chapter 5: Limits, Continuity, and Differentiability 63 Chapter 5 Overview: Limits, Continuity and Differentiability Derivatives and Integrals are the core practical aspects of Calculus. They were the

More information

Problems for Chapter 3.

Problems for Chapter 3. Problems for Chapter 3. Let A denote a nonempty set of reals. The complement of A, denoted by A, or A C is the set of all points not in A. We say that belongs to the interior of A, Int A, if there eists

More information

PACKET Unit 4 Honors ICM Functions and Limits 1

PACKET Unit 4 Honors ICM Functions and Limits 1 PACKET Unit 4 Honors ICM Functions and Limits 1 Day 1 Homework For each of the rational functions find: a. domain b. -intercept(s) c. y-intercept Graph #8 and #10 with at least 5 EXACT points. 1. f 6.

More information

1/100 Range: 1/10 1/ 2. 1) Constant: choose a value for the constant that can be graphed on the coordinate grid below.

1/100 Range: 1/10 1/ 2. 1) Constant: choose a value for the constant that can be graphed on the coordinate grid below. Name 1) Constant: choose a value or the constant that can be graphed on the coordinate grid below a y Toolkit Functions Lab Worksheet thru inverse trig ) Identity: y ) Reciprocal: 1 ( ) y / 1/ 1/1 1/ 1

More information

1 Functions and Graphs

1 Functions and Graphs 1 Functions and Graphs 1.1 Functions Cartesian Coordinate System A Cartesian or rectangular coordinate system is formed by the intersection of a horizontal real number line, usually called the x axis,

More information

Solutions to Math 41 First Exam October 12, 2010

Solutions to Math 41 First Exam October 12, 2010 Solutions to Math 41 First Eam October 12, 2010 1. 13 points) Find each of the following its, with justification. If the it does not eist, eplain why. If there is an infinite it, then eplain whether it

More information

6.5 Trigonometric Equations

6.5 Trigonometric Equations 6. Trigonometric Equations In this section, we discuss conditional trigonometric equations, that is, equations involving trigonometric functions that are satisfied only by some values of the variable (or

More information

MATH 250 TOPIC 11 LIMITS. A. Basic Idea of a Limit and Limit Laws. Answers to Exercises and Problems

MATH 250 TOPIC 11 LIMITS. A. Basic Idea of a Limit and Limit Laws. Answers to Exercises and Problems Math 5 T-Limits Page MATH 5 TOPIC LIMITS A. Basic Idea of a Limit and Limit Laws B. Limits of the form,, C. Limits as or as D. Summary for Evaluating Limits Answers to Eercises and Problems Math 5 T-Limits

More information

3.8 Limits At Infinity

3.8 Limits At Infinity 3.8. LIMITS AT INFINITY 53 Figure 3.5: Partial graph of f = /. We see here that f 0 as and as. 3.8 Limits At Infinity The its we introduce here differ from previous its in that here we are interested in

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 3 2, 5 2 C) - 5 2

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 3 2, 5 2 C) - 5 2 Test Review (chap 0) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. ) Find the point on the curve x = sin t, y = cos t, -

More information

MATH 2 - PROBLEM SETS

MATH 2 - PROBLEM SETS MATH - PROBLEM SETS Problem Set 1: 1. Simplify and write without negative eponents or radicals: a. c d p 5 y cd b. 5p 1 y. Joe is standing at the top of a 100-foot tall building. Mike eits the building

More information