EE 330 Lecture 31. Basic amplifier architectures. Common Emitter/Source Common Collector/Drain Common Base/Gate

Size: px
Start display at page:

Download "EE 330 Lecture 31. Basic amplifier architectures. Common Emitter/Source Common Collector/Drain Common Base/Gate"

Transcription

1 33 Lecture 3 asic aplifier architectures oon itter/source oon ollector/drain oon ase/gate

2 eview fro arlier Lecture Two-port representation of aplifiers plifiers can be odeled as a two-port y 2 2 y y 22 2 y 2 plifier often unilateral (signal propagates in only one direction: wlog y 2 =) One terinal is often coon y y 22 2 y 2

3 eview fro arlier Lecture Two-port representation of aplifiers y y 22 2 y 2 Thevenin equivalent output port often ore standard IN,, and OUT often used to characterize the two-port of aplifiers OUT IN 2

4 eview fro arlier Lecture plifier input ipedance, output ipedance and gain are usually of interest xaple : ssue aplifier is unilateral S Why? OUT IN plifier L S OUT OUT IN IN 2 L L IN OUT L IN OUT = IN MP = = L +OUT S +IN IN L +OUT S +IN an get gain without recondsidering details about coponents internal to the plifier!!! nalysis ore involved when not unilateral

5 eview fro arlier Lecture plifier input ipedance, output ipedance and gain are usually of interest Why? xaple 2: ssue aplifiers are unilateral S OUT IN plifier plifier 2 plifier 3 L S OUT OUT OUT2 OUT3 IN IN IN IN3 23 L L IN3 IN2 IN = L +OUT3 OUT2 +IN3 OUT +IN2 S +IN OUT 3 2 IN OUT L IN3 IN2 IN MP = = 3 2 IN L +OUT3 OUT2 +IN3 OUT +IN2 S +IN an get gain without recondsidering details about coponents internal to the plifier!!! nalysis ore involved when not unilateral

6 eview fro arlier Lecture Two-port representation of aplifiers plifier usually unilateral (signal propagates in only one direction: wlog y 2 =) One terinal is often coon plifier paraeters often used I I 2 y y 22 2 y 2 2 IN Two Port (Thevenin) OUT y paraeters plifier paraeters plifier paraeters can also be used if not unilateral One terinal is often coon I I 2 IN OUT y 2 2 y y 22 2 y Two Port (Thevenin) y paraeters plifier paraeters

7 eview fro arlier Lecture xaple: Two-Port quivalents of Interconnected Two-ports i i y y 2 2 y 2 y 22 2 XX I I 2 2 g22 g2 g g22 2 Two Port (Norton) i v H-paraeters (Hybrid Paraeters) h i h v 2 2 h 22 h i i v v 2 Linear Two Port I I 2 IN OUT 2 2 Two Port (Thevenin)

8 eview fro arlier Lecture Deterination of plifier Two-Port Paraeters Input and output paraeters are obtained in exactly the sae way, only distinction is in the notation used for the ports. Methods given for obtaining aplifier paraeters in, OUT and for unilateral networks are a special case of the non-unilateral analysis by observing that =. In soe cases, other ethods for obtaining the aplifier paraaters are easier than what was just discussed

9 asic plifier Structures MOS and ipolar Transistors oth have 3 priary terinals MOS transistor has a fourth terinal that is generally considered a parasitic terinal D G S D G S Transistors as 3-terinal Devices D G S Sall Signal Transistor Models as 3-terinal Devices

10 asic plifier Structures Observation: OUT OUT IN M IN These circuits considered previously have a terinal (eitter or source) coon to the input and output in the sall-signal equivalent circuit For JT, is coon, input on, output on For MOSFT, S is coon, input on G, output on D Tered oon itter Tered oon Source

11 asic plifier Structures D G plifiers using these devices generally have one terinal coon and use reaining terinals as input and output Since devices are unilateral, designation of input and output terinals is uniquely deterined Three different ways to designate the coon terinal S Sall Signal Transistor Models as 3-terinal Devices Source or itter Gate or ase Drain or ollector tered oon Source or oon itter tered oon Gate or oon ase tered oon Drain or oon ollector

12 asic plifier Structures D G S Sall Signal Transistor Models as 3-terinal Devices MOS JT oon Input Output oon Input Output oon Source or oon itter oon Gate or oon ase oon Drain or oon ollector S G D G S D D G S Identification of Input and Output Terinals is not arbitrary It will be shown that all 3 of the basic aplifiers are useful!

13 asic plifier Structures D G oon Source or oon itter oon Gate or oon ase oon Drain or oon ollector S Sall Signal Transistor Models as 3-terinal Devices Objectives in Study of asic plifier Structures. Obtain key properties of each basic aplifier 2. Develop ethod of designing aplifiers with specific characteristics using basic aplifier structures oon Source oon Gate INPUT OUTPUT oon Drain oon Drain oon Source Overall plifier Struture

14 haracterization of asic plifier Structures D G S Sall Signal Transistor Models as 3-terinal Devices Observe that the sall-signal equivalent of any 3-terinal network is a two-port Thus to characterize any of the 3 basic aplifier structures, it suffices to deterine the two-port equivalent network Since sall signal odel when expressed in ters of sall-signal paraeters of JT and MOSFT differ only in the presence/absence of g π ter, can analyze the JT structures and then obtain characteristics of corresponding MOS structure by setting g π = D G D G S S GS g GS g O g π g g O

15 The three basic aplifier types for both MOS and bipolar processes oon itter oon Source oon ase oon Gate oon ollector oon Drain Will focus on the perforance of the bipolar structures and then obtain perforance of the MOS structures by observation

16 The three basic aplifier types for both MOS and bipolar processes in L OUT oon itter in g π be g be OUT L v g v v OUT L be IN v v v be OUT IN g L in oon ase OUT L in be g π g be OUT L v g v v OUT L be IN v v v be OUT IN g L in OUT L in be g π g be OUT v g g v OUT bel IN be bel v v g g v oon ollector L g v g OUT L v g g IN L Significantly different gain characteristics for the three basic aplifiers There are other significant differences too ( IN, OUT, ) as well

17 The three basic aplifier types for both MOS and bipolar processes in L oon itter oon Source oon itter OUT OUT in L oon ase oon Gate oon ase OUT in L oon ollector oon Drain oon ollector More general odels are needed to accoodate biasing, understand perforance capabilities, and include effects of loading of the basic structures Two-port odels are useful for characterizing the basic aplifier structures How can the two-port paraeters be obtained for these or any other linear two-port networks?

18 Two-Port Models of asic plifiers widely used for nalysis and Design of plifier ircuits Methods of Obtaining plifier Two-Port Network i in v2 o v 2. TST : i TST Method (considered in last lecture) 2. Write : 2 equations in standard for = i + IN 2 = i O 3. Thevenin-Norton Transforations 4. d Hoc pproaches ny of these ethods can be used to obtain the two-port odel

19 test : itest Method for Obtaining Two-Port plifier Paraeters SUMMY fro PIOUS LTU test i in v2 o v 2 out-test out-test test test i TST i i in v2 in v2 o o v v 2 2 i TST test in test test test i test i If Unilateral = out-test i in v2 o v 2 test out-test test

20 Will now develop two-port odel for each of the three basic aplifiers and look at one widely used application of each oon itter oon Source oon ase oon Gate oon ollector oon Drain

21 onsider oon itter/oon Source Two-port Models oon itter oon Source oon ase oon Gate oon ollector oon Drain Will focus on ipolar ircuit since MOS counterpart is a special case obtained by setting g π =

22 asic /S plifier Structures OUT OUT M IN IN oon itter plifier oon Source plifier OUT OUT IN M IN oon itter plifier oon Source plifier an include or exclude and in two-port odels (of course they are different circuits) The and S aplifiers are theselves two-ports!

23 Two-port odel for oon itter onfiguration It can be readily shown that the coon-eitter configuration is unilateral oon itter Thus it is characterized by the paraeters { in, and } i in o v 2 Two-Port /S plifier

24 Two-port odel for oon itter onfiguration oon itter be g π g be g O? i in v o 2 { i, and }

25 Two-Port Models of asic plifiers widely used for nalysis and Design of plifier ircuits Methods of Obtaining plifier Two-Port Network i in v2 o v 2. TST : i TST Method 2. Write : 2 equations in standard for = i + IN 2 = i O 3. Thevenin-Norton Transforations 4. d Hoc pproaches

26 Two-port odel for oon itter onfiguration oon itter be g π g be g O i in v o 2 y Thevenin : Norton Transforations in g g g g

27 Two-Port Models of asic plifiers widely used for nalysis and Design of plifier ircuits Methods of Obtaining plifier Two-Port Network i in v2 o v 2. TST : i TST ethod 2. Write : 2 equations in standard for = i + IN 2 = i O 3. Thevenin-Norton Transforations 4. d Hoc pproaches

28 Two-port odel for oon itter onfiguration lternately, by TST : i TST Method To obtain in i test oon itter test be g π g O g be i in v o 2 in i in test test g { in, and }

29 Two-port odel for oon itter onfiguration lternately, by TST : i TST Method To obtain test be g π g O g be out-test oon itter out-test test i in v o 2 outtest test g g g g { in, and }

30 Two-port odel for oon itter onfiguration lternately, by TST To obtain g : i TST Method i test be g π g be g O te oon itter i test i test test test i g in v o 2 g { in, and }

31 Two-port odel for oon itter onfiguration i in v o 2 oon itter In ters of sall signal odel paraeters: in g g g g In ters of operating point and odel paraeters: t i F F Q t IQ haracteristics: Input ipedance is id-range oltage Gain is Large and Inverting Output ipedance is large Widely used to build voltage aplifiers I

32 oon itter onfiguration onsider the following application DD (this will also generate a two-port odel for this application) out in oon itter inc Two-port including in in o v out Two-Port Model out g g g in out= o// in out in = r = i n g g g g g g π g g = // out o g g g g g

33 oon itter onfiguration onsider the following application (this will also generate a two-port odel for this application) This circuit can also be analyzed directly without using 2-port odel for configuration oon itter inc out in be g π g be g O g g g out in = out g g g g g g g out= g g g = r in π in

34 oon itter onfiguration onsider the following application (this is also a two-port odel for this application) Sall signal paraeter doain oon itter inc Operating point and odel paraeter doain g g g out = r in g g π g g haracteristics: Input ipedance is id-range oltage Gain is large and Inverting Output ipedance is id-range Widely used as a voltage aplifier out g g g g I = I in Q t Q t

35 oon Source/ oon itter onfigurations in in g I t Q oon itter oon Source g g g g in g In ters of operating point and odel paraeters: F F F in IDQ IDQ t IQ 2 2 F Q Q haracteristics: g Input ipedance is id-range (infinite for MOS) oltage Gain is Large and Inverting Output ipedance is large Widely used to build voltage aplifiers

36 oon Source/oon itter onfiguration D g g g oon itter inc out g g out in = r in g g I g g Q π t = I Q t g g g g D g g D haracteristics: Input ipedance is id-range (infinite for MOS) oltage Gain is Large and Inverting Output ipedance is id-range Widely used as a voltage aplifier out oon Source inc D in In ters of operating point and odel paraeters: in g g D g D g g D 2I DQ D out Q g g D D D

37 onsider oon ollector/oon Drain Two-port Models oon itter oon Source oon ase oon Gate oon ollector oon Drain Will focus on ipolar ircuit since MOS counterpart is a special case obtained by setting g π =

38 Two-port odel for oon ollector onfiguration It can be readily shown that the coon-collector and the coon base configurations are not unilateral Thus a 4-paraeter two-port odel is needed to characterize these structures oon ollector i g π g g O g r 2 2 Or, equivalently oon ase i ox ix v 2 vr2

39 Two-port odel for oon ollector onfiguration be g π g be g O oon ollector? i ox ix vr2 v 2 { ix,, r and X }

40 Two-Port Models of asic plifiers widely used for nalysis and Design of plifier ircuits Methods of Obtaining plifier Two-Port Network i in v2 o v 2. TST : i TST Method 2. Write : 2 equations in standard for = i + IN 2 = i O 3. Thevenin-Norton Transforations 4. d Hoc pproaches

41 Two-port odel for oon ollector onfiguration i oon ollector be g π g be g O 2 pplying KL at the input and output node, obtain i 2 g i g g g g g 2 o 2 These can be rewritten as i r π 2 g g 2 2 g g go g g go Standard Two-Port plifier epresentation i ix v2 i v ix 2 i 2 2 ox ox 2 : 2 equations in standard for It thus follows that ix =r π Or= X g g g o g g g g g o

42 Two-port odel for oon ollector onfiguration i be g π g be g O 2 oon ollector i Two-port oon ollector Model ox ix v 2 vr2 ix =r π Or= X g g go g g g g go g

43 oon ollector onfiguration onsider the following application Deterine in,, and (this is not asking for a two-port odel for the application in and defined for no additional load on output, o defined for short-circuit input) in DD SS out IN oon ollector OUT in i ox ix vr2 v 2 out if g gox g g g g go g g g = = gox g g g go g g go g g g go g g g g = i g +g X in ix vr v in X = = g +g +g +g g +g +g π g g g o r g g go g = r r +β g g go g g g go g g g in π π g

44 oon ollector onfiguration onsider the following application (this is not asking for a two-port odel for the application, in and defined for no additional load on output, o defined for short-circuit input -) in DD out IN oon ollector OUT lternately, this circuit can also be analyzed directly SS i in g π g g O OUT in g g g g g out in in out g g g g g g out in g g g g g g g g g I Q I + Q t i i in g in in g g g g gin g g out g g o out g g g g in g g g g go g = rπ r + β g g in π o

45 oon ollector onfiguration onsider the following application (this is not asking for a two-port odel for the application, in and defined for no additional load on output, o defined for short-circuit input -) in DD out IN oon ollector OUT SS i in g π g g O OUT g π g g O i out in OUT To obtain, set in g g g g i out out out out = g g o g g g g g o

46 oon ollector onfiguration onsider the following application (this is not asking for a two-port odel for the application, in and defined for no additional load on output, o defined for short-circuit input -) in DD out IN oon ollector OUT SS out = g g g IQ g g g g g g I + g g g g r + g g o g g g g g o Q t g g o o in= rπ π β go g Question: Why are these not the two-port paraeters of this circuit? in defined for open-circuit on output instead of shortcircuit (see previous slide : -2 slides) r i ox ix v 2 vr2

47 oon ollector onfiguration DD For this application OUT (this is not a two-port odel for this application) IN in out oon ollector Sall signal paraeter doain g g g g g g if g g IQ I + Q t SS Operating point and odel paraeter doain I Q t g g o r +β in π in I Q t β +g g g haracteristics: I Q t I t Q Output ipedance is low is positive and near Input ipedance is very large Widely used as a buffer Not copletely unilateral but output-input transconductance (or r ) is sall and effects are generally negligible though agnitude sae as

48 oon ollector/oon Drain onfigurations For these /D applications (not two-port odels for these applications) DD OUT in out g g g g g g g g o r +β in π +g IQ I + Q t g I in Q t I g IN Q t β if g g Output ipedance is low is positive and near Input ipedance is very large oon ollector I Q t I t Q OUT in G D S SS S in out IN g g g g S +g In ters of operating point and odel paraeters: S S g S oon Drain if g g g 2IDQ S if 2I DQ Q 2IDQ S+Q S 2I DQ S Q +2I 2I in Q S Q Q DQ S DQ Widely used as a buffer Not copletely unilateral but output-input transconductance is sall S D

49 onsider oon ase/oon Gate Two-port Models oon itter oon Source oon ase oon Gate oon ollector oon Drain Will focus on ipolar ircuit since MOS counterpart is a special case obtained by setting g π =

50 Two-port odel for oon ase onfiguration be g π g be g O oon ase? i ox ix vr2 v 2 { ix,, r and X }

51 Two-Port Models of asic plifiers widely used for nalysis and Design of plifier ircuits Methods of Obtaining plifier Two-Port Network i in v2 o v 2. TST : i TST Method 2. Write : 2 equations in standard for = i + IN 2 = i O 3. Thevenin-Norton Transforations 4. d Hoc pproaches

52 Two-port odel for oon ase onfiguration i be g π g be g O 2 oon ase Fro KL i g g g 2 i g g 2 2 These can be rewritten as g 2 g g g g g g g i 2 2 g g It thus follows that: g g g g ix Or g g g g i : 2 equations in standard for Standard For for plifier Two-Port in v2 g o v 2 g = i + IN 2 = i O g g ox g

53 Two-port odel for oon ase onfiguration i be g π g be g O 2 oon ase i Two-port oon ase Model ox in vr2 v 2 ix Or g g g g g g g g g g g g ox g g g

54 oon ase onfiguration onsider the following application (this is not asking for a two-port odel for this application - in and defined for no load on output, o defined for short-circuit input ) DD out IN OUT in oon ase i ox ix out in vr2 v 2 g g g g g = + X g g g g g in ix+ r out in= = i ix in= - i i // out X out r +g g g g g g g g g g g

55 oon ase onfiguration onsider the following application (this is not asking for a two-port odel for this application in and defined for no load on output, o defined for short-circuit input ) DD out IN OUT in oon ase lternately, this circuit can also be analyzed directly i out in be g π g be g O 2 y KL at the output node, obtain g g +g = g +g g in = g g g g i = g +g +g in g +g out in= g g +g +g +g g g y KL at the eitter node, obtain //r out out +g π π

56 oon ase pplication DD OUT (this is not a two-port odel for this application) out IN in oon ase g in <<r out g haracteristics: in I Q t t I Q <<r Output ipedance is id-range is large and positive (equal in ag to that to ) Input ipedance is very low Not copletely unilateral but output-input transconductance is sall out

57 oon ase/oon Gate pplication (these are not a two-port odels) DD DD OUT D OUT out IN G GG D S OUT IN D in oon ase in oon Gate g in g <<r out g D in g out <<r D D I Q t in In ters of operating point and odel paraeters: I << Q F t 2IDQ D I out in 2I Q Q Q DQ out I << DQ D D haracteristics: Output ipedance is id-range is large and positive (equal in ag to that to ) Input ipedance is very low Not copletely unilateral but output-input transconductance is sall

58 nd of Lecture 3

EE 330 Lecture 30. Basic amplifier architectures

EE 330 Lecture 30. Basic amplifier architectures 33 Lecture 3 asic aplifier architectures asic plifier Structures MOS and ipolar Transistors oth have 3 priary terinals MOS transistor has a fourth terinal that is generally considered a parasitic D terinal

More information

EE 330 Lecture 33. Basic amplifier architectures Common Emitter/Source Common Collector/Drain Common Base/Gate. Basic Amplifiers

EE 330 Lecture 33. Basic amplifier architectures Common Emitter/Source Common Collector/Drain Common Base/Gate. Basic Amplifiers 33 Lecture 33 asic aplifier architectures oon itter/source oon ollector/drain oon ase/gate asic plifiers nalysis, Operation, and Desin xa 3 Friday pril 3 eview Previous Lecture Two-Port quivalents of Interconnected

More information

EE 330 Lecture 31. Basic Amplifier Analysis High-Gain Amplifiers Current Source Biasing (just introduction)

EE 330 Lecture 31. Basic Amplifier Analysis High-Gain Amplifiers Current Source Biasing (just introduction) 330 Lecture 31 asic Amplifier Analysis High-Gain Amplifiers urrent Source iasing (just introduction) eview from Last Time ommon mitter onfiguration ommon mitter onsider the following application (this

More information

ECEG 351 Electronics II Spring 2017

ECEG 351 Electronics II Spring 2017 G 351 lectronics Sprin 2017 Review Topics for xa #1 Please review the xa Policies section of the xas pae at the course web site. Please especially note the followin: 1. You will be allowed to use a non-wireless

More information

EE 435. Lecture 2: Basic Op Amp Design. - Single Stage Low Gain Op Amps

EE 435. Lecture 2: Basic Op Amp Design. - Single Stage Low Gain Op Amps EE 435 ecture 2: Basic Op mp Design - Single Stage ow Gain Op mps 1 Review from last lecture: How does an amplifier differ from an operational amplifier?? Op mp mplifier mplifier used in open-loop applications

More information

Chapter 9 Bipolar Junction Transistor

Chapter 9 Bipolar Junction Transistor hapter 9 ipolar Junction Transistor hapter 9 - JT ipolar Junction Transistor JT haracteristics NPN, PNP JT D iasing ollector haracteristic and Load Line ipolar Junction Transistor (JT) JT is a three-terminal

More information

EE 330 Lecture 25. Amplifier Biasing (precursor) Two-Port Amplifier Model

EE 330 Lecture 25. Amplifier Biasing (precursor) Two-Port Amplifier Model EE 330 Lecture 25 Amplifier Biasing (precursor) Two-Port Amplifier Model Review from Last Lecture Exam Schedule Exam 2 Friday March 24 Review from Last Lecture Graphical Analysis and Interpretation 2 OX

More information

EE5900 Spring Lecture 4 IC interconnect modeling methods Zhuo Feng

EE5900 Spring Lecture 4 IC interconnect modeling methods Zhuo Feng EE59 Spring Parallel LSI AD Algoriths Lecture I interconnect odeling ethods Zhuo Feng. Z. Feng MTU EE59 So far we ve considered only tie doain analyses We ll soon see that it is soeties preferable to odel

More information

EE 330 Lecture 20. Bipolar Device Modeling

EE 330 Lecture 20. Bipolar Device Modeling 330 Lecture 20 ipolar Device Modeling xam 2 Friday March 9 xam 3 Friday April 13 Review from Last Lecture ipolar Transistors npn stack pnp stack ipolar Devices Show asic Symmetry lectrical Properties not

More information

Chapter 2. Small-Signal Model Parameter Extraction Method

Chapter 2. Small-Signal Model Parameter Extraction Method Chapter Sall-Signal Model Paraeter Extraction Method In this chapter, we introduce a new paraeter extraction technique for sall-signal HBT odeling. Figure - shows the sall-signal equivalent circuit of

More information

At point G V = = = = = = RB B B. IN RB f

At point G V = = = = = = RB B B. IN RB f Common Emitter At point G CE RC 0. 4 12 0. 4 116. I C RC 116. R 1k C 116. ma I IC 116. ma β 100 F 116µ A I R ( 116µ A)( 20kΩ) 2. 3 R + 2. 3 + 0. 7 30. IN R f Gain in Constant Current Region I I I C F

More information

Lecture 10 OUTLINE. Reading: Chapter EE105 Spring 2008 Lecture 10, Slide 1 Prof. Wu, UC Berkeley

Lecture 10 OUTLINE. Reading: Chapter EE105 Spring 2008 Lecture 10, Slide 1 Prof. Wu, UC Berkeley Lecture 0 OUTLIN BJT Aplifiers (3) itter follower (Coon-collector aplifier) Analysis of eitter follower core Ipact of source resistance Ipact of arly effect itter follower with biasin eadin: Chapter 5.3.3-5.4

More information

Biasing the CE Amplifier

Biasing the CE Amplifier Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC base-emitter voltage (note: normally plot vs. base current, so we must return to Ebers-Moll): I C I S e V BE V th I S e V th

More information

VI. Transistor amplifiers: Biasing and Small Signal Model

VI. Transistor amplifiers: Biasing and Small Signal Model VI. Transistor amplifiers: iasing and Small Signal Model 6.1 Introduction Transistor amplifiers utilizing JT or FET are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly.

More information

EE 434 Lecture 16. Small signal model Small signal applications in amplifier analysis and design

EE 434 Lecture 16. Small signal model Small signal applications in amplifier analysis and design EE 434 Lecture 16 Sall sinal odel Sall sinal applications in aplifier analysis and desin Quiz 13 The of an n-channel OS transistor that has a quiescent current of 5A was easured to be 10A/. If the lenth

More information

The Indefinite Admittance Matrix

The Indefinite Admittance Matrix Subject: ndefinite Adittance Matrices Date: June 6, 998 The ndefinite Adittance Matrix The indefinite adittance atrix, designated F for short, is a circuit analsis technique i,ii,iii which lends itself

More information

EE 435. Lecture 2: Basic Op Amp Design. - Single Stage Low Gain Op Amps

EE 435. Lecture 2: Basic Op Amp Design. - Single Stage Low Gain Op Amps EE 435 ecture 2: Basic Op Amp Design - Single Stage ow Gain Op Amps 1 Review from last lecture: How does an amplifier differ from an operational amplifier?? Op Amp Amplifier Amplifier used in open-loop

More information

EE 435. Lecture 3 Spring Design Space Exploration --with applications to single-stage amplifier design

EE 435. Lecture 3 Spring Design Space Exploration --with applications to single-stage amplifier design EE 435 Lecture 3 Spring 2016 Design Space Exploration --with applications to single-stage amplifier design 1 Review from last lecture: Single-ended Op Amp Inverting Amplifier V IN R 1 V 1 R 2 A V V OUT

More information

Lecture #26. Small Signal Model

Lecture #26. Small Signal Model ecture #6 ANNOUNCEMEN he lowest H grade will be dropped for each student OUNE Sall-signal MOSFE odel MOSFE scaling elocity uration Short-channel MOSFEs EE30 ecture 6, Slide Sall Signal Model Conductance

More information

SOME USEFUL NETWORK THEOREMS

SOME USEFUL NETWORK THEOREMS APPENDIX D SOME USEFUL NETWORK THEOREMS Introduction In this appendix we review three network theorems that are useful in simplifying the analysis of electronic circuits: Thévenin s theorem Norton s theorem

More information

Lecture 18 - The Bipolar Junction Transistor (II) Regimes of Operation April 19, 2001

Lecture 18 - The Bipolar Junction Transistor (II) Regimes of Operation April 19, 2001 6.012 - Microelectronic Devices and ircuits - Spring 2001 Lecture 18-1 Lecture 18 - The ipolar Junction Transistor (II) Regimes of Operation April 19, 2001 ontents: 1. Regimes of operation. 2. Large-signal

More information

EE 330 Lecture 33. Cascaded Amplifiers High-Gain Amplifiers Current Source Biasing

EE 330 Lecture 33. Cascaded Amplifiers High-Gain Amplifiers Current Source Biasing EE 330 Lecture 33 Cascaded Amplifiers High-Gain Amplifiers Current Source Biasing Review from Last Time Can use these equations only when small signal circuit is EXACTLY like that shown!! Review from Last

More information

EE 330 Lecture 31. Current Source Biasing Current Sources and Mirrors

EE 330 Lecture 31. Current Source Biasing Current Sources and Mirrors EE 330 Lecture 31 urrent Source Biasing urrent Sources and Mirrors eview from Last Lecture Basic mplifier Gain Table DD DD DD DD in B E out in B E out E B BB in E out in B E E out in 2 D Q EE SS E/S /D

More information

Chapter 28: Alternating Current

Chapter 28: Alternating Current hapter 8: Alternating urrent Phasors and Alternating urrents Alternating current (A current) urrent which varies sinusoidally in tie is called alternating current (A) as opposed to direct current (D).

More information

EE 330 Lecture 25. Amplifier Biasing (precursor) Two-Port Amplifier Model

EE 330 Lecture 25. Amplifier Biasing (precursor) Two-Port Amplifier Model EE 330 Lecture 25 Amplifier Biasing (precursor) Two-Port Amplifier Model Amplifier Biasing (precursor) V CC R 1 V out V in B C E V EE Not convenient to have multiple dc power supplies Q very sensitive

More information

Lecture 18 - The Bipolar Junction Transistor (II) Regimes of Operation. November 10, 2005

Lecture 18 - The Bipolar Junction Transistor (II) Regimes of Operation. November 10, 2005 6.012 - Microelectronic Devices and ircuits - Fall 2005 Lecture 18-1 Lecture 18 - The ipolar Junction Transistor (II) ontents: 1. Regimes of operation. Regimes of Operation November 10, 2005 2. Large-signal

More information

About the definition of parameters and regimes of active two-port networks with variable loads on the basis of projective geometry

About the definition of parameters and regimes of active two-port networks with variable loads on the basis of projective geometry About the definition of paraeters and regies of active two-port networks with variable loads on the basis of projective geoetry PENN ALEXANDR nstitute of Electronic Engineering and Nanotechnologies "D

More information

EE 435. Lecture 3 Spring Design Space Exploration --with applications to single-stage amplifier design

EE 435. Lecture 3 Spring Design Space Exploration --with applications to single-stage amplifier design EE 435 ecture 3 Spring 2019 Design Space Exploration --with applications to single-stage amplifier design 1 Review from last lecture: Single-ended Op Amp Inverting Amplifier V IN R 1 V 1 R 2 A V V OUT

More information

EE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits

EE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits EE 330 Lecture 22 Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits Exam 2 Friday March 9 Exam 3 Friday April 13 Review Session for Exam 2: 6:00

More information

Lecture 36: MOSFET Common Drain (Source Follower) Amplifier.

Lecture 36: MOSFET Common Drain (Source Follower) Amplifier. Whites, EE 320 Lecture 36 Pae 1 of 10 Lecture 36: MOSFET Coon Drain (Source Follower) Aplifier. The third, and last, discrete-for MOSFET aplifier we ll consider in this course is the coon drain aplifier.

More information

EE 434 Lecture 33. Logic Design

EE 434 Lecture 33. Logic Design EE 434 Lecture 33 Logic Design Review from last time: Ask the inverter how it will interpret logic levels V IN V OUT V H =? V L =? V LARGE V H V L V H Review from last time: The two-inverter loop X Y X

More information

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics Lena Peterson 2015-10-13 Outline (1) Why is the CMOS inverter gain not infinite? Large-signal

More information

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors ECE 342 Electronic Circuits Lecture 6 MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2

More information

Chapter 11 Frequency Response. EE105 - Spring 2007 Microelectronic Devices and Circuits. High Frequency Roll-off of Amplifier. Gain Roll-off Thru C L

Chapter 11 Frequency Response. EE105 - Spring 2007 Microelectronic Devices and Circuits. High Frequency Roll-off of Amplifier. Gain Roll-off Thru C L EE05 - Spr 2007 Microelectronic Devices and ircuits ecture 9 Frequency Response hapter Frequency Response. General onsiderations.2 Hih-Frequency Models of Transistors.3 Frequency Response of S Staes.4

More information

1.7 Delta-Star Transformation

1.7 Delta-Star Transformation S Electronic ircuits D ircuits 8.7 Delta-Star Transformation Fig..(a) shows three resistors R, R and R connected in a closed delta to three terminals, and, their numerical subscripts,, and, being opposite

More information

Delay and Power Estimation

Delay and Power Estimation EEN454 Digital Integrated ircuit Design Delay and Power Estimation EEN 454 Delay Estimation We would like to be able to easily estimate delay Not as accurate as simulation But make it easier to ask What

More information

Transistors. Lesson #9 Chapter 4. BME 372 Electronics I J.Schesser

Transistors. Lesson #9 Chapter 4. BME 372 Electronics I J.Schesser Transistors Lesson #9 hapter 4 252 JT egions of Operation 7.03 6.03 5.03 4.03 3.03 2.03 1.03 0.00 Saturation Active i amps i =50 ma 40 ma 30 ma 20 ma 10 ma 0 ma 0 1 2 3 4 5 6 7 8 9 10 v volts utoff There

More information

DESIGN OF MECHANICAL SYSTEMS HAVING MAXIMALLY FLAT RESPONSE AT LOW FREQUENCIES

DESIGN OF MECHANICAL SYSTEMS HAVING MAXIMALLY FLAT RESPONSE AT LOW FREQUENCIES DESIGN OF MECHANICAL SYSTEMS HAVING MAXIMALLY FLAT RESPONSE AT LOW FREQUENCIES V.Raachran, Ravi P.Raachran C.S.Gargour Departent of Electrical Coputer Engineering, Concordia University, Montreal, QC, CANADA,

More information

EE 330 Lecture 36. Digital Circuits. Transfer Characteristics of the Inverter Pair One device sizing strategy Multiple-input gates

EE 330 Lecture 36. Digital Circuits. Transfer Characteristics of the Inverter Pair One device sizing strategy Multiple-input gates EE 330 Lecture 36 Digital Circuits Transfer Characteristics of the Inverter Pair One device sizing strategy Multiple-input gates Review from Last Time The basic logic gates It suffices to characterize

More information

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET EE 230 Lecture 33 Nonlinear Circuits and Nonlinear Devices Diode BJT MOSFET Review from Last Time: n-channel MOSFET Source Gate L Drain W L EFF Poly Gate oxide n-active p-sub depletion region (electrically

More information

Transistor amplifiers: Biasing and Small Signal Model

Transistor amplifiers: Biasing and Small Signal Model Transistor amplifiers: iasing and Small Signal Model Transistor amplifiers utilizing JT or FT are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly. Then, similar FT

More information

Lecture 21. REMINDERS Review session: Fri.11/9,3 5PMin306Soda in 306 (HP Auditorium) Midterm #2 (Thursday 11/15, 3:30 5PM in Sibley Auditorium)

Lecture 21. REMINDERS Review session: Fri.11/9,3 5PMin306Soda in 306 (HP Auditorium) Midterm #2 (Thursday 11/15, 3:30 5PM in Sibley Auditorium) Lecture EMINES eiew session: Fri./9,3 5PM306Soda 306 (HP Auditoriu) Midter # (Thursday /5, 3:30 5PM Sibley Auditoriu) OUTLINE Frequency esponse eiew of basic concepts hih frequency MOSFET odel S stae G

More information

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR EE 23 Lecture 3 THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR Quiz 3 Determine I X. Assume W=u, L=2u, V T =V, uc OX = - 4 A/V 2, λ= And the number is? 3 8 5 2? 6 4 9 7 Quiz 3

More information

ECE315 / ECE515 Lecture 11 Date:

ECE315 / ECE515 Lecture 11 Date: ecture 11 Date: 15.09.016 MOS Differential Pair Quantitative Analysis differential input Small Signal Analysis MOS Differential Pair ECE315 / ECE515 M 1 and M are perfectly matched (at least in theory!)

More information

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 118 Lecture #2: MOSFET Structure and Basic Operation Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Announcements Lab 1 this week, report due next week Bring

More information

Lab 4: Frequency Response of CG and CD Amplifiers.

Lab 4: Frequency Response of CG and CD Amplifiers. ESE 34 Electronics aboratory B Departent of Electrical and Coputer Enineerin Fall 2 ab 4: Frequency esponse of CG and CD Aplifiers.. OBJECTIVES Understand the role of input and output ipedance in deterinin

More information

General Considerations Miller Effect Association of Poles with Nodes Common Source Stage Source Follower Differential Pair

General Considerations Miller Effect Association of Poles with Nodes Common Source Stage Source Follower Differential Pair Frequency epone of Aplifier General onideration Miller Effect Aociation of Pole with Node oon ource tage ource Follower ifferential Pair Haan Abouhady Univerity of Pari I eference B. azavi, eign of Analog

More information

Differential Amplifiers (Ch. 10)

Differential Amplifiers (Ch. 10) Differential Amplifiers (h. 0) 김영석 충북대학교전자정보대학 0.9. Email: kimys@cbu.ac.kr 0- ontents 0. General onsiderations 0. Bipolar Differential Pair 0.3 MOS Differential Pair 0.4 ascode Differential Amplifiers

More information

lecture 37: Linear Multistep Methods: Absolute Stability, Part I lecture 38: Linear Multistep Methods: Absolute Stability, Part II

lecture 37: Linear Multistep Methods: Absolute Stability, Part I lecture 38: Linear Multistep Methods: Absolute Stability, Part II lecture 37: Linear Multistep Methods: Absolute Stability, Part I lecture 3: Linear Multistep Methods: Absolute Stability, Part II 5.7 Linear ultistep ethods: absolute stability At this point, it ay well

More information

Voltage AmpliÞer Frequency Response

Voltage AmpliÞer Frequency Response Voltage AmpliÞer Frequency Response Chapter 9 multistage voltage ampliþer 5 V M 7B M 7 M 5 R 35 kω M 6B M 6 Q 4 100 µa X M 3 Q B Q v OUT V s M 1 M 8 M9 V BIAS M 10 Approaches: 1. brute force OCTC -- do

More information

Mutual capacitor and its applications

Mutual capacitor and its applications Mutual capacitor and its applications Chun Li, Jason Li, Jieing Li CALSON Technologies, Toronto, Canada E-ail: calandli@yahoo.ca Published in The Journal of Engineering; Received on 27th October 2013;

More information

Chapter 10: Sinusoidal Steady-State Analysis

Chapter 10: Sinusoidal Steady-State Analysis Chapter 0: Sinusoidal Steady-State Analysis Sinusoidal Sources If a circuit is driven by a sinusoidal source, after 5 tie constants, the circuit reaches a steady-state (reeber the RC lab with t = τ). Consequently,

More information

SUPERIOR-ORDER CURVATURE-CORRECTED PROGRAMMABLE VOLTAGE REFERENCES

SUPERIOR-ORDER CURVATURE-CORRECTED PROGRAMMABLE VOLTAGE REFERENCES SUPEIO-ODE CUATUE-COECTED POGAMMABLE OLTAGE EFEENCES Cosin Popa e-ail: cosin@golanapubro Faculty of Electronics and Telecounications, University Politehnica of Bucharest, B dul Iuliu Maniu 1-3, Bucuresti,

More information

Electronics II. Midterm #1

Electronics II. Midterm #1 The University of Toledo EECS:3400 Electronics I su3ms_elct7.fm Section Electronics II Midterm # Problems Points. 5. 6 3. 9 Total 0 Was the exam fair? yes no The University of Toledo su3ms_elct7.fm Problem

More information

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

More information

ECE 4430 Analog Integrated Circuits and Systems

ECE 4430 Analog Integrated Circuits and Systems ECE 4430 Analog Integrated Circuits and Systes Prof. B. A. Minch s lecture notes in Cornell University on Septeber 21, 2001 1 MOS Transistor Models In this section, we shall develop large-signal odels

More information

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003 6.12 - Microelectronic Devices and Circuits - Spring 23 Lecture 14-1 Lecture 14 - Digital Circuits (III) CMOS April 1, 23 Contents: 1. Complementary MOS (CMOS) inverter: introduction 2. CMOS inverter:

More information

ECEG 351 Electronics II Spring 2017

ECEG 351 Electronics II Spring 2017 ECEG 351 Electronics Sprin 017 Review Topics for Exa #3 Please review the Exa Policies section of the Exas pae at the course web site. You should especially note the followin: 1. You will be allowed to

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2011

EE C245 ME C218 Introduction to MEMS Design Fall 2011 EE C245 ME C218 Introduction to MEMS Design Fall 2011 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture EE C245:

More information

Thevenin equivalent circuits

Thevenin equivalent circuits Thevenin equivalent circuits We have seen the idea of equivalency used in several instances already. 1 2 1 2 same as 1 2 same as 1 2 R 3 same as = 0 V same as 0 A same as same as = EE 201 Thevenin 1 The

More information

Lecture 18. Common Source Stage

Lecture 18. Common Source Stage ecture 8 OUTINE Basic MOSFET amplifier MOSFET biasing MOSFET current sources Common source amplifier eading: Chap. 7. 7.7. EE05 Spring 008 ecture 8, Slide Prof. Wu, UC Berkeley Common Source Stage λ =

More information

Lecture 12 CMOS Delay & Transient Response

Lecture 12 CMOS Delay & Transient Response EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 12 CMOS Delay & Transient Response Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology

More information

320-amp-models.tex Page 1 ECE 320. Amplifier Models. ECE Linear Active Circuit Design

320-amp-models.tex Page 1 ECE 320. Amplifier Models. ECE Linear Active Circuit Design 320ampmodels.tex Page 1 ECE 320 Amplifier Models ECE 320 Linear Active Circuit Design 320ampmodels.tex Page 2 2Port Networks A 2port network is any circiut with two pairs of wires connecting to the outside

More information

One-Port Networks. One-Port. Network

One-Port Networks. One-Port. Network TwoPort s Definitions Impedance Parameters dmittance Parameters Hybrid Parameters Transmission Parameters Cascaded TwoPort s Examples pplications OnePort s v i' 1 OnePort pair of terminals at which a signal

More information

Frequency-Domain Analysis of Transmission Line Circuits (Part 3)

Frequency-Domain Analysis of Transmission Line Circuits (Part 3) Frequency-Doain Analyi of Traniion ine ircuit (Part 3 Dr. Joé Erneto Raya ánchez Outline Differential traniion line oon ode ignaling Differential ode ignaling Mode converion Even and odd ode -coupled lole

More information

Electronic Circuits. Transistor Bias Circuits. Manar Mohaisen Office: F208 Department of EECE

Electronic Circuits. Transistor Bias Circuits. Manar Mohaisen Office: F208   Department of EECE lectronic ircuits Transistor Bias ircuits Manar Mohaisen Office: F208 mail: manar.subhi@kut.ac.kr Department of Review of the Precedent Lecture Bipolar Junction Transistor (BJT) BJT haracteristics and

More information

Lecture 8: 09/18/03 A.R. Neureuther Version Date 09/14/03 EECS 42 Introduction Digital Electronics Andrew R. Neureuther

Lecture 8: 09/18/03 A.R. Neureuther Version Date 09/14/03 EECS 42 Introduction Digital Electronics Andrew R. Neureuther EECS ntroduction Digital Electronics ndrew. Neureuther Lecture #8 Node Equations Systematic Node Equations Example: oltage and Current Dividers Example 5 Element Circuit Schwarz and Oldham 5-58,.5, &.6

More information

6.012 Electronic Devices and Circuits Spring 2005

6.012 Electronic Devices and Circuits Spring 2005 6.012 Electronic Devices and Circuits Spring 2005 May 16, 2005 Final Exam (200 points) -OPEN BOOK- Problem NAME RECITATION TIME 1 2 3 4 5 Total General guidelines (please read carefully before starting):

More information

Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER

Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER Outline. Introduction 2. CMOS multi-stage voltage amplifier 3. BiCMOS multistage voltage amplifier 4. BiCMOS current buffer 5. Coupling amplifier

More information

ECE 546 Lecture 11 MOS Amplifiers

ECE 546 Lecture 11 MOS Amplifiers ECE 546 Lecture MOS Amplifiers Spring 208 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine Amplifiers Definitions Used to increase

More information

1. Review of Circuit Theory Concepts

1. Review of Circuit Theory Concepts 1. Review of Circuit Theory Concepts Lecture notes: Section 1 ECE 65, Winter 2013, F. Najmabadi Circuit Theory is an pproximation to Maxwell s Electromagnetic Equations circuit is made of a bunch of elements

More information

! Dynamic Characteristics. " Delay

! Dynamic Characteristics.  Delay EE 57: Digital Integrated ircuits and LI Fundamentals Lecture Outline! Dynamic haracteristics " Delay Lec : February, 8 MO Inverter and Interconnect Delay 3 Review: Propogation Delay Definitions Dynamic

More information

Statistical Logic Cell Delay Analysis Using a Current-based Model

Statistical Logic Cell Delay Analysis Using a Current-based Model Statistical Logic Cell Delay Analysis Using a Current-based Model Hanif Fatei Shahin Nazarian Massoud Pedra Dept. of EE-Systes, University of Southern California, Los Angeles, CA 90089 {fatei, shahin,

More information

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices EE 330 Lecture 35 Parasitic Capacitances in MOS Devices Exam 2 Wed Oct 24 Exam 3 Friday Nov 16 Review from Last Lecture Cascode Configuration Discuss V CC gm1 gm1 I B VCC V OUT g02 g01 A - β β VXX Q 2

More information

Chapter 10: Sinusoidal Steady-State Analysis

Chapter 10: Sinusoidal Steady-State Analysis Chapter 0: Sinusoidal Steady-State Analysis Sinusoidal Sources If a circuit is driven by a sinusoidal source, after 5 tie constants, the circuit reaches a steady-state (reeber the RC lab with t τ). Consequently,

More information

Chapter 10 Instructor Notes

Chapter 10 Instructor Notes G. izzoni, Principles and Applications of lectrical ngineering Problem solutions, hapter 10 hapter 10 nstructor Notes hapter 10 introduces bipolar junction transistors. The material on transistors has

More information

DEPARTMENT OF ECE UNIT VII BIASING & STABILIZATION AMPLIFIER:

DEPARTMENT OF ECE UNIT VII BIASING & STABILIZATION AMPLIFIER: UNIT VII IASING & STAILIZATION AMPLIFIE: - A circuit that increases the amplitude of given signal is an amplifier - Small ac signal applied to an amplifier is obtained as large a.c. signal of same frequency

More information

PH 222-2C Fall Electromagnetic Oscillations and Alternating Current. Lectures 18-19

PH 222-2C Fall Electromagnetic Oscillations and Alternating Current. Lectures 18-19 H - Fall 0 Electroagnetic Oscillations and Alternating urrent ectures 8-9 hapter 3 (Halliday/esnick/Walker, Fundaentals of hysics 8 th edition) hapter 3 Electroagnetic Oscillations and Alternating urrent

More information

Reading. Lecture 28: Single Stage Frequency response. Lecture Outline. Context

Reading. Lecture 28: Single Stage Frequency response. Lecture Outline. Context Reading Lecure 28: Single Sage Frequency response Prof J. S. Sih Reading: We are discussing he frequency response of single sage aplifiers, which isn reaed in he ex unil afer uli-sae aplifiers (beginning

More information

AVOIDING PITFALLS IN MEASUREMENT UNCERTAINTY ANALYSIS

AVOIDING PITFALLS IN MEASUREMENT UNCERTAINTY ANALYSIS VOIDING ITFLLS IN ESREENT NERTINTY NLYSIS Benny R. Sith Inchwor Solutions Santa Rosa, Suary: itfalls, both subtle and obvious, await the new or casual practitioner of easureent uncertainty analysis. This

More information

Figure 1: MOSFET symbols.

Figure 1: MOSFET symbols. c Copyright 2008. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The MOSFET Device Symbols Whereas the JFET has a diode junction between

More information

Electronic Devices and Circuits Lecture 15 - Digital Circuits: Inverter Basics - Outline Announcements. = total current; I D

Electronic Devices and Circuits Lecture 15 - Digital Circuits: Inverter Basics - Outline Announcements. = total current; I D 6.012 - Electronic Devices and Circuits Lecture 15 - Digital Circuits: Inverter asics - Outline Announcements Handout - Lecture Outline and Summary The MOSFET alpha factor - use definition in lecture,

More information

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University NAME: PUID: SECTION: Circle one: Alam Lundstrom ECE 305 Exam 5 SOLUTIONS: April 18, 2016 M A Alam and MS Lundstrom Purdue University This is a closed book exam You may use a calculator and the formula

More information

IGBT Designer s Manual

IGBT Designer s Manual IGBT Designer s Manual Data Sheets The IGBT devices listed in this Designer s Manual represent International Rectifier s IGBT line as of August, 994. The data presented in this manual supersedes all previous

More information

Digital- or Logic Circuits. Outline Logic Circuits. Logic Voltage Levels. Binary Representation

Digital- or Logic Circuits. Outline Logic Circuits. Logic Voltage Levels. Binary Representation Outline Logic ircuits Introduction Logic Systems TTL MOS Logic Gates NOT, OR, N NOR, NN, XOR Implementation oolean lgebra ombinatorial ircuits Multipleer emultipleer rithmetic ircuits Simplifying Logic

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Oldham Fall 1999

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Oldham Fall 1999 UNIVERSITY OF CLIFORNI College of Engineering Department of Electrical Engineering and Computer Sciences Professor Oldham Fall 1999 EECS 40 FINL EXM 13 December 1999 Name: Last, First Student ID: T: Kusuma

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C45 ME C8 Introduction to MEMS Design Fall 007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 9470 Lecture 5: Output t

More information

Design of Sliding Mode Stabilizer for Wind Turbine Generator using Dynamic Compensation Observer Technique

Design of Sliding Mode Stabilizer for Wind Turbine Generator using Dynamic Compensation Observer Technique Proceedings of the 6th WSES International Conference on Power Systes, Lisbon, Portugal, Septeber -4, 6 84 Design of Sliding Mode Stabilizer for Wind urbine Generator using Dynaic Copensation Observer echnique

More information

(B) ' > 2 (A) ' < 2 (D) ' = 2 (C) > ' > 2. Page 1 of 6

(B) ' > 2 (A) ' < 2 (D) ' = 2 (C) > ' > 2.  Page 1 of 6 TEST-7 TOPIC: ELECTRONIC DEICES ND DUL NTURE OF MTTER Q.1 Lights of two different frequencies whose photons have energies 1e and.5 e respectively, successively illuinate a etal of work function.5 e. The

More information

EE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors

EE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors EE 330 Lecture 16 Devices in Semiconductor Processes MOS Transistors Review from Last Time Model Summary I D I V DS V S I B V BS = 0 0 VS VT W VDS ID = μcox VS VT VDS VS V VDS VS VT L T < W μc ( V V )

More information

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti Inverter with active load It is the simplest gain stage. The dc gain is given by the slope of the transfer characteristics. Small signal analysis C = C gs + C gs,ov C 2 = C gd + C gd,ov + C 3 = C db +

More information

Electronic Circuits Summary

Electronic Circuits Summary Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

More information

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS ) ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets

More information

8.1 Force Laws Hooke s Law

8.1 Force Laws Hooke s Law 8.1 Force Laws There are forces that don't change appreciably fro one instant to another, which we refer to as constant in tie, and forces that don't change appreciably fro one point to another, which

More information

Homework Assignment No. 1 - Solutions

Homework Assignment No. 1 - Solutions Homework Assignment o. 1 - Solutions Problem P1.7 This question is as easy as it looks, no tricks here. a. The delay from a to b is simply the delay of an inverter times the number of inverters which would

More information

Homework Assignment 09

Homework Assignment 09 Homework Assignment 09 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

Lecture 6 Power Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010

Lecture 6 Power Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010 EE4800 CMOS Digital IC Design & Analysis Lecture 6 Power Zhuo Feng 6.1 Outline Power and Energy Dynamic Power Static Power 6.2 Power and Energy Power is drawn from a voltage source attached to the V DD

More information

Notes for course EE1.1 Circuit Analysis TOPIC 10 2-PORT CIRCUITS

Notes for course EE1.1 Circuit Analysis TOPIC 10 2-PORT CIRCUITS Objectives: Introduction Notes for course EE1.1 Circuit Analysis 4-5 Re-examination of 1-port sub-circuits Admittance parameters for -port circuits TOPIC 1 -PORT CIRCUITS Gain and port impedance from -port

More information

The Measurement and Evaluation of Distribution Transformer Losses Under Non-Linear Loading

The Measurement and Evaluation of Distribution Transformer Losses Under Non-Linear Loading IEEE ower Engineering Society General Meeting, Denver CO, June 9, 4 / ESGM 4-7 e Measureent and Evaluation of Distribution ransforer Losses Under Non-Linear Loading Aleksandar Danjanovic,.D., Meber IEEE

More information

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power - Fall 2002 Lecture 7 MOS Capacitances Inverter Delay Power Announcements Wednesday 12-3pm lab cancelled Lab 4 this week Homework 2 due today at 5pm Homework 3 posted tonight Today s lecture MOS capacitances

More information