Analysis of Reaction Advection Diffusion Spectrum of Laminar Premixed Flames

Size: px
Start display at page:

Download "Analysis of Reaction Advection Diffusion Spectrum of Laminar Premixed Flames"

Transcription

1 Analysis of Reaction Advection Diffusion Spectrum of Laminar Premixed Flames Ashraf N. Al-Khateeb Joseph M. Powers DEPARTMENT OF AEROSPACE AND MECHANICAL ENGINEERING UNIVERSITY OF NOTRE DAME, NOTRE DAME, INDIANA 48 th AIAA Aerospace Science Meeting Orlando, Florida 6 January 2010

2 Thermodynamics Diffusion Diffusion For a continuous random walk in 2-D, a particle must make (1) steps to travel a distance d, where l is the mean free path. The time required is then (2) where is the sound speed. Defining a diffusion coefficient (3) yields (4) Diffusion Coefficient, Diffusion Equation, Eddy Diffusion, Effusion, Graham's Law of DIffusion length vs. reaction time: l = Dτ

3 Outline Introduction Simple one species reaction advection diffusion problem. Simple two species reaction diffusion problem. Laminar premixed hydrogen air flame. Summary

4 Introduction Motivation and background Combustion is often unsteady and spatially inhomogeneous. Most realistic reactive flow systems have multi-scale character. Severe stiffness, temporal and spatial, arises in detailed gasphase kinetics modeling. As the scales range widens, more stringent demands arise to assure the accuracy of the results. Proper numerical resolution of all scales is critical to draw correct conclusions and achieve a mathematically verified solution.

5 Segregation of chemical dynamics from transport dynamics is a prevalent notion in combustion modeling, e.g. operator splitting. However, reaction, advection, and diffusion scales are coupled in reactive flows. The interplay between chemistry and transport needs to be captured for accurate modeling. Spectral analysis is a tool to understand the coupling between transport and chemistry. All relevant scales have to be brought into simultaneous focus a priori for DNS.

6 General objective To identify the scales associated with each Fourier mode of a variety of wavelengths for unsteady spatially inhomogenous reactive flow problems. Particular objective To calculate the time scale spectrum of a one-dimensional atmospheric pressure hydrogen air system.

7 Model problem I A linear one species model for reaction, advection, and diffusion: ψ(x, t) ψ(x, t) + u = D 2 ψ(x, t) t x x 2 aψ(x, t), ψ ψ(0, t) = ψ u, x = 0, ψ(x, 0) = ψ u. x=l Time scale spectrum For the spatially homogenous version: ψ(t) = ψ u exp( at), τ = 1 a t < 1 a.

8 Length scale spectrum The steady structure: ( ) exp(µ 1 x) exp(µ 2 x) ψ s (x) = ψ u 1 µ 1 µ 2 exp(l(µ 1 µ 2 )) + exp(µ 2x), µ 1 = u 2D ( aD u 2 ), µ 2 = u 2D l i = 1. µ i ( aD u 2 ), For fast reaction (a >> u 2 /D): l 1 = l 2 = D a x < D a.

9 Spatio-temporal spectrum 1) continuous spectrum: ψ(x, t) = Ψ(t)e ıikx Ψ(t) = C exp ( ( a 1 + ıiku ) ) a + Dk2 t. a long wavelength: lim k 0 τ = lim λ τ = 1 a, short wavelength: lim τ = lim τ = λ2 1 k λ 0 4π 2 D, S t = ( ) 2 2π D. λ a Balance between reaction and diffusion at k 2π λ = a D = 1/l, Using Taylor expansion: τ = 1 a ( 1 D a ( ) λ 2 2π u 2 2a 2 ( λ 2π ) 2 ) + O ( ) 1. λ 4

10 10 8 1/a τ 10 9 τ [s] l = D/a = Dτ λ/(2π) [cm] Similar to H 2 air : τ 1/a = 10 8 s,d = 10 cm 2 /s, D l = = 3.2 a 10 4 cm.

11 2) Spatially discretized spectrum: ψ(x,t) ψ i (t), i = 1,...,N. Original boundary conditions: A dψ dt = B ψ (µa B) υ = 0. Dirichlet boundary condition modification: τ j = a + 2D(N+1)2 L 2 (1 1 u 1 2 L 2 4D 2 (N+1) cos 2 Effects of advection and diffusion: τ 1 1 a ( )), j = 1,..., N 2, jπ N 1 ( 1 D a(l/π) ) u 2 ad, For small N : lim x τ j 1/a, For large N : lim x 0 τ j L 2 (4D(N + 1) 2 ), S t = ( ) 2 2(N + 1) D. L a

12 Model problem II An uncoupled reaction-diffusion system with chemical stiffness: ψ i (x, t) t = D 2 ψ i (x, t) x 2 a i ψ i (x, t), ψ i (0, t) = ψ iu, ψ i x (L, t) = 0, ψ i(x, 0) = ψ iu. Time scale spectrum For the spatially homogenous version: ψ i (t) = ψ iu exp( a i t), τ i = 1 a i S t = a largest a smallest t < 1 a largest.

13 Length scale spectrum The steady structure: ψ is (x) = l i = D a i S t = Spatio-temporal spectrum ψ iu cosh L/ q D ai cosh alargest a smallest, x < ( L x q D ai ) D a largest. 1) Continuous spectrum: ) ψ i (x, t) = Ψ i (t)e ıikx Ψ i (t) = C exp ( a i (1 + Dk2 a i, ) t. 2) Discrete spectrum: " X ψ i = ψ is + A κ exp a i 1 + κ=1 (2κ 1)π 2L r! 2 #! D (2κ 1)π t sin 2L a i «x.

14 3) Spatially discretized spectrum: for a 1 = 10 4 s, a 2 = 10 2 s, D = 10 cm 2 /s, and L = 10 cm, modified wavelength: λ = 4L/(2n 1), associated length scale: l = λ/(2π) l = prediction from length scale spectrum: l i = D/a i, 2L (2n 1)π, τi [s] l1 = cm o o oooooooooooo o o o l2 = cm ooooooooooooo o o o o o o o o o o o o o o Analytical r Numerical o = 1/a 2 = 1/a oo oooo oooooooooooooo ooooooo λ/(2π) 1 [cm] 10

15 Prediction from length scale spectrum: l i = D/a i, τf undamental [s] l1 = cm l2 = cm L/π [cm] = 1/a 2 = 1/a 1

16 Laminar Premixed Hydrogen Air Flame N = 9 species,l = 3 atomic elements, and J = 19 reversible reactions, Y u = stoichiometric Hydrogen-Air: 2H 2 + (O N 2 ), T u = 800 K, p o = 1 atm, neglect Soret effect, Dufour effect, and body forces, CHEMKIN and IMSL are employed.

17 TIme evolution of the spatially homogenous version Y i t [s] H 2 O 2 H 2 O H O OH HO 2 H 2O N

18 Time scale spectrum S t O (10 4 ), t < τ fastest = s, τi [s] t [s] 10 2 = s = s

19 Fully resolved steady structure a 10 0 H 2 O 2 N 2 H O H HO 2 H 2 O 2 Y i OH O x [cm] a Al-Khateeb, Powers, and Paolucci, Communications in Computational Physics, to appear.

20 Length scale spectrum S x O (10 4 ), x < l finest = cm, 10 8 [cm] 10 4 i x [cm]

21 Spatio-temporal spectrum PDEs 2N + 2 PDAEs, A(z) z t + B(z) z x = f(z). Spatially homogeneous system at chemical equilibrium subjected to a spatially inhomogeneous perturbation, z = z z e, A e z t + Be z x = Je z. Spatially discretized spectrum, A e dz dt = (J e B e ) Z, A e and (J e B e ) are singular matrices.

22 L = 1 cm and D mix = 64 cm 2 /s, modified wavelength: λ = 4L/(2n 1), associated length scale: l = λ/(2π) l = 2L (2n 1)π, 10 4 = s τi [s] l s = D mix τ slowest λ/(2π) [cm] = s

23 l finest = cm, l f = D mix τ fastest = cm, l s = D mix τ slowest = cm, 10 4 = s τf undamental [s] lf ls = s L/π [cm]

24 Summary Time and length scales are coupled. Short wavelength modes are dominated by diffusion, and coarse wavelength modes have time scales dominated by reaction. For a resolved diffusive structure, Fourier modes of sufficiently fine wavelength must be considered so that their associated time scale is of similar magnitude to the fastest chemical time scale. For a p = 1 atm,h 2 +air laminar flame, the length scale where fast reaction balances diffusion is 2 µm; the associated fast time scale is 10 ns.

On Computing Reactive Flows Using Slow Manifolds

On Computing Reactive Flows Using Slow Manifolds On Computing Reactive Flows Using Slow Manifolds by S. Paolucci 1, J. M. Powers 2, and S. Singh 3 Department of Aerospace and Mechanical Engineering University of Notre Dame Notre Dame, Indiana 46556-5637,

More information

ON NUMERICAL RESOLUTION REQUIREMENTS IN COMBUSTION MODELING

ON NUMERICAL RESOLUTION REQUIREMENTS IN COMBUSTION MODELING Proceedings of IMECE2007 2007 ASME International Mechanical Engineering Congress and Exposition November 11-15, 2007, Seattle, Washington, USA DRAFT IMECE2007-42984 N NUMERICAL RESLUTIN REQUIREMENTS IN

More information

The Dynamics of Detonation with WENO and Navier-Stokes Shock-Capturing

The Dynamics of Detonation with WENO and Navier-Stokes Shock-Capturing The Dynamics of Detonation with WENO and Navier-Stokes Shock-Capturing Christopher M. Romick, University of Notre Dame, Notre Dame, IN Tariq D. Aslam, Los Alamos National Laboratory, Los Alamos, NM and

More information

Verified Calculation of Nonlinear Dynamics of Viscous Detonation

Verified Calculation of Nonlinear Dynamics of Viscous Detonation Verified Calculation of Nonlinear Dynamics of Viscous Detonation Christopher M. Romick, University of Notre Dame, Notre Dame, IN Tariq D. Aslam, Los Alamos National Laboratory, Los Alamos, NM and Joseph

More information

Turbulence: Basic Physics and Engineering Modeling

Turbulence: Basic Physics and Engineering Modeling DEPARTMENT OF ENERGETICS Turbulence: Basic Physics and Engineering Modeling Numerical Heat Transfer Pietro Asinari, PhD Spring 2007, TOP UIC Program: The Master of Science Degree of the University of Illinois

More information

FINE SCALE PHENOMENA IN REACTING SYSTEMS: IDENTIFICATION AND ANALYSIS FOR THEIR REDUCTION. A Dissertation. Submitted to the Graduate School

FINE SCALE PHENOMENA IN REACTING SYSTEMS: IDENTIFICATION AND ANALYSIS FOR THEIR REDUCTION. A Dissertation. Submitted to the Graduate School FINE SCALE PHENOMENA IN REACTING SYSTEMS: IDENTIFICATION AND ANALYSIS FOR THEIR REDUCTION A Dissertation Submitted to the Graduate School of the University of Notre Dame in Partial Fulfillment of the Requirements

More information

Verified Computations of Laminar Premixed Flames

Verified Computations of Laminar Premixed Flames 45th AIAA Aerospace Science Meeting and Exhibit, 8-11 January 2007, Reno, Nevada 2007-0381 Verified Computations of Laminar Premixed Flames Ashraf N. Al-Khateeb, Joseph M. Powers, and Samuel Paolucci University

More information

Computational Analysis of an Imploding Gas:

Computational Analysis of an Imploding Gas: 1/ 31 Direct Numerical Simulation of Navier-Stokes Equations Stephen Voelkel University of Notre Dame October 19, 2011 2/ 31 Acknowledges Christopher M. Romick, Ph.D. Student, U. Notre Dame Dr. Joseph

More information

Numerical Modeling of Laminar, Reactive Flows with Detailed Kinetic Mechanisms

Numerical Modeling of Laminar, Reactive Flows with Detailed Kinetic Mechanisms Department of Chemistry, Materials, and Chemical Engineering G. Natta Politecnico di Milano (Italy) A. Cuoci, A. Frassoldati, T. Faravelli and E. Ranzi Numerical Modeling of Laminar, Reactive Flows with

More information

Insights into Model Assumptions and Road to Model Validation for Turbulent Combustion

Insights into Model Assumptions and Road to Model Validation for Turbulent Combustion Insights into Model Assumptions and Road to Model Validation for Turbulent Combustion Venke Sankaran AFRL/RQR 2015 AFRL/RQR Basic Research Review UCLA Jan 20, 2015 AFTC PA Release# 15011, 16 Jan 2015 Goals

More information

Ms. Sally Richards, Co-op Program Manager Embry-Riddle Aeronautical University, Daytona Beach, Florida

Ms. Sally Richards, Co-op Program Manager Embry-Riddle Aeronautical University, Daytona Beach, Florida To: From: Ms. Sally Richards, Co-op Program Manager Embry-Riddle Aeronautical University, Daytona Beach, Florida 32114-3900 Gianluca Puliti, Research Assistant - Aerospace and Mechanical Engineering University

More information

On slow manifolds of chemically reactive systems

On slow manifolds of chemically reactive systems JOURNAL OF CHEMICAL PHYSICS VOLUME 117, NUMBER 4 JULY 00 On slow manifolds of chemically reactive systems Sandeep Singh, a) Joseph M. Powers, b) and Samuel Paolucci c) Department of Aerospace and Mechanical

More information

(1) Transition from one to another laminar flow. (a) Thermal instability: Bernard Problem

(1) Transition from one to another laminar flow. (a) Thermal instability: Bernard Problem Professor Fred Stern Fall 2014 1 Chapter 6: Viscous Flow in Ducts 6.2 Stability and Transition Stability: can a physical state withstand a disturbance and still return to its original state. In fluid mechanics,

More information

Verification and validation of detonation simulation

Verification and validation of detonation simulation Verification and validation of detonation simulation Joseph M. Powers Department of Aerospace and Mechanical Engineering Department of Applied and Computational Mathematics and Statistics University of

More information

Laminar Premixed Flames: Flame Structure

Laminar Premixed Flames: Flame Structure Laminar Premixed Flames: Flame Structure Combustion Summer School 2018 Prof. Dr.-Ing. Heinz Pitsch Course Overview Part I: Fundamentals and Laminar Flames Introduction Fundamentals and mass balances of

More information

Predicting NO Formation with Flamelet Generated Manifolds

Predicting NO Formation with Flamelet Generated Manifolds Predicting NO Formation with Flamelet Generated Manifolds J. A. van Oijen and L. P. H. de Goey Dept. Mechanical Engineering, Technische Universiteit Eindhoven P.O. Box, 6 MB Eindhoven, The Netherlands

More information

Exercises in Combustion Technology

Exercises in Combustion Technology Exercises in Combustion Technology Exercise 4: Turbulent Premixed Flames Turbulent Flow: Task 1: Estimation of Turbulence Quantities Borghi-Peters diagram for premixed combustion Task 2: Derivation of

More information

Mauro Valorani Dipartimento di Meccanica e Aeronautica, University of Rome

Mauro Valorani Dipartimento di Meccanica e Aeronautica, University of Rome Classification of ignition regimes in thermally stratified n-heptane-air air mixtures using computational singular perturbation Saurabh Gupta, Hong G. Im Department of Mechanical Engineering, University

More information

Advanced Multi-Scale Methods for Hypersonic Propulsion

Advanced Multi-Scale Methods for Hypersonic Propulsion Advanced Multi-Scale Methods for Hypersonic Propulsion By J. M. Powers, D. Wirasaet and S. Paolucci Aerospace and Mechanical Engineering University of Notre Dame, Indiana 46556 NASA Hypersonics NRA Review,

More information

Optimizing calculation costs of tubulent flows with RANS/LES methods

Optimizing calculation costs of tubulent flows with RANS/LES methods Optimizing calculation costs of tubulent flows with RANS/LES methods Investigation in separated flows C. Friess, R. Manceau Dpt. Fluid Flow, Heat Transfer, Combustion Institute PPrime, CNRS University

More information

How to use CHEMKIN. 1. To open a Chemkin Window. 1) logon Athena. 2) At the Athena prompt, type athena % add chemkin athena % chemkin

How to use CHEMKIN. 1. To open a Chemkin Window. 1) logon Athena. 2) At the Athena prompt, type athena % add chemkin athena % chemkin 1. To open a Chemkin Window 1) logon Athena How to use CHEMKIN 2) At the Athena prompt, type athena % add chemkin athena % chemkin 3) The following Chemkin window will pop up. Figure 1 Chemkin window 4)

More information

Lecture 6 Asymptotic Structure for Four-Step Premixed Stoichiometric Methane Flames

Lecture 6 Asymptotic Structure for Four-Step Premixed Stoichiometric Methane Flames Lecture 6 Asymptotic Structure for Four-Step Premixed Stoichiometric Methane Flames 6.-1 Previous lecture: Asymptotic description of premixed flames based on an assumed one-step reaction. basic understanding

More information

ADVANCED DES SIMULATIONS OF OXY-GAS BURNER LOCATED INTO MODEL OF REAL MELTING CHAMBER

ADVANCED DES SIMULATIONS OF OXY-GAS BURNER LOCATED INTO MODEL OF REAL MELTING CHAMBER ADVANCED DES SIMULATIONS OF OXY-GAS BURNER LOCATED INTO MODEL OF REAL MELTING CHAMBER Ing. Vojtech Betak Ph.D. Aerospace Research and Test Establishment Department of Engines Prague, Czech Republic Abstract

More information

Diffusive Transport Enhanced by Thermal Velocity Fluctuations

Diffusive Transport Enhanced by Thermal Velocity Fluctuations Diffusive Transport Enhanced by Thermal Velocity Fluctuations Aleksandar Donev 1 Courant Institute, New York University & Alejandro L. Garcia, San Jose State University John B. Bell, Lawrence Berkeley

More information

Turbulence Modeling I!

Turbulence Modeling I! Outline! Turbulence Modeling I! Grétar Tryggvason! Spring 2010! Why turbulence modeling! Reynolds Averaged Numerical Simulations! Zero and One equation models! Two equations models! Model predictions!

More information

Sound Waves Sound Waves:

Sound Waves Sound Waves: 3//18 Sound Waves Sound Waves: 1 3//18 Sound Waves Linear Waves compression rarefaction Inference of Sound Wave equation: Sound Waves We look at small disturbances in a compressible medium (note: compressible

More information

Slow Modulation & Large-Time Dynamics Near Periodic Waves

Slow Modulation & Large-Time Dynamics Near Periodic Waves Slow Modulation & Large-Time Dynamics Near Periodic Waves Miguel Rodrigues IRMAR Université Rennes 1 France SIAG-APDE Prize Lecture Jointly with Mathew Johnson (Kansas), Pascal Noble (INSA Toulouse), Kevin

More information

ESCI 485 Air/sea Interaction Lesson 2 Turbulence Dr. DeCaria

ESCI 485 Air/sea Interaction Lesson 2 Turbulence Dr. DeCaria ESCI 485 Air/sea Interaction Lesson Turbulence Dr. DeCaria References: Air-sea Interaction: Laws and Mechanisms, Csanady An Introduction to Dynamic Meteorology ( rd edition), J.R. Holton An Introduction

More information

2D Direct Numerical Simulation of methane/air turbulent premixed flames under high turbulence intensity Julien Savre 04/13/2011

2D Direct Numerical Simulation of methane/air turbulent premixed flames under high turbulence intensity Julien Savre 04/13/2011 1 2D Direct Numerical Simulation of methane/air turbulent premixed flames under high turbulence intensity Julien Savre 04/13/2011 2 Outline Why studying turbulent premixed flames under high turbulent intensity?

More information

fluctuations based on the resolved mean flow

fluctuations based on the resolved mean flow Temperature Fluctuation Scaling in Reacting Boundary Layers M. Pino Martín CTR/NASA Ames, Moffett Field, CA 94035 Graham V. Candler Aerospace Engineering and Mechanics University of Minnesota, Minneapolis,

More information

Numerical Methods for Problems with Moving Fronts Orthogonal Collocation on Finite Elements

Numerical Methods for Problems with Moving Fronts Orthogonal Collocation on Finite Elements Electronic Text Provided with the Book Numerical Methods for Problems with Moving Fronts by Bruce A. Finlayson Ravenna Park Publishing, Inc., 635 22nd Ave. N. E., Seattle, WA 985-699 26-524-3375; ravenna@halcyon.com;www.halcyon.com/ravenna

More information

UQ in Reacting Flows

UQ in Reacting Flows UQ in Reacting Flows Planetary Entry Simulations High-Temperature Reactive Flow During descent in the atmosphere vehicles experience extreme heating loads The design of the thermal protection system (TPS)

More information

Modeling of Wall Heat Transfer and Flame/Wall Interaction A Flamelet Model with Heat-Loss Effects

Modeling of Wall Heat Transfer and Flame/Wall Interaction A Flamelet Model with Heat-Loss Effects 9 th U. S. National Combustion Meeting Organized by the Central States Section of the Combustion Institute May 17-20, 2015 Cincinnati, Ohio Modeling of Wall Heat Transfer and Flame/Wall Interaction A Flamelet

More information

Splitting methods with boundary corrections

Splitting methods with boundary corrections Splitting methods with boundary corrections Alexander Ostermann University of Innsbruck, Austria Joint work with Lukas Einkemmer Verona, April/May 2017 Strang s paper, SIAM J. Numer. Anal., 1968 S (5)

More information

Water-vegetation interactions in a sea of water: Plankton in mesoscale turbulence

Water-vegetation interactions in a sea of water: Plankton in mesoscale turbulence Water-vegetation interactions in a sea of water: Plankton in mesoscale turbulence A. Provenzale ISAC-CNR, Torino and CIMA, Savona, Italy Work done with: Annalisa Bracco, Claudia Pasquero Adrian Martin,

More information

Regularization modeling of turbulent mixing; sweeping the scales

Regularization modeling of turbulent mixing; sweeping the scales Regularization modeling of turbulent mixing; sweeping the scales Bernard J. Geurts Multiscale Modeling and Simulation (Twente) Anisotropic Turbulence (Eindhoven) D 2 HFest, July 22-28, 2007 Turbulence

More information

On two fractional step finite volume and finite element schemes for reactive low Mach number flows

On two fractional step finite volume and finite element schemes for reactive low Mach number flows Fourth International Symposium on Finite Volumes for Complex Applications - Problems and Perspectives - July 4-8, 2005 / Marrakech, Morocco On two fractional step finite volume and finite element schemes

More information

DAMPING MODELLING AND IDENTIFICATION USING GENERALIZED PROPORTIONAL DAMPING

DAMPING MODELLING AND IDENTIFICATION USING GENERALIZED PROPORTIONAL DAMPING DAMPING MODELLING AND IDENTIFICATION USING GENERALIZED PROPORTIONAL DAMPING S. Adhikari Department of Aerospace Engineering, University of Bristol, Queens Building, University Walk, Bristol BS8 1TR (U.K.)

More information

Liquid-Rocket Transverse Triggered Combustion Instability: Deterministic and Stochastic Analyses

Liquid-Rocket Transverse Triggered Combustion Instability: Deterministic and Stochastic Analyses Liquid-Rocket Transverse Triggered Combustion Instability: Deterministic and Stochastic Analyses by W. A. Sirignano Mechanical and Aerospace Engineering University of California, Irvine Collaborators:

More information

17 Source Problems for Heat and Wave IB- VPs

17 Source Problems for Heat and Wave IB- VPs 17 Source Problems for Heat and Wave IB- VPs We have mostly dealt with homogeneous equations, homogeneous b.c.s in this course so far. Recall that if we have non-homogeneous b.c.s, then we want to first

More information

PLEASE SCROLL DOWN FOR ARTICLE

PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [Massachusetts Inst of Tech] On: 19 February 2009 Access details: Access Details: [subscription number 789277698] Publisher Taylor & Francis Informa Ltd Registered in England

More information

Thermodynamic and Stochiometric Principles in Materials Balance

Thermodynamic and Stochiometric Principles in Materials Balance Thermodynamic and Stochiometric Principles in Materials Balance Typical metallurgical engineering problems based on materials and energy balance NiO is reduced in an open atmosphere furnace by excess carbon

More information

Lecture 2. Chemical Kinetics. Chemical Kinetics 6/26/11. One (elementary) step reaction

Lecture 2. Chemical Kinetics. Chemical Kinetics 6/26/11. One (elementary) step reaction Lecture Chemical Kinetics 1 One (elementary) step reaction im i i M i is the number of species i, i are the stoichiometric coefficients i i Chemical Kinetics =0ifi is not a reactant =0ifi is not a product

More information

Propagation and quenching in a reactive Burgers-Boussinesq system.

Propagation and quenching in a reactive Burgers-Boussinesq system. Propagation and quenching in a reactive system., University of New Meico, Los Alamos National Laboratory, University of Chicago October 28 Between Math and Astrophysics Motivation The model Reaction Compression

More information

Lecture 8 Laminar Diffusion Flames: Diffusion Flamelet Theory

Lecture 8 Laminar Diffusion Flames: Diffusion Flamelet Theory Lecture 8 Laminar Diffusion Flames: Diffusion Flamelet Theory 8.-1 Systems, where fuel and oxidizer enter separately into the combustion chamber. Mixing takes place by convection and diffusion. Only where

More information

Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models

Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1, Christian Ratsch 1,2, David Shao 1 and Dimitri Vvedensky 3 1 UCLA,

More information

Physical Diffusion Cures the Carbuncle Phenomenon

Physical Diffusion Cures the Carbuncle Phenomenon Physical Diffusion Cures the Carbuncle Phenomenon J. M. Powers 1, J. Bruns 1, A. Jemcov 1 1 Department of Aerospace and Mechanical Engineering University of Notre Dame, USA Fifty-Third AIAA Aerospace Sciences

More information

Modeling flame brush thickness in premixed turbulent combustion

Modeling flame brush thickness in premixed turbulent combustion Center for Turbulence Research Proceedings of the Summer Program 2006 299 Modeling flame brush thickness in premixed turbulent combustion By E. Knudsen, O. Kurenkov, S. Kim, M. Oberlack AND H. Pitsch Turbulent

More information

Practice Problems For Test 3

Practice Problems For Test 3 Practice Problems For Test 3 Power Series Preliminary Material. Find the interval of convergence of the following. Be sure to determine the convergence at the endpoints. (a) ( ) k (x ) k (x 3) k= k (b)

More information

Fluid Dynamics and Balance Equations for Reacting Flows

Fluid Dynamics and Balance Equations for Reacting Flows Fluid Dynamics and Balance Equations for Reacting Flows Combustion Summer School 2018 Prof. Dr.-Ing. Heinz Pitsch Balance Equations Basics: equations of continuum mechanics balance equations for mass and

More information

Spatial and Temporal Averaging in Combustion Chambers

Spatial and Temporal Averaging in Combustion Chambers Spatial and Temporal Averaging in Combustion Chambers F.E.C. Culick California Institute of Technology 18 January, 2010 Combustion Workshop IIT Chennai ReferenceRTO 039 1 I Introduction II Chief Mechanisms

More information

Improvement of Reduced Order Modeling based on Proper Orthogonal Decomposition

Improvement of Reduced Order Modeling based on Proper Orthogonal Decomposition ICCFD5, Seoul, Korea, July 7-11, 28 p. 1 Improvement of Reduced Order Modeling based on Proper Orthogonal Decomposition Michel Bergmann, Charles-Henri Bruneau & Angelo Iollo Michel.Bergmann@inria.fr http://www.math.u-bordeaux.fr/

More information

2. Conservation Equations for Turbulent Flows

2. Conservation Equations for Turbulent Flows 2. Conservation Equations for Turbulent Flows Coverage of this section: Review of Tensor Notation Review of Navier-Stokes Equations for Incompressible and Compressible Flows Reynolds & Favre Averaging

More information

2.3. Quantitative Properties of Finite Difference Schemes. Reading: Tannehill et al. Sections and

2.3. Quantitative Properties of Finite Difference Schemes. Reading: Tannehill et al. Sections and 3 Quantitative Properties of Finite Difference Schemes 31 Consistency, Convergence and Stability of FD schemes Reading: Tannehill et al Sections 333 and 334 Three important properties of FD schemes: Consistency

More information

Towards regime identification and appropriate chemistry tabulation for computation of autoigniting turbulent reacting flows

Towards regime identification and appropriate chemistry tabulation for computation of autoigniting turbulent reacting flows Center for Turbulence Research Annual Research Briefs 009 199 Towards regime identification and appropriate chemistry tabulation for computation of autoigniting turbulent reacting flows By M. Kostka, E.

More information

Thermal NO Predictions in Glass Furnaces: A Subgrid Scale Validation Study

Thermal NO Predictions in Glass Furnaces: A Subgrid Scale Validation Study Feb 12 th 2004 Thermal NO Predictions in Glass Furnaces: A Subgrid Scale Validation Study Padmabhushana R. Desam & Prof. Philip J. Smith CRSIM, University of Utah Salt lake city, UT-84112 18 th Annual

More information

Turbulence and its modelling. Outline. Department of Fluid Mechanics, Budapest University of Technology and Economics.

Turbulence and its modelling. Outline. Department of Fluid Mechanics, Budapest University of Technology and Economics. Outline Department of Fluid Mechanics, Budapest University of Technology and Economics October 2009 Outline Outline Definition and Properties of Properties High Re number Disordered, chaotic 3D phenomena

More information

Diffusion - The Heat Equation

Diffusion - The Heat Equation Chapter 6 Diffusion - The Heat Equation 6.1 Goal Understand how to model a simple diffusion process and apply it to derive the heat equation in one dimension. We begin with the fundamental conservation

More information

A proof for the full Fourier series on [ π, π] is given here.

A proof for the full Fourier series on [ π, π] is given here. niform convergence of Fourier series A smooth function on an interval [a, b] may be represented by a full, sine, or cosine Fourier series, and pointwise convergence can be achieved, except possibly at

More information

Direct Modeling for Computational Fluid Dynamics

Direct Modeling for Computational Fluid Dynamics Direct Modeling for Computational Fluid Dynamics Kun Xu February 20, 2013 Computational fluid dynamics (CFD) is new emerging scientific discipline, and targets to simulate fluid motion in different scales.

More information

DNS of auto ignition in turbulent diffusion H 2 /air

DNS of auto ignition in turbulent diffusion H 2 /air 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition 5-8 January 2009, Orlando, Florida AIAA 2009-240 DNS of auto ignition in turbulent diffusion H 2 /air flames

More information

School of Aerospace Engineering. Course Outline

School of Aerospace Engineering. Course Outline Course Outline A) Introduction and Outlook B) Flame Aerodynamics and Flashback C) Flame Stretch, Edge Flames, and Flame Stabilization Concepts D) Disturbance Propagation and Generation in Reacting Flows

More information

Averaging vs Chaos in Turbulent Transport?

Averaging vs Chaos in Turbulent Transport? Averaging vs Chaos in Turbulent Transport? Houman Owhadi owhadi@caltech.edu CALTECH, Applied and Computational Mathematics, Control and Dynamical Systems. Averaging vs Chaos in Turbulent Transport? p.

More information

Lecture 15. The Turbulent Burning Velocity

Lecture 15. The Turbulent Burning Velocity Lecture 15 The Turbulent Burning Velocity 1 The turbulent burning velocity is defined as the average rate of propagation of the flame through the turbulent premixed gas mixture. In the laminar case, solutions

More information

Development of One-Step Chemistry Models for Flame and Ignition Simulation

Development of One-Step Chemistry Models for Flame and Ignition Simulation Development of One-Step Chemistry Models for Flame and Ignition Simulation S.P.M. Bane, J.L. Ziegler, and J.E. Shepherd Graduate Aerospace Laboratories California Institute of Technology Pasadena, CA 91125

More information

NUMERICAL SIMULATION OF HYDROGEN COMBUSTION. Jan-patrice SIMONEAU, FRAMATOME - FRANCE

NUMERICAL SIMULATION OF HYDROGEN COMBUSTION. Jan-patrice SIMONEAU, FRAMATOME - FRANCE FR0200503 NUMERICAL SIMULATION OF HYDROGEN COMBUSTION Jan-patrice SIMONEAU, FRAMATOME - FRANCE Novatome - 10, rue Juliette Recamier- F 69456 LYON cedexo6 - France Ph : +33 4 72 74 73 75 - Facs : +33 4

More information

Elliptic relaxation for near wall turbulence models

Elliptic relaxation for near wall turbulence models Elliptic relaxation for near wall turbulence models J.C. Uribe University of Manchester School of Mechanical, Aerospace & Civil Engineering Elliptic relaxation for near wall turbulence models p. 1/22 Outline

More information

Lecture 19: Heat conduction with distributed sources/sinks

Lecture 19: Heat conduction with distributed sources/sinks Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without explicit written permission from the copyright owner. 1 ecture 19: Heat conduction

More information

CME 345: MODEL REDUCTION

CME 345: MODEL REDUCTION CME 345: MODEL REDUCTION Proper Orthogonal Decomposition (POD) Charbel Farhat & David Amsallem Stanford University cfarhat@stanford.edu 1 / 43 Outline 1 Time-continuous Formulation 2 Method of Snapshots

More information

The Euler Equation of Gas-Dynamics

The Euler Equation of Gas-Dynamics The Euler Equation of Gas-Dynamics A. Mignone October 24, 217 In this lecture we study some properties of the Euler equations of gasdynamics, + (u) = ( ) u + u u + p = a p + u p + γp u = where, p and u

More information

Department of Mechanical Engineering BM 7103 FUELS AND COMBUSTION QUESTION BANK UNIT-1-FUELS

Department of Mechanical Engineering BM 7103 FUELS AND COMBUSTION QUESTION BANK UNIT-1-FUELS Department of Mechanical Engineering BM 7103 FUELS AND COMBUSTION QUESTION BANK UNIT-1-FUELS 1. Define the term fuels. 2. What are fossil fuels? Give examples. 3. Define primary fuels. Give examples. 4.

More information

Time-dependent variational forms

Time-dependent variational forms Time-dependent variational forms Hans Petter Langtangen 1,2 1 Center for Biomedical Computing, Simula Research Laboratory 2 Department of Informatics, University of Oslo Oct 30, 2015 PRELIMINARY VERSION

More information

Mathematical Methods and its Applications (Solution of assignment-12) Solution 1 From the definition of Fourier transforms, we have.

Mathematical Methods and its Applications (Solution of assignment-12) Solution 1 From the definition of Fourier transforms, we have. For 2 weeks course only Mathematical Methods and its Applications (Solution of assignment-2 Solution From the definition of Fourier transforms, we have F e at2 e at2 e it dt e at2 +(it/a dt ( setting (

More information

Large deviations and averaging for systems of slow fast stochastic reaction diffusion equations.

Large deviations and averaging for systems of slow fast stochastic reaction diffusion equations. Large deviations and averaging for systems of slow fast stochastic reaction diffusion equations. Wenqing Hu. 1 (Joint work with Michael Salins 2, Konstantinos Spiliopoulos 3.) 1. Department of Mathematics

More information

Analysis for Steady Propagation of a Generic Ram Accelerator/ Oblique Detonation Wave Engine Configuration

Analysis for Steady Propagation of a Generic Ram Accelerator/ Oblique Detonation Wave Engine Configuration Analysis for Steady Propagation of a Generic Ram Accelerator/ Oblique Detonation Wave Engine Configuration J.M. Powers1, D.R. Fulton2, K.A. Gonthier3, and M.J. Grismer4 Department of Aerospace and Mechanical

More information

In recent years there has been great interest in computations of complex multi-scale physical phenomena. In

In recent years there has been great interest in computations of complex multi-scale physical phenomena. In 43rd AIAA Aerospace Sciences Meeting and Exhibit, 10-13 January 2005, Reno, Nevada Accurate Estimates of Fine Scale Reaction Zone Thicknesses in Gas Phase Detonations Joseph M. Powers and Samuel Paolucci

More information

Algebraic Turbulence-Chemistry Interaction Model

Algebraic Turbulence-Chemistry Interaction Model 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 09-12 January 2012, Nashville, Tennessee AIAA 2012-0183 50th AIAA Aerospace Sciences Meeting, January 9-12,

More information

MATH 23 Exam 2 Review Solutions

MATH 23 Exam 2 Review Solutions MATH 23 Exam 2 Review Solutions Problem 1. Use the method of reduction of order to find a second solution of the given differential equation x 2 y (x 0.1875)y = 0, x > 0, y 1 (x) = x 1/4 e 2 x Solution

More information

Application of a Laser Induced Fluorescence Model to the Numerical Simulation of Detonation Waves in Hydrogen-Oxygen-Diluent Mixtures

Application of a Laser Induced Fluorescence Model to the Numerical Simulation of Detonation Waves in Hydrogen-Oxygen-Diluent Mixtures Supplemental material for paper published in the International J of Hydrogen Energy, Vol. 30, 6044-6060, 2014. http://dx.doi.org/10.1016/j.ijhydene.2014.01.182 Application of a Laser Induced Fluorescence

More information

Examination of the effect of differential molecular diffusion in DNS of turbulent non-premixed flames

Examination of the effect of differential molecular diffusion in DNS of turbulent non-premixed flames Examination of the effect of differential molecular diffusion in DNS of turbulent non-premixed flames Chao Han a, David O. Lignell b, Evatt R. Hawkes c, Jacqueline H. Chen d, Haifeng Wang a, a School of

More information

Superparameterization and Dynamic Stochastic Superresolution (DSS) for Filtering Sparse Geophysical Flows

Superparameterization and Dynamic Stochastic Superresolution (DSS) for Filtering Sparse Geophysical Flows Superparameterization and Dynamic Stochastic Superresolution (DSS) for Filtering Sparse Geophysical Flows June 2013 Outline 1 Filtering Filtering: obtaining the best statistical estimation of a nature

More information

Pulse propagation in random waveguides with turning points and application to imaging

Pulse propagation in random waveguides with turning points and application to imaging Pulse propagation in random waveguides with turning points and application to imaging Liliana Borcea Mathematics, University of Michigan, Ann Arbor and Josselin Garnier Centre de Mathématiques Appliquées,

More information

Modeling ion and electron profiles in methane-oxygen counterflow diffusion flames

Modeling ion and electron profiles in methane-oxygen counterflow diffusion flames Abstract 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 2013 Modeling ion and electron profiles

More information

Practice Problems For Test 3

Practice Problems For Test 3 Practice Problems For Test 3 Power Series Preliminary Material. Find the interval of convergence of the following. Be sure to determine the convergence at the endpoints. (a) ( ) k (x ) k (x 3) k= k (b)

More information

Analyse 3 NA, FINAL EXAM. * Monday, January 8, 2018, *

Analyse 3 NA, FINAL EXAM. * Monday, January 8, 2018, * Analyse 3 NA, FINAL EXAM * Monday, January 8, 08, 4.00 7.00 * Motivate each answer with a computation or explanation. The maximum amount of points for this exam is 00. No calculators!. (Holomorphic functions)

More information

High-Order Multi-Implicit Spectral Deferred Correction Methods for Problems of Reactive Flow

High-Order Multi-Implicit Spectral Deferred Correction Methods for Problems of Reactive Flow High-Order Multi-Implicit Spectral Deferred Correction Methods for Problems of Reactive Flow Anne Bourlioux Département de Mathématiques et Statistique, Université de Montréal, CP 6128 succ. Centre-Ville,

More information

Computational Fluid Dynamics 2

Computational Fluid Dynamics 2 Seite 1 Introduction Computational Fluid Dynamics 11.07.2016 Computational Fluid Dynamics 2 Turbulence effects and Particle transport Martin Pietsch Computational Biomechanics Summer Term 2016 Seite 2

More information

This paper is part of the following report: UNCLASSIFIED

This paper is part of the following report: UNCLASSIFIED UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP023624 TITLE: Ignition Kinetics in Fuels Oxidation DISTRIBUTION: Approved for public release, distribution unlimited This paper

More information

Towards low-order models of turbulence

Towards low-order models of turbulence Towards low-order models of turbulence Turbulence in Engineering Applications Long Programme in Mathematics of Turbulence IPAM, UCLA Ati Sharma Beverley McKeon + Rashad Moarref + Paco Gomez Ashley Willis

More information

An efficient homomtopy-based Poincaré-Lindstedt method for the periodic steady-state analysis of nonlinear autonomous oscillators

An efficient homomtopy-based Poincaré-Lindstedt method for the periodic steady-state analysis of nonlinear autonomous oscillators An efficient homomtopy-based Poincaré-Lindstedt method for the periodic steady-state analysis of nonlinear autonomous oscillators Zhongming Chen, Kim Batselier, Haotian Liu, Ngai Wong The University of

More information

Perturbation theory for the defocusing nonlinear Schrödinger equation

Perturbation theory for the defocusing nonlinear Schrödinger equation Perturbation theory for the defocusing nonlinear Schrödinger equation Theodoros P. Horikis University of Ioannina In collaboration with: M. J. Ablowitz, S. D. Nixon and D. J. Frantzeskakis Outline What

More information

The reaction whose rate constant we are to find is the forward reaction in the following equilibrium. NH + 4 (aq) + OH (aq) K b.

The reaction whose rate constant we are to find is the forward reaction in the following equilibrium. NH + 4 (aq) + OH (aq) K b. THE RATES OF CHEMICAL REACTIONS 425 E22.3a The reaction for which pk a is 9.25 is NH + 4 aq + H 2Ol NH 3 aq + H 3 O + aq. The reaction whose rate constant we are to find is the forward reaction in the

More information

Asymptotic Structure of Rich Methane-Air Flames

Asymptotic Structure of Rich Methane-Air Flames Asymptotic Structure of Rich Methane-Air Flames K. SESHADRI* Center for Energy and Combustion Research, Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla,

More information

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder.

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder. Lent 29 COMPLEX METHODS G. Taylor A star means optional and not necessarily harder. Conformal maps. (i) Let f(z) = az + b, with ad bc. Where in C is f conformal? cz + d (ii) Let f(z) = z +. What are the

More information

Investigation of ignition dynamics in a H2/air mixing layer with an embedded vortex

Investigation of ignition dynamics in a H2/air mixing layer with an embedded vortex Paper # 070LT-0211 The 8th US National Meeting of the Combustion Institute, Park City, UT, May 19-22, 2013 Investigation of ignition dynamics in a H2/air mixing layer with an embedded vortex S.K. Menon

More information

Hydrodynamic Limit with Geometric Correction in Kinetic Equations

Hydrodynamic Limit with Geometric Correction in Kinetic Equations Hydrodynamic Limit with Geometric Correction in Kinetic Equations Lei Wu and Yan Guo KI-Net Workshop, CSCAMM University of Maryland, College Park 2015-11-10 1 Simple Model - Neutron Transport Equation

More information

Simulating the combustion of gaseous fuels 6th OpenFoam Workshop Training Session. Dominik Christ

Simulating the combustion of gaseous fuels 6th OpenFoam Workshop Training Session. Dominik Christ Simulating the combustion of gaseous fuels 6th OpenFoam Workshop Training Session Dominik Christ This presentation shows how to use OpenFoam to simulate gas phase combustion Overview Theory Tutorial case

More information

There are no simple turbulent flows

There are no simple turbulent flows Turbulence 1 There are no simple turbulent flows Turbulent boundary layer: Instantaneous velocity field (snapshot) Ref: Prof. M. Gad-el-Hak, University of Notre Dame Prediction of turbulent flows standard

More information

Best Practice Guidelines for Combustion Modeling. Raphael David A. Bacchi, ESSS

Best Practice Guidelines for Combustion Modeling. Raphael David A. Bacchi, ESSS Best Practice Guidelines for Combustion Modeling Raphael David A. Bacchi, ESSS PRESENTATION TOPICS Introduction; Combustion Phenomenology; Combustion Modeling; Reaction Mechanism; Radiation; Case Studies;

More information

Introduction to laser-based combustion diagnostics

Introduction to laser-based combustion diagnostics Introduction to laser-based combustion diagnostics (Lecture 1b) Lecture prepared for course in laser-based combustion diagnostics by Per-Erik Bengtsson and Joakim Bood Division of Combustion Physics at

More information