Direct-Drive, High-Convergence-Ratio Implosion Studies on the OMEGA Laser System

Size: px
Start display at page:

Download "Direct-Drive, High-Convergence-Ratio Implosion Studies on the OMEGA Laser System"

Transcription

1 Direct-Drive, High-Convergence-Ratio Implosion Studies on the OMEGA Laser System F. J. Marshall, J. A. Delettrez, R. Epstein, V. Yu. Glebov, D. D. Meyerhofer, R. D. Petrasso,P.B.Radha,V.A.Smalyuk,J.M.Soures,C.Stoekl,R.P.J.Town, and B. Yaakobi. Laboratory for Laser Energetics, U. of Rochester The effects of beam smoothing, pulse shaping, and target dimensions on the compressed core and shell performance of directly driven plastic capsules are studied on the 30-kJ, 60-beam OMEGA laser system. Experiments are performed on surrogate-cryogenic capsules where the main fuel layer is a polymer shell (either CH or CD + CH) and the hot spot is provided by the fill gas (D 2, DHe 3, DT, or H 2 ). The spatial evolution of the fuel and shell regions is recorded using both broadband and monochromatic time-resolved x-ray imaging techniques. Similar targets with inner Ti-doped layers provide additional spectral diagnostics of the shell and a source of monochromatic emission. Core conditions are diagnosed with measurements of the emergent x-ray, neutron, and particle spectra. For 1-ns-square drive pulses the calculated convergence ratios are in excess of 30, and the primary neutron yields are 20% of clean 1-D with shell areal densities >100 mg/cm 2. Shaped pulse implosions have higher convergence ratios. Compressedtarget conditions measured include those of fuel and shell areal density, fuel ion temperature, shell electron temperature, and primary (DD) and secondary (DT) neutron yield. The effect of pulse shaping and the beneficial effects of beam smoothing on the final core conditions are seen in these measurements. Mixing, resulting from laserirradiation nonuniformities and target imperfections that seed the Rayleigh Taylor instability, are observed in the x-ray and neutron spectra and are seen to depend on both the level of beam smoothing and the pulse shape. Comparison of these results with 1- and 2-D hydrocode simulations (including models of fuel-shell mixing) is ongoing. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460, the University of Rochester, and the New York State Energy Research and Development Authority.

2 Direct-Drive, High-Convergence-Ratio Implosion Studies on the OMEGA Laser System Frederic J. Marshall University of Rochester Laboratory for Laser Energetics 41st Annual Meeting of the American Physical Society Division of Plasma Physics Seattle, WA November 1999

3 Contributors Experimental: Vladimir Glebov David Harding Richard Petrasso Wolf Seka Vladimir Smalyuk Christian Stoeckl David Meyerhofer Barukh Yaakobi John Soures OMEGA Laser Operations: Jack Kelly Sam Morse Greg Pien Laser Operations Staff Theory: Jacques Delettrez Richard Town Pat McKenty Reuben Epstein P. B. Radha MIT: C. K. Li Damian Hicks Fredrick Séguin LLE Staff: Many

4 Summary We are investigating the effects of beam smoothing and pulse shape on target performance with OMEGA The core conditions of high-convergence-ratio targets have been diagnosed using x-ray, neutron, and particle spectroscopy: [ρr fuel, ρr shell, T e, and T i, Y n (DD), Y n (DT)]. Increased SSD bandwidth improves target performance. The improvement is most evident for the least-stable conditions (i.e., longer, shaped pulses). 2-D simulations of single-beam nonuniformity effects can account for the performance of the outer region of the shell. Low l-mode contributions due to beam balance appear to limit the performance of the most-stable, low-convergence-ratio targets. E10147

5 Current OMEGA experiments are preparatory to cryogenic implosions on OMEGA and NIF ignition OMEGA cryogenic implosions are energy scaled from NIF ignition target designs. Current noncryogenic implosions study hydrodynamics and stability issues. The CH shell corresponds to the main fuel layer (DT ice), and the fill gas corresponds to the hot-spot-forming central DT gas. CH (20 to 40 µm) OMEGA noncryogenic D 2, DT, DHe 3 < 50 atm 0.5 mm OMEGA cryogenic DT gas 3 atm CH < 2 µm DT ice (19 K) & 100 µm E10148

6 20-µm-thick plastic shells driven by 1-ns square pulses show similar stability to the OMEGA α = 3 cryo design α = 3 OMEGA cryogenic design 20 µm CH, 1-ns square pulse 10 1 Shell thickness Shell thickness Distance (µm) 10 0 Mix width: 1 THz, DPR s Mix width: 0.2 THz, no DPR s Mix width: 1 THz, DPR s Distance traveled (µm) Distance traveled (µm) TC5267 The mix width is calculated using an instability model with Takabe growth rates and Haan saturation.

7 Outline Direct-drive, high-convergence ratio implosion studies on the OMEGA laser system Review of recent OMEGA results Gas-filled shells Beam-smoothing effects (SSD bandwidth) Pulse shaping Diagnostics Neutron yield and spectroscopy [Y n (DD), Y n (DT), ρr fuel, ρr shell, T i ] Charged-particle spectroscopy [Y p (DHe 3 ), ρr total, T i ] X-ray continuum spectroscopy and imaging of Ti-doped shells (ρr shell, Te) Conclusions SSD smooths the high l-mode nonuniformities. SSD benefits the least-stable implosions (shaped pulses) the most. E10149

8 Fuel performance improves with increasing shell thickness Gas convergence ratios (r gas ) i /(r gas ) f range from 30 to Yield (DD)/calculated (YOC) YOC (%) 10 1-ns square pulse Empty CD/CH shells 3-atm-filled CD/CH and CH shells E10150 Shell thickness (µm)

9 Primary fusion yield (DD) from CH targets is a function of the shell stability Shell convergence ratio (shell CR) is a measure of shell stability. 100 Empty CD/CH (1 ns) YOC (%) ns square pulse PS26 3- to 15-atm-filled CH (1 ns) 3- to 15-atm-filled CH (PS26) SSD off = open symbols (R shell ) Shell CR = i, (R shell ) f Calculated shell convergence ratio (R shell ) f = 3M f 4π<ρR> f The least-stable implosions show the most improvement with SSD. E10151

10 We are using three principal methods to determine ρr in compressed CH shells X-ray absorption: continuum or high-z K-shell [ ρr shell, T e ] CD X rays Secondary (DT) neutron yield from D in gas or shell (CD) [Y n (DD),Y n (DT), ρr fuel, ρr shell, T i ] T* D n DT * Charged-particle energy loss of 14.7 MeV proton (D-He 3 reaction) [Y p (DHe 3 ), ρr total, T i ] p p* E10152

11 ORCHID simulations are used to estimate the effects of high-l-mode nonuniformities on measurements 20-µm-thick, 3-atm-filled CH shell, 29 kj, 1-ns square pulse t = 1.70 ns t = 1.72 ns t = 1.74 ns t = 1.76 ns 100 µm Density profiles Radius E10153 X-ray emissivity 50 µm ρr (mg/cm 2 ) 200 Total ρr Cold-shell ρr D D 50 1-D 2-D Radius (µm) Radius (µm)

12 SSD increases the fuel rr of shaped-pulse implosions 20-µm-thick, 3-atm-D 2 -filled CH targets Normalized secondary spectrum to 0.3 THz rr fuel = 7 mg/cm ns PS to 0.3 THz rr fuel = 8 mg/cm to 0.1 THz rr fuel = 4 mg/cm 2 Energy (MeV) Energy (MeV) Secondary yields measured by MEDUSA E10154

13 The experiments performed with and without CD layers put limits on the amount of mixing at stagnation 27-µm-thick, 3-atm D 2 -filled CH targets, 1-ns square pulse. 5 Normalized secondary spectrum Inner CD layer 1-µm offset embedded CD layer No CD layer Energy (MeV) E10155 Minimal mixing within the inner 2-µm shell region is observed.

14 The OMEGA charged-particle spectrometers (CPS) measure the total rr 20-µm-thick, 3-atm DHe 3 -filled CH targets, 1-ns square pulse Proton spectrum D-He 3 reaction proton spectrum Observed downshift DE Birth energy Energy loss DE = 1.63±0.04 MeV Implied areal density rr total = 70±5 mg/cm 2 Averaged over three shots Energy (MeV) E10156

15 The shell ρr is determined from the secondary neutron yield and from the 14.7-MeV proton energy loss The methods give consistent values for the shell ρr (the yield ratio determined values are lower limits). Shell ρr (mg/cm 2 ) ns square pulse LILAC limit Voided CD/CH 3-atm-filled (D 2, H 2, DHe 3 ) DHe 3 proton energy loss Shell thickness (µm) E10157

16 The 5- to 7-keV x-ray images show a more-compact and integral stagnation region with increased SSD bandwidth 20-µm CH shells, 1-ns square pulse, 25 kj, Ti-doped embedded layers CH Ti-doped CH 0.1 THz 0.2 THz 0.3 THz µm 2 µm 1 µm 3-atm D 2 2 ~ 50 µm Intensity (arbitrary unit) Radius (µm) Radius (µm) Radius (µm) E10158

17 ORCHID is used to simulate the effect of shell nonuniformities on x-ray images 3-atm-filled, Ti-doped, 20-µm CH shells, 1-ns square pulse ORCHID simulated x-ray emissivity 50 µm Intensity (arb. units) Comparison of radial profiles OMEGA shot ORCHID KB image Radius (µm) ~ 50 µm KB microscope x-ray images 2-D ORCHID x-ray emission profile shows a similar size but different width than seen in the KB microscope image. E10159

18 SSD has a dramatic effect on the final stagnation of direct-drive ICF capsules 20 kj, PS26 pulse shape, with DPP s, 0.95-mm diameter 3 atm H 2 -filled, 27-µm-thick shells OMEGA shot 12565, SSD on Gratingdispersed images OMEGA shot 12569, SSD off 1 mm 6 50 µm Hard x-ray images (> 4 kev) (undispersed) E9438

19 X-ray spectral measurements have confirmed the beneficial effects of SSD on direct-drive implosions OMEGA shots and atm-DHe 3 filled, 25-µm-thick CH targets 25-kJ, 1-ns square pulse Spectal fluence (kev/kev) SSD on (0.2 THz) LILAC SSD off E9436 Energy (kev)

20 2-D ORCHID simulations qualitatively agree with experimental measurements of cold shell ρr 100 Cold shell ρr versus shell thickness 3-atm-filled CH shells, 1-ns square pulse Cold shell ρr (mg/cm 2 ) 10 ORCHID (SSD on) 1-D 2-D EXPT Experiments SSD on SSD off E10167 Thickness (µm)

21 Summary/Conclusions We are investigating the effects of beam smoothing and pulse shape on target performance with OMEGA Increased SSD bandwidth improves target performance. The improvement is most evident for the least-stable conditions (i.e., longer, shaped pulses). 2-D simulations of single-beam nonuniformity effects can account for the performance of the outer region of the shell. Low l-mode contributions due to beam balance appear to limit the performance of the most-stable, low-convergence-ratio targets. E10168

First Results from Cryogenic-Target Implosions on OMEGA

First Results from Cryogenic-Target Implosions on OMEGA First Results from Cryogenic-Target Implosions on OMEGA MIT 1 mm 1 mm 100 µm C. Stoeckl University of Rochester Laboratory for Laser Energetics 43rd Annual Meeting of the American Physical Society Division

More information

Charged-Particle Spectra Using Particle Tracking on a Two-Dimensional Grid. P. B. Radha, J. A. Delettrez, R. Epstein, S. Skupsky, and J. M.

Charged-Particle Spectra Using Particle Tracking on a Two-Dimensional Grid. P. B. Radha, J. A. Delettrez, R. Epstein, S. Skupsky, and J. M. Charged-Particle Spectra Using Particle Tracking on a Two-Dimensional Grid P. B. Radha, J. A. Delettrez, R. Epstein, S. Skupsky, and J. M. Soures Laboratory for Laser Energetics, U. of Rochester S. Cremer

More information

Areal-Density-Growth Measurements with Proton Spectroscopy on OMEGA

Areal-Density-Growth Measurements with Proton Spectroscopy on OMEGA Areal-Density-Growth Measurements with Proton Spectroscopy on OMEGA Areal density (mg/cm ) 5 15 1 5 4 atm D 3 He 1.6 1... 1 1 1 1 19 1 1 Neutron rate (s 1 ) V. A. Smalyuk Laboratory for Laser Energetics

More information

Progress in Direct-Drive Inertial Confinement Fusion Research at the Laboratory for Laser Energetics

Progress in Direct-Drive Inertial Confinement Fusion Research at the Laboratory for Laser Energetics 1 Progress in Direct-Drive Inertial Confinement Fusion Research at the Laboratory for Laser Energetics R.L. McCrory 1), D.D. Meyerhofer 1), S.J. Loucks 1), S. Skupsky 1) R.E. Bahr 1), R. Betti 1), T.R.

More information

Capsule-areal-density asymmetries inferred from 14.7-MeV deuterium helium protons in direct-drive OMEGA implosions a

Capsule-areal-density asymmetries inferred from 14.7-MeV deuterium helium protons in direct-drive OMEGA implosions a PHYSICS OF PLASMAS VOLUME 10, NUMBER 5 MAY 2003 Capsule-areal-density asymmetries inferred from 14.7-MeV deuterium helium protons in direct-drive OMEGA implosions a C. K. Li, b) F. H. Séguin, J. A. Frenje,

More information

Modeling the Effects Mix at the Hot Spot Surface in 1-D Simulations of Cryogenic All-DT Ignition Capsule Implosions

Modeling the Effects Mix at the Hot Spot Surface in 1-D Simulations of Cryogenic All-DT Ignition Capsule Implosions Modeling the Effects Mix at the Hot Spot Surface in 1-D Simulations of Cryogenic All-DT Ignition Capsule Implosions 14 Time = 1.4 ns 25 Ion temperature (kev) 12 1 8 6 4 2 22.2 8.7 1.5 Gain =.45 2 15 1

More information

Analysis of a Direct-Drive Ignition Capsule Design for the National Ignition Facility

Analysis of a Direct-Drive Ignition Capsule Design for the National Ignition Facility Analysis of a Direct-Drive Ignition Capsule Design for the National Ignition Facility R (mm) 1 8 6 4 End of acceleration phase r(g/cc) 7.5 3.5.5 Gain 4 3 2 1 1 2 2 s (mm) 5 25 25 5 Z (mm) P. W. McKenty

More information

X-Ray Spectral Measurements of Cryogenic Capsules Imploded by OMEGA

X-Ray Spectral Measurements of Cryogenic Capsules Imploded by OMEGA X-Ray Spectral Measurements of Cryogenic Capsules Imploded by OMEGA 1 15 1 14 F. J. Marshall University of Rochester Laboratory for Laser Energetics kt =.65 kev 48386 (v ice = 1.5 nm) 2 48385 (v ice =

More information

Determination of the Flux Limiter in CH Targets from Experiments on the OMEGA Laser

Determination of the Flux Limiter in CH Targets from Experiments on the OMEGA Laser Determination of the Flux Limiter in CH Targets from Experiments on the OMEGA Laser f = 0.070 Neutron rate (1/s) Exp. f = 0.065 f = 0.060 J. A. Delettrez et al. University of Rochester Laboratory for Laser

More information

High-Performance Inertial Confinement Fusion Target Implosions on OMEGA

High-Performance Inertial Confinement Fusion Target Implosions on OMEGA High-Performance Inertial Confinement Fusion Target Implosions on OMEGA D.D. Meyerhofer 1), R.L. McCrory 1), R. Betti 1), T.R. Boehly 1), D.T. Casey, 2), T.J.B. Collins 1), R.S. Craxton 1), J.A. Delettrez

More information

A Model of Laser Imprinting. V. N. Goncharov, S. Skupsky, R. P. J. Town, J. A. Delettrez, D. D. Meyerhofer, T. R. Boehly, and O.V.

A Model of Laser Imprinting. V. N. Goncharov, S. Skupsky, R. P. J. Town, J. A. Delettrez, D. D. Meyerhofer, T. R. Boehly, and O.V. A Model of Laser Imprinting V. N. Goncharov, S. Skupsky, R. P. J. Town, J. A. Delettrez, D. D. Meyerhofer, T. R. Boehly, and O.V. Gotchev Laboratory for Laser Energetics, U. of Rochester The control of

More information

The 1-D Cryogenic Implosion Campaign on OMEGA

The 1-D Cryogenic Implosion Campaign on OMEGA The 1-D Cryogenic Implosion Campaign on OMEGA Yield Exp (#1 14 ) 1.4 1.2 1..8.6.4 1-D campaign neutron yields.2 R. Betti University of Rochester Laboratory for Laser Energetics.2.4.6.8 1. 1.2 LILAC 4 8.

More information

Measurements of fuel and shell areal densities of OMEGA capsule implosions using elastically scattered protons

Measurements of fuel and shell areal densities of OMEGA capsule implosions using elastically scattered protons PHYSICS OF PLASMAS VOLUME 9, NUMBER 11 NOVEMBER 2002 Measurements of fuel and shell areal densities of OMEGA capsule implosions using elastically scattered protons J. A. Frenje, C. K. Li, F. H. Séguin,

More information

The 1-D Campaign on OMEGA: A Systematic Approach to Find the Path to Ignition

The 1-D Campaign on OMEGA: A Systematic Approach to Find the Path to Ignition The 1-D Campaign on OMEGA: A Systematic Approach to Find the Path to Ignition Normalized intensity 1..8.6.4.2 R. Betti University of Rochester Laboratory for Laser Energetics Core self-emission. 3 2 1

More information

D- 3 He Protons as a Diagnostic for Target ρr

D- 3 He Protons as a Diagnostic for Target ρr D- 3 He Protons as a Diagnostic for Target ρr Areal density (ρr) is an important parameter for measuring compression in ICF experiments. Several diagnostics employing nuclear particles have been considered

More information

Improved target stability using picket pulses to increase and shape the ablator adiabat a

Improved target stability using picket pulses to increase and shape the ablator adiabat a PHYSICS OF PLASMAS 12, 056306 2005 Improved target stability using picket pulses to increase and shape the ablator adiabat a J. P. Knauer, b K. Anderson, R. Betti, T. J. B. Collins, V. N. Goncharov, P.

More information

D 3 He proton spectra for diagnosing shell R and fuel T i of imploded capsules at OMEGA

D 3 He proton spectra for diagnosing shell R and fuel T i of imploded capsules at OMEGA PHYSICS OF PLASMAS VOLUME 7, NUMBER 6 JUNE 2000 D 3 He proton spectra for diagnosing shell R and fuel T i of imploded capsules at OMEGA C. K. Li, D. G. Hicks, F. H. Séguin, J. A. Frenje, and R. D. Petrasso

More information

Observations of the collapse of asymmetrically driven convergent shocks. 26 June 2009

Observations of the collapse of asymmetrically driven convergent shocks. 26 June 2009 PSFC/JA-8-8 Observations of the collapse of asymmetrically driven convergent shocks J. R. Rygg, J. A. Frenje, C. K. Li, F. H. Seguin, R. D. Petrasso, F.J. Marshalli, J. A. Delettrez, J.P. Knauer, D.D.

More information

Polar Drive on OMEGA and the NIF

Polar Drive on OMEGA and the NIF Polar Drive on OMEGA and the NIF OMEGA polar-drive geometry 21.4 Backlit x-ray image OMEGA polar-drive implosion 21.4 58.2 77.8 42. 58.8 CR ~ 5 R = 77 nm 4 nm 4 nm P. B. Radha University of Rochester Laboratory

More information

Diagnosing OMEGA and NIF Implosions Using the D 3 He Spectrum Line Width

Diagnosing OMEGA and NIF Implosions Using the D 3 He Spectrum Line Width Introduction Diagnosing OMEGA and NIF Implosions Using the D 3 He Spectrum Line Width A. B. Zylstra, M. Rosenberg, N. Sinenian, C. Li, F. Seguin, J. Frenje, R. Petrasso (MIT) R. Rygg, D. Hicks, S. Friedrich,

More information

Progress in Direct-Drive Inertial Confinement Fusion Research

Progress in Direct-Drive Inertial Confinement Fusion Research Progress in Direct-Drive Inertial Confinement Fusion Research Ignition and Gain Total GtRH n (g/cm 2 ) 2 1.5.2.1 IAEA 21 DT, 22 kj IAEA 28 DT, 16 kj NIF.5 MJ NIF point design 1.5 MJ 1-D marginal ignition

More information

Proton Temporal Diagnostic for ICF Experiments on OMEGA

Proton Temporal Diagnostic for ICF Experiments on OMEGA Proton Temporal Diagnostic for ICF Experiments on OMEGA Introduction In an inertial confinement fusion (ICF) 1 experiment, a capsule filled with deuterium (D 2 ) or a deuterium tritium (DT) fuel is heated

More information

ICF ignition and the Lawson criterion

ICF ignition and the Lawson criterion ICF ignition and the Lawson criterion Riccardo Betti Fusion Science Center Laboratory for Laser Energetics, University of Rochester Seminar Massachusetts Institute of Technology, January 0, 010, Cambridge

More information

Direct-Drive Implosion Experiments with Enhanced Beam Balance on OMEGA

Direct-Drive Implosion Experiments with Enhanced Beam Balance on OMEGA Direct-Drive Implosion Experiments with Enhanced Beam Balance on OMEGA Introduction Laser-driven, direct-drive inertial confinement fusion (ICF) is accomplished by near-uniform illumination of spherical

More information

The MIT Accelerator for development of ICF diagnostics at OMEGA / OMEGA-EP and the NIF

The MIT Accelerator for development of ICF diagnostics at OMEGA / OMEGA-EP and the NIF Introduction The MIT Accelerator for development of ICF diagnostics at OMEGA / OMEGA-EP and the NIF SBDs d + or 3 He +(2+) D or 3 He target Present MIT Graduate Students and the MIT Accelerator OLUG 21

More information

Dual Nuclear Shock Burn:

Dual Nuclear Shock Burn: Dual Nuclear Shock Burn: Experiment, Simulation, and the Guderley Model J.R. Rygg, J.A. Frenje, C.K. Li, F.H. Séguin, and R.D. Petrasso MIT PSFC J.A. Delettrez, V.Yu Glebov, D.D. Meyerhofer, and T.C. Sangster

More information

Analysis of Laser-Imprinting Reduction in Spherical-RT Experiments with Si-/Ge-Doped Plastic Targets

Analysis of Laser-Imprinting Reduction in Spherical-RT Experiments with Si-/Ge-Doped Plastic Targets Analysis of Laser-Imprinting Reduction in Spherical-RT Experiments with Si-/Ge-Doped Plastic Targets v rms of tr (mg/cm )..6 Si [4.%] Si [7.4%] Ge [.9%] DRACO simulations..4 Time (ns) S. X. Hu University

More information

Mitigation of Cross-Beam Energy Transfer in Direct-Drive Implosions on OMEGA

Mitigation of Cross-Beam Energy Transfer in Direct-Drive Implosions on OMEGA Mitigation of Cross-Beam Energy Transfer in Direct-Drive Implosions on OMEGA In-flight aspect ratio OMEGA cryogenic ignition hydro-equivalent design tr = 3 mg/cm 2, V imp = 3.7 7 cm/s 3 3 2 14 m = 48 ng

More information

Initial Experiments on the Shock-Ignition Inertial Confinement Fusion Concept

Initial Experiments on the Shock-Ignition Inertial Confinement Fusion Concept Initial Experiments on the Shock-Ignition Inertial Confinement Fusion Concept Introduction Shock ignition is a concept for direct-drive laser inertial confinement fusion (ICF) 1 3 that was recently proposed

More information

Two-Dimensional Simulations of Electron Shock Ignition at the Megajoule Scale

Two-Dimensional Simulations of Electron Shock Ignition at the Megajoule Scale Two-Dimensional Simulations of Electron Shock Ignition at the Megajoule Scale Laser intensity ( 1 15 W/cm 2 ) 5 4 3 2 1 Laser spike is replaced with hot-electron spike 2 4 6 8 1 Gain 2 15 1 5 1. 1.2 1.4

More information

Direct-drive fuel-assembly experiments with gas-filled, cone-in-shell, fast-ignitor targets on the OMEGA Laser

Direct-drive fuel-assembly experiments with gas-filled, cone-in-shell, fast-ignitor targets on the OMEGA Laser INSTITUTE OF PHYSICS PUBLISHING Plasma Phys. Control. Fusion 47 (25) B859 B867 PLASMA PHYSICS AND CONTROLLED FUSION doi:1.188/741-3335/47/12b/s68 Direct-drive fuel-assembly experiments with gas-filled,

More information

Monochromatic 8.05-keV Flash Radiography of Imploded Cone-in-Shell Targets

Monochromatic 8.05-keV Flash Radiography of Imploded Cone-in-Shell Targets Monochromatic 8.5-keV Flash Radiography of Imploded Cone-in-Shell Targets y position (nm) y position (nm) 2 3 4 5 2 3 4 66381 undriven 66393, 3.75 ns 66383, 3.82 ns Au Al 66391, 3.93 ns 66386, 4.5 ns 66389,

More information

MIT Research using High-Energy Density Plasmas at OMEGA and the NIF

MIT Research using High-Energy Density Plasmas at OMEGA and the NIF MIT Research using High-Energy Density Plasmas at OMEGA and the NIF 860 μm 2.3 μm SiO 2 D 3 He gas 1 10 11 D-D 3 He D-D T Yield D-D p D- 3 He 0 0 5 10 15 Energy (MeV) D- 3 He p Hans Rinderknecht Wednesday,

More information

Shock-Ignition Experiments on OMEGA at NIF-Relevant Intensities

Shock-Ignition Experiments on OMEGA at NIF-Relevant Intensities Shock-Ignition Experiments on OMEGA at NIF-Relevant Intensities Shock ignition is a two-step inertial confinement fusion (ICF) concept in which a strong shock wave is launched at the end of the laser pulse

More information

An Overview of Laser-Driven Magnetized Liner Inertial Fusion on OMEGA

An Overview of Laser-Driven Magnetized Liner Inertial Fusion on OMEGA An Overview of Laser-Driven Magnetized Liner Inertial Fusion on OMEGA 4 compression beams MIFEDS coils B z ~ 1 T Preheat beam from P9 1 mm Ring 3 Rings 4 Ring 3 Target support Fill-tube pressure transducer

More information

Relativistic Electron Beams, Forward Thomson Scattering, and Raman Scattering. A. Simon. Laboratory for Laser Energetics, U.

Relativistic Electron Beams, Forward Thomson Scattering, and Raman Scattering. A. Simon. Laboratory for Laser Energetics, U. Relativistic Electron Beams, Forward Thomson Scattering, and Raman Scattering A. Simon Laboratory for Laser Energetics, U. of Rochester Experiments at LLE (see abstract by D. Hicks at this meeting) show

More information

Fukuoka, Japan. 23 August National Ignition Facility (NIF) Laboratory for Laser Energetics (OPERA)

Fukuoka, Japan. 23 August National Ignition Facility (NIF) Laboratory for Laser Energetics (OPERA) Fukuoka, Japan 23 August 2012 National Ignition Facility (NIF) LLNL-PRES-562760 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under

More information

Advanced Ignition Experiments on OMEGA

Advanced Ignition Experiments on OMEGA Advanced Ignition Experiments on OMEGA C. Stoeckl University of Rochester Laboratory for Laser Energetics 5th Annual Meeting of the American Physical Society Division of Plasma Physics Dallas, TX 17 21

More information

Experiments on Dynamic Overpressure Stabilization of Ablative Richtmyer Meshkov Growth in ICF Targets on OMEGA

Experiments on Dynamic Overpressure Stabilization of Ablative Richtmyer Meshkov Growth in ICF Targets on OMEGA Experiments on Dynamic Overpressure Stabilization of Ablative Richtmyer Meshkov Growth in ICF Targets on OMEGA Contributors: V. N. Goncharov P. A. Jaanimagi J. P. Knauer D. D. Meyerhofer O. V. Gotchev

More information

Measured dependence of nuclear burn region size on implosion parameters in inertial confinement fusion experiments

Measured dependence of nuclear burn region size on implosion parameters in inertial confinement fusion experiments PHYSICS OF PLASMAS 13, 082704 2006 Measured dependence of nuclear burn region size on implosion parameters in inertial confinement fusion experiments F. H. Séguin, a J. L. DeCiantis, J. A. Frenje, C. K.

More information

Three-Dimensional Studies of the Effect of Residual Kinetic Energy on Yield Degradation

Three-Dimensional Studies of the Effect of Residual Kinetic Energy on Yield Degradation Threeimensional Studies of the Effect of Residual Kinetic Energy on Yield Degradation Kinetic energy density for single-mode, = 1, m = 6 1. YOC model = (1 RKE) 4.4 1 3 to ( Jm / ) 5.797 1 15 1.44 1 1 z

More information

Direct-Drive Cryogenic Target Implosion Performance on OMEGA

Direct-Drive Cryogenic Target Implosion Performance on OMEGA Direct-Drive Cryogenic Target Implosion Performance on OMEGA Introduction Direct-drive, cryogenic inertial confinement fusion (ICF) capsule implosion experiments under investigation using the 3-kJ OMEGA

More information

Measured dependence of nuclear burn region size on implosion parameters in inertial confinement fusion experiments

Measured dependence of nuclear burn region size on implosion parameters in inertial confinement fusion experiments PSFC/JA-6-1 Measured dependence of nuclear burn region size on implosion parameters in inertial confinement fusion experiments F. H. Séguin, 1 J. L. DeCiantis, 1 J. A. Frenje, 1 C. K. Li, 1 J. R. Rygg,

More information

Framed X-Ray Imaging of Cryogenic Target Implosion Cores on OMEGA

Framed X-Ray Imaging of Cryogenic Target Implosion Cores on OMEGA Framed X-Ray Imaging of Cryogenic Target Implosion Cores on OMEGA KBFRAMED optic assembly KBFRAMED core image OMEGA cryogenic DT target implosion shot 77064 F. J. Marshall University of Rochester Laboratory

More information

Cross-Beam Energy Transport in Direct-Drive-Implosion Experiments

Cross-Beam Energy Transport in Direct-Drive-Implosion Experiments Cross-Beam Energy Transport in Direct-Drive-Implosion Experiments 35 3 Laser pulse Power (TW) 25 2 15 1 Modeled scattered light Measured 5 D. H. Edgell University of Rochester Laboratory for Laser Energetics.5

More information

Polar-Drive Hot-Spot Ignition Design for the National Ignition Facility

Polar-Drive Hot-Spot Ignition Design for the National Ignition Facility Polar-Drive Hot-Spot Ignition Design for the National Ignition Facility At ignition, Gain=40 T. J. B. Collins University of Rochester Laboratory for Laser Energetics International Shock-Ignition Workshop

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/319/5867/1223/dc1 Supporting Online Material for Proton Radiography of Inertial Fusion Implosions J. R. Rygg, F. H. Séguin, C. K. Li, J. A. Frenje, M. J.-E. Manuel,

More information

First measurements of the absolute neutron spectrum using the Magnetic Recoil Spectrometer (MRS) at OMEGA (Invited) a)

First measurements of the absolute neutron spectrum using the Magnetic Recoil Spectrometer (MRS) at OMEGA (Invited) a) PSFC/JA-08-21 First measurements of the absolute neutron spectrum using the Magnetic Recoil Spectrometer (MRS) at OMEGA (Invited) a) J.A. Frenje, D.T. Casey, C.K. Li, J.R. Rygg b), F.H. Seguin, R.D. Petrasso

More information

An Overview of Laser-Driven Magnetized Liner Inertial Fusion on OMEGA

An Overview of Laser-Driven Magnetized Liner Inertial Fusion on OMEGA An Overview of Laser-Driven Magnetized Liner Inertial Fusion on OMEGA 4 compression beams MIFEDS coils B z ~ 1 T Preheat beam from P9 1 mm Ring 3 Rings 4 Ring 3 Target support Fill-tube pressure transducer

More information

Experimental Demonstration of X-Ray Drive Enhancement with Rugby-Shaped Hohlraums

Experimental Demonstration of X-Ray Drive Enhancement with Rugby-Shaped Hohlraums Experimental Demonstration of X-Ray Drive Enhancement with Rugby-Shaped Hohlraums The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Multibeam Stimulated Brillouin Scattering from Hot Solid-Target Plasmas

Multibeam Stimulated Brillouin Scattering from Hot Solid-Target Plasmas Multibeam Stimulated Brillouin Scattering from Hot Solid-Target Plasmas Introduction We report on the first multibeam laser plasma interaction experiments with a critical density surface present at all

More information

Stimulated Raman Scattering in Direct-Drive Inertial Confinement Fusion

Stimulated Raman Scattering in Direct-Drive Inertial Confinement Fusion Stimulated Raman Scattering in Direct-Drive Inertial Confinement Fusion View ports 5 FABS Experiments carried out at the National Ignition Facility FABS power (arbitrary units) Plasma-producing beams (

More information

Optical and Plasma Smoothing of Laser Imprinting in Targets Driven by Lasers with SSD Bandwidths up to 1 THz

Optical and Plasma Smoothing of Laser Imprinting in Targets Driven by Lasers with SSD Bandwidths up to 1 THz Optical and Plasma Smoothing of Laser Imprinting in Targets Driven by Lasers with SSD Bandwidths up to 1 THz Introduction A key issue for inertial confinement fusion (ICF) 1 3 is the Rayleigh Taylor (RT)

More information

The Ignition Physics Campaign on NIF: Status and Progress

The Ignition Physics Campaign on NIF: Status and Progress Journal of Physics: Conference Series PAPER OPEN ACCESS The Ignition Physics Campaign on NIF: Status and Progress To cite this article: M. J. Edwards and Ignition Team 216 J. Phys.: Conf. Ser. 688 1217

More information

Polar-Drive Implosions on OMEGA and the National Ignition Facility

Polar-Drive Implosions on OMEGA and the National Ignition Facility Polar-Drive Implosions on OMEGA and the National Ignition Facility Introduction Polar drive (PD) 1 provides the capability to perform directdrive ignition experiments on laser facilities like the National

More information

What is. Inertial Confinement Fusion?

What is. Inertial Confinement Fusion? What is Inertial Confinement Fusion? Inertial Confinement Fusion: dense & short-lived plasma Fusing D and T requires temperature to overcome Coulomb repulsion density & confinement time to maximize number

More information

T T Fusion Neutron Spectrum Measured in Inertial Confinement Fusion Experiment

T T Fusion Neutron Spectrum Measured in Inertial Confinement Fusion Experiment T T Fusion Neutron Spectrum Measured in Inertial Confinement Fusion Experiment V. Yu. Glebov University of Rochester Laboratory for Laser Energetics 48th Annual Meeting of the American Physical Society

More information

Adiabat Shaping of Direct-Drive OMEGA Capsules Using Ramped Pressure Profiles

Adiabat Shaping of Direct-Drive OMEGA Capsules Using Ramped Pressure Profiles Adiabat Shaping of Direct-Drive OMEGA Capsules Using Ramped Pressure Profiles a r Lagrangian coordinate K. Anderson University of Rochester Laboratory for Laser Energetics 44th Annual Meeting of the American

More information

An Investigation of Two-Plasmon Decay Localization in Spherical Implosion Experiments on OMEGA

An Investigation of Two-Plasmon Decay Localization in Spherical Implosion Experiments on OMEGA An Investigation of Two-lasmon Decay Localization in Spherical Implosion Experiments on OMEGA 1 12 50 23 14 27 18 32 J. F. Myatt University of Rochester Laboratory for Laser Energetics 24 56th Annual Meeting

More information

Exploration of the Feasibility of Polar Drive on the LMJ. Lindsay M. Mitchel. Spencerport High School. Spencerport, New York

Exploration of the Feasibility of Polar Drive on the LMJ. Lindsay M. Mitchel. Spencerport High School. Spencerport, New York Exploration of the Feasibility of Polar Drive on the LMJ Lindsay M. Mitchel Spencerport High School Spencerport, New York Advisor: Dr. R. S. Craxton Laboratory for Laser Energetics University of Rochester

More information

The Effect of Laser Spot Shapes on Polar-Direct-Drive Implosions on the National. Ignition Facility. 250 East River Road, Rochester, NY 14623

The Effect of Laser Spot Shapes on Polar-Direct-Drive Implosions on the National. Ignition Facility. 250 East River Road, Rochester, NY 14623 The Effect of Laser Spot Shapes on Polar-Direct-Drive Implosions on the National Ignition Facility F. Weilacher, 1,2 P. B. Radha, 1,* T. J. B. Collins, 1 and J. A. Marozas 1 1 Laboratory for Laser Energetics,

More information

Measurement of Long-Scale-Length Plasma Density Profiles for Two-Plasmon Decay Studies

Measurement of Long-Scale-Length Plasma Density Profiles for Two-Plasmon Decay Studies Measurement of Long-Scale-Length Plasma Density Profiles for Two-Plasmon Decay Studies Plasma density scale length at 10 21 cm 3 (nm) 350 300 250 200 150 100 0 Flat foil 2 4 6 8 10 100 Target diameter

More information

Polar-Direct-Drive Experiments with Contoured-Shell Targets on OMEGA

Polar-Direct-Drive Experiments with Contoured-Shell Targets on OMEGA Polar-Direct-Drive Experiments with Contoured-Shell Targets on OMEGA F. J. Marshall, P. B. Radha, M. J. Bonino, J. A. Delettrez, R. Epstein, V. Yu. Glebov, D. R. Harding, and C. Stoeckl Laboratory for

More information

Direct-Drive Ignition Designs with Mid-Z Ablators

Direct-Drive Ignition Designs with Mid-Z Ablators Direct-Drive Ignition Designs with Mid-Z Ablators Introduction In laser-driven inertial confinement fusion (ICF), 1, a spherical capsule filled with deuterium tritium (DT) is irradiated by direct laser

More information

Where are we with laser fusion?

Where are we with laser fusion? Where are we with laser fusion? R. Betti Laboratory for Laser Energetics Fusion Science Center Dept. Mechanical Engineering and Physics & Astronomy University of Rochester HEDSA HEDP Summer School August

More information

Hydrodynamic instability measurements in DTlayered ICF capsules using the layered-hgr platform

Hydrodynamic instability measurements in DTlayered ICF capsules using the layered-hgr platform Journal of Physics: Conference Series PAPER OPEN ACCESS Hydrodynamic instability measurements in DTlayered ICF capsules using the layered-hgr platform Related content - Mix and hydrodynamic instabilities

More information

Crossed-Beam Energy Transfer in Inertial Confinement Fusion Implosions on OMEGA

Crossed-Beam Energy Transfer in Inertial Confinement Fusion Implosions on OMEGA Crossed-Beam Energy Transfer in Inertial Confinement Fusion Implosions on OMEGA Inertial confinement fusion (ICF) uses the energy of multiple laser beams to implode a millimeter-scale capsule containing

More information

Time-Resolved Compression of a Spherical Shell with a Re-Entrant Cone to High Areal Density. for Fast-Ignition Laser Fusion

Time-Resolved Compression of a Spherical Shell with a Re-Entrant Cone to High Areal Density. for Fast-Ignition Laser Fusion Time-Resolved Compression of a Spherical Shell with a Re-Entrant Cone to High Areal Density for Fast-Ignition Laser Fusion The compression of matter to a very high density is of general interest for high-energy-density

More information

Monochromatic Backlighting of Direct-Drive Cryogenic DT Implosions on OMEGA

Monochromatic Backlighting of Direct-Drive Cryogenic DT Implosions on OMEGA Monochromatic Backlighting of Direct-Drive Cryogenic DT Implosions on OMEGA Introduction Layered cryogenic DT targets are the baseline approach to achieving ignition in direct-drive inertial confinement

More information

PSFC/JA Impact of imposed mode 2 laser drive asymmetry on inertial confinement fusion implosions

PSFC/JA Impact of imposed mode 2 laser drive asymmetry on inertial confinement fusion implosions PSFC/JA-18-35 Impact of imposed mode 2 laser drive asymmetry on inertial confinement fusion implosions M. Gatu Johnson, 1 B.D. Appelbe, 2 J.P. Chittenden, 2 A. Crilly, 2 J. Delettrez, 3 C. Forrest, 3 J.A.

More information

Multiple-FM Smoothing by Spectral Dispersion An Augmented Laser Speckle Smoothing Scheme

Multiple-FM Smoothing by Spectral Dispersion An Augmented Laser Speckle Smoothing Scheme Multiple-FM Smoothing by Spectral Dispersion An Augmented Laser Speckle Smoothing Scheme Introduction Polar-drive (PD) 1 4 implosions on the National Ignition Facility (NIF) require smoothing of the laser-imposed

More information

Rayleigh Taylor Growth Measurements of 3-D Modulations

Rayleigh Taylor Growth Measurements of 3-D Modulations Rayleigh Taylor Growth Measurements of -D Modulations in a Nonlinear Regime Introduction Rayleigh Taylor (RT), instability is of critical importance in inertial confinement fusion (ICF) and astrophysics.

More information

The Magnetic Recoil Spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF)

The Magnetic Recoil Spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF) PSFC/JA-16-32 The Magnetic Recoil Spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF) J.A. Frenje 1 T.J. Hilsabeck 2, C. Wink1, P. Bell 3,

More information

Hydrodynamic growth experiments with the 3-D, native-roughness modulations on NIF

Hydrodynamic growth experiments with the 3-D, native-roughness modulations on NIF Journal of Physics: Conference Series PAPER OPEN ACCESS Hydrodynamic growth experiments with the 3-D, native-roughness modulations on NIF To cite this article: V A Smalyuk et al 2016 J. Phys.: Conf. Ser.

More information

Scaling Hot-Electron Generation to High-Power, Kilojoule-Class Lasers

Scaling Hot-Electron Generation to High-Power, Kilojoule-Class Lasers Scaling Hot-Electron Generation to High-Power, Kilojoule-Class Lasers 75 nm 75 75 5 nm 3 copper target Normalized K b /K a 1.2 1.0 0.8 0.6 0.4 Cold material 1 ps 10 ps 0.2 10 3 10 4 Heating 2.1 kj, 10

More information

Integrated Modeling of Fast Ignition Experiments

Integrated Modeling of Fast Ignition Experiments Integrated Modeling of Fast Ignition Experiments Presented to: 9th International Fast Ignition Workshop Cambridge, MA November 3-5, 2006 R. P. J. Town AX-Division Lawrence Livermore National Laboratory

More information

Measurements of Core and Pusher Conditions in Surrogate Capsule Implosions on the OMEGA Laser System

Measurements of Core and Pusher Conditions in Surrogate Capsule Implosions on the OMEGA Laser System Measurements of Core and Pusher Conditions in Surrogate Capsule Implosions on the OMEGA Laser System The primary objective of the experimental program at LLE is to evaluate the direct-drive approach to

More information

The MIT Nuclear Products Generator for development of ICF diagnostics at Omega / Omega EP and the NIF

The MIT Nuclear Products Generator for development of ICF diagnostics at Omega / Omega EP and the NIF Introduction The MIT Nuclear Products Generator for development of ICF diagnostics at Omega / Omega EP and the NIF SBDs d + or 3 He +(2+) D or 3 He target Present MIT Graduate Students and the MIT Nuclear

More information

Theory and simulations of hydrodynamic instabilities in inertial fusion

Theory and simulations of hydrodynamic instabilities in inertial fusion Theory and simulations of hydrodynamic instabilities in inertial fusion R. Betti Fusion Science Center, Laboratory for Laser Energetics, University of Rochester IPAM/UCLA Long Program PL2012 - March 12

More information

Measurements of Stellar and Big-Bang Nucleosynthesis Reactions Using Inertially-Confined Plasmas

Measurements of Stellar and Big-Bang Nucleosynthesis Reactions Using Inertially-Confined Plasmas Measurements of Stellar and Big-Bang Nucleosynthesis Reactions Using Inertially-Confined Plasmas Alex Zylstra INPC 2016 Adelaide, Australia Sep. 12-16, 2016 LA-UR-16-26746 Operated by Los Alamos National

More information

Monoenergetic proton backlighter for measuring E and B fields and for radiographing implosions and high-energy density plasmas invited

Monoenergetic proton backlighter for measuring E and B fields and for radiographing implosions and high-energy density plasmas invited REVIEW OF SCIENTIFIC INSTRUMENTS 77, 10E725 2006 Monoenergetic proton backlighter for measuring E and B fields and for radiographing implosions and high-energy density plasmas invited C. K. Li, a F. H.

More information

Progress in detailed modelling of low foot and high foot implosion experiments on the National Ignition Facility

Progress in detailed modelling of low foot and high foot implosion experiments on the National Ignition Facility Journal of Physics: Conference Series PAPER OPEN ACCESS Progress in detailed modelling of low foot and high foot implosion experiments on the National Ignition Facility Related content - Capsule modeling

More information

Inertial Confinement Fusion DR KATE LANCASTER YORK PLASMA INSTITUTE

Inertial Confinement Fusion DR KATE LANCASTER YORK PLASMA INSTITUTE Inertial Confinement Fusion DR KATE LANCASTER YORK PLASMA INSTITUTE In the beginning In the late fifties, alternative applications of nuclear explosions were being considered the number one suggestion

More information

Bulk Fluid Velocity Construction from NIF Neutron Spectral Diagnostics

Bulk Fluid Velocity Construction from NIF Neutron Spectral Diagnostics Bulk Fluid elocity Construction from NIF Neutron Spectral Diagnostics ntof-4.5 DT-Lo (64-309) ntof-3.9 DSF (64-275) ntof-4.5 BT (64-253) MRS ntof-4.5 DT-Hi (64-330) Spec E (90-174) Spec A (116-316) Spec

More information

Polar Direct-Drive Simulations for a Laser-Driven HYLIFE-II Fusion Reactor. Katherine Manfred

Polar Direct-Drive Simulations for a Laser-Driven HYLIFE-II Fusion Reactor. Katherine Manfred Polar Direct-Drive Simulations for a Laser-Driven HYLIFE-II Fusion Reactor Katherine Manfred Polar Direct-Drive Simulations for a Laser-Driven HYLIFE-II Fusion Reactor Katherine M. Manfred Fairport High

More information

Polar-drive implosions on OMEGA and the National Ignition Facility

Polar-drive implosions on OMEGA and the National Ignition Facility Polar-drive implosions on OMEGA and the National Ignition Facility P. B. Radha, F. J. Marshall, J. A. Marozas, A. Shvydky, I. Gabalski et al. Citation: Phys. Plasmas 20, 056306 (2013); doi: 10.1063/1.4803083

More information

X-ray driven implosions at ignition relevant velocities on the National Ignition Facilitya) Phys. Plasmas 20, (2013); /1.

X-ray driven implosions at ignition relevant velocities on the National Ignition Facilitya) Phys. Plasmas 20, (2013); /1. A Particle X-ray Temporal Diagnostic (PXTD) for studies of kinetic, multi-ion effects, and ion-electron equilibration rates in Inertial Confinement Fusion plasmas at OMEGA (invited) H. Sio, J. A. Frenje,

More information

Physics of Laser-Plasma Interaction and Shock Ignition of Fusion Reactions

Physics of Laser-Plasma Interaction and Shock Ignition of Fusion Reactions Modelisation and Numerical Methods for Hot Plasmas Talence, October 14, 2015 Physics of Laser-Plasma Interaction and Shock Ignition of Fusion Reactions V. T. Tikhonchuk, A. Colaïtis, A. Vallet, E. Llor

More information

Development of a WDM platform for chargedparticle stopping experiments

Development of a WDM platform for chargedparticle stopping experiments Journal of Physics: Conference Series PAPER OPEN ACCESS Development of a WDM platform for chargedparticle stopping experiments To cite this article: A B Zylstra et al 216 J. Phys.: Conf. Ser. 717 12118

More information

High-Intensity Shock-Ignition Experiments in Planar Geometry

High-Intensity Shock-Ignition Experiments in Planar Geometry High-Intensity Shock-Ignition Experiments in Planar Geometry Low intensity High intensity 4 nm CH 3 nm Mo 138 nm quartz VISAR SOP Simulated peak pressure (Mbar) 1 5 Laser backscatter 17.5 kev Mo K a Hard

More information

Effects of Atomic Mixing in Inertial Confinement Fusion by Multifluid Interpenetration Mix Model

Effects of Atomic Mixing in Inertial Confinement Fusion by Multifluid Interpenetration Mix Model Commun. Theor. Phys. (Beijing, China) 52 (2009) pp. 1102 1106 c Chinese Physical Society and IOP Publishing Ltd Vol. 52, No. 6, December 15, 2009 Effects of Atomic Mixing in Inertial Confinement Fusion

More information

Laser Absorption, Mass Ablation Rate, and Shock Heating in Direct-Drive Inertial Confinement Fusion

Laser Absorption, Mass Ablation Rate, and Shock Heating in Direct-Drive Inertial Confinement Fusion Laser Absorption, Mass Ablation Rate, and Shock Heating in Direct-Drive Inertial Confinement Fusion Introduction Inertial confinement fusion (ICF) occurs when a spherical shell target containing cryogenic

More information

Journal of Physics: Conference Series PAPER OPEN ACCESS. To cite this article: T J Murphy et al 2016 J. Phys.: Conf. Ser.

Journal of Physics: Conference Series PAPER OPEN ACCESS. To cite this article: T J Murphy et al 2016 J. Phys.: Conf. Ser. Journal of Physics: Conference Series PAPER OPEN ACCESS Progress in the development of the MARBLE platform for studying thermonuclear burn in the presence of heterogeneous mix on OMEGA and the National

More information

Signatures of Target Performance and Mixing in Titanium-Doped Target Implosions on OMEGA

Signatures of Target Performance and Mixing in Titanium-Doped Target Implosions on OMEGA Signatures of Target Performance and Mixing in Titanium-Doped Target Implosions on OMEGA In recently published work we discussed the signatures of mixing 1 and of target performance 2 provided by incorporating

More information

Update on MJ Laser Target Physics

Update on MJ Laser Target Physics Update on MJ Laser Target Physics P.A.Holstein, J.Giorla, M.Casanova, F.Chaland, C.Cherfils, E. Dattolo, D.Galmiche, S.Laffite, E.Lefebvre, P.Loiseau, M.C. Monteil, F.Poggi, G.Riazuelo, Y.Saillard CEA

More information

Fast Ignition Experimental and Theoretical Researches toward Fast Ignition Realization Experiment (FIREX)

Fast Ignition Experimental and Theoretical Researches toward Fast Ignition Realization Experiment (FIREX) 1 Fast Ignition Experimental and Theoretical Researches toward Fast Ignition Realization Experiment (FIREX) K. Mima 1), H. Azechi 1), H. Fujita 1), Y. Izawa 1), T. Jitsuno 1), T. Johzaki 1), Y. Kitagawa

More information

Imploded Shell Parameter Estimation Based on Radiograph Analysis. George Liu. Pittsford Sutherland High School. LLE Advisor: Reuben Epstein

Imploded Shell Parameter Estimation Based on Radiograph Analysis. George Liu. Pittsford Sutherland High School. LLE Advisor: Reuben Epstein Imploded Shell Parameter Estimation Based on Radiograph Analysis George Liu Pittsford Sutherland High School LLE Advisor: Reuben Epstein Laboratory for Laser Energetics University of Rochester Summer High

More information

Inertial Confinement Fusion Experiments & Modeling

Inertial Confinement Fusion Experiments & Modeling Inertial Confinement Fusion Experiments & Modeling Using X-ray Absorption Spectroscopy of Thin Tracer Layers to Diagnose the Time-Dependent Properties of ICF Ablator Materials David Cohen (Swarthmore College,

More information

Polar-Direct-Drive Experiments on the National Ignition Facility

Polar-Direct-Drive Experiments on the National Ignition Facility Polar-Direct-Drive Experiments on the National Ignition Facility M. Hohenberger, 1 P. B. Radha, 1 J. F. Myatt, 1 S. LePape, 2 J. A. Marozas, 1 F. J. Marshall, 1 D. T. Michel, 1 S. P. Regan, 1 W. Seka,

More information

Volume 71 April-June 1997 DOE/SF/ : UNIVERSITY OF ROCHESTER ./ 4 LABORATORY FOR LASER ENERGETICS. LLE Review. -$ Quarterly Report

Volume 71 April-June 1997 DOE/SF/ : UNIVERSITY OF ROCHESTER ./ 4 LABORATORY FOR LASER ENERGETICS. LLE Review. -$ Quarterly Report ' 4: UNIVERSITY OF ROCHESTER./ 4 LABORATORY FOR LASER ENERGETICS Volume 71 April-June 1997 DOE/SF/19460-186 LLE Review -$ Quarterly Report 7 About the Cover: Photograph of planar-foil target used for Rayleigh

More information