BROCK UNIVERSITY SOLUTIONS

Size: px
Start display at page:

Download "BROCK UNIVERSITY SOLUTIONS"

Transcription

1 BROCK UNIVERSITY Final Exam: April 2014 Number of pages: 11 (+ formula sheet) Course: PHYS 1P22/1P92 Number of students: 134 Examination date: 17 April 2014 Number of hours: 3 Time of Examination: 9:00 12:00 Instructor: S. D Agostino A formula sheet is attached at the end of the test paper. No other aids are permitted except for a non-programmable, non-graphing calculator. Solve all problems in the space provided. Total number of marks: 50 SOLUTIONS 1. [4 marks] Determine the magnitude and direction of the electric field 1.0 mm away from (a) a proton, and (b) an electron. Solution: (a) The magnitude of the electric field due to the proton is E = KQ r 2 E = ( N.m 2 /C 2 )( C) ( m) 2 E = N/C The electric field is directed radially away from the proton. (b) Because the magnitude of the charge on the electron is the same as the magnitude of the charge on the proton, the magnitude of the electric field due to the electron is the same as the magnitude of the electric field due to the proton, at equal distances. The electric field due to the electron is directed radially towards the electron. 2. [4 marks] The square loop in the figure has a resistance of 0.10 Ω and has an induced current as shown. (a) Is the magnetic field strength increasing or decreasing? Explain. (b) Determine the rate of change of the magnetic field, B/ t.

2 Solution: (a) The orientation and size of the loop do not change, so the induced current must be due to a change in magnitude of the magnetic field. (The unspoken assumption is that the magnetic field is uniform and does not change direction.) Thus, there are only two possibilities; either the magnetic field increases in magnitude or decreases in magnitude. Apply Lenz s law to each possibilitiy and you will determine that (given the direction of current flow) the magnetic field must be increasing in magnitude. (The induced current produces a magnetic field that opposes the change in flux, and so the induced magnetic field is opposite to the applied magnetic field.) (b) Given the current and the resistance of the loop, we can determine the induced emf in the loop using Ohm s law: E = IR E = (150 ma)(0.10 Ω) E = 15 mv E = V By Faraday s law, E = Φ t = A B t Thus, we can calculate the rate of change of the magnetic field as follows: B t = E A B t = V (0.08 m) 2 B t = 2.3 T/s 3. [6 marks] The allowed energies of a quantum system are 0.0 ev, 1.5 ev, 3.0 ev, and 6.0 ev. Determine the wavelengths that occur in the system s emission spectrum. Solution: First label the energy levels in order: E 1 = 0.0 ev, E 2 = 1.5 ev, E 3 = 3.0 ev, E 4 = 6.0 ev Now determine the transitions, and the energy difference for each transition: Transition Energy Difference (ev) 4 1 E 4 E 1 = = 6.0 ev 4 2 E 4 E 2 = = 4.5 ev 4 3 E 4 E 3 = = 3.0 ev 3 1 E 3 E 1 = = 3.0 ev 3 2 E 3 E 2 = = 1.5 ev 2 1 E 2 E 1 = = 1.5 ev Notice that there are only 4 distinct transition energies. The possible wavelengths of an emitted photon can be calculated using the usual formula (see the lecture notes or the textbook): E = hc λ

3 Solving the previous equation for the wavelength, we obtain Thus, λ = hc E λ 41 = hc = ( J.s)( m/s) E 41 (6.0 ev)( J/eV) = 207 nm Repeating the same calculation for all the other transition energies, we obtain: λ 42 = hc = ( J.s)( m/s) E 42 (4.5 ev)( J/eV) λ 43 = λ 31 = hc = ( J.s)( m/s) E 43 (3.0 ev)( J/eV) λ 32 = λ 21 = hc = ( J.s)( m/s) E 32 (1.5 ev)( J/eV) = 276 nm = 414 nm = 829 nm 4. [5 marks] The allowed energies of a quantum system are 0.0 ev, 2.0 ev, and 6.0 ev. An electron travelling at a speed of m/s collisionally excites the system. Determine the minimum and maximum speeds the electron could have after the collision. Solution: The initial kinetic energy of the electron is K = 1 2 mv2 K = 1 2 ( kg)( m/s) 2 K = J K = J J/eV K = ev In exciting the quantum system, the incoming electron will lose at least 2.0 ev and at most 6.0 ev. Thus, after the collision, the electron will have a minimum kinetic energy of K min = = ev and a maximum kinetic energy of K min = = ev The resulting possible speeds of the electron after the collision are 2Kmin v min = m v min = 2(1.288 ev)( J/eV) kg v min = m/s

4 and 2Kmax v max = m v max = 2(5.288 ev)( J/eV) kg v max = m/s 5. [6 marks] In the circuit in the figure, determine V 1 V 4, V 2 V 4, and V 3 V 4. Solution: First determine the effective resistance of the circuit; after a little work, you ll find that the effective resistance is 10 Ω. From this, the current flowing from the battery can be determined using Ohm s law: V R = 10 V 10Ω = 1.0 A According to our usual convention, we ll choose the low side of the battery to be the zero level for potential; thus, V 4 = 0 V. The high side of the battery, which we can label as position 0, therefore has potential 10 V. The current through the resistor between the battery and position 1 is 1 A, and so the voltage drop across this resistor is Thus, V 0 V 1 = (1 A)(5 Ω) = 5 V V 1 = V 0 5 V = 10 V 5 V = 5 V Using Ohm s law, the current flowing downward from position 1 can be determined: V 1 V 4 10 Ω = 5 V 0 V 10 Ω = 0.5 A Applying Kirchhoff s junction law at position 1, we can conclude that the current flowing between points 1 and 2 is Thus, the potential at position 2 is 1 A 0.5 A = 0.5 A V 2 = V 1 (0.5 A)(5 Ω) = 5 V 2.5 V = 2.5 V

5 The current flowing downward from point 2 is V 2 V 4 10 Ω = 2.5 V 0 V 10 Ω = 0.25 A Applying Kirchhoff s junction law at position 2, we can conclude that the current flowing between points 2 and 3 is Thus, the potential at position 3 is Thus, V 1 V 4 = 5 V V 2 V 4 = 2.5 V V 3 V 4 = 1.25 V 0.5 A 0.25 A = 0.25 A V 3 = V 2 (0.25 A)(5 Ω) = 2.5 V 1.25 V = 1.25 V 6. [5 marks] Determine the change in the electrical potential energy of a 3.0 nc point charge when it is moved from point A to point B in the figure. Solution: The change in electrical potential energy in moving the 3.0 nc charge from point A to point B is U B U A = KQ 1Q 2 r B KQ 1Q 2 r A U B U A = KQ 1 Q 2 ( 1 r B 1 r A ) ( U B U A = ( N.m 2 /C 2 )( C)( C) U B U A = J m m ) 7. [6 marks] An electron beam of diameter 0.40 mm and carrying a current of 50 µa strikes a screen.

6 (a) Determine the number of electrons that strike the screen each second. (b) Determine the electric field strength needed to accelerate the electrons from rest to a final speed of m/s over a distance of 5.0 mm. (c) Each electron transfers its kinetic energy to the screen upon impact. Determine the power delivered by the electron beam to the screen. Solution: (a) I = Q t Q = I t Q = ( C/s)(1 s) Q = C Therefore, the number of electrons that strike the screen each second is C C/electron) = electrons (b) The potential difference experienced by each electron as it is accelerated is: U = Q V V = U Q 1 2 V = mv2 Q 1 2 V = ( kg)( m/s) C V = 4555 V Thus, the magnitude of the electric field is E = V d E = 4555 V m E = V/m (c) The power delivered by the electron beam to the screen is energy/s = energy/electron electrons/s P = 1 2 mv2 Q t P = 1 2 ( kg)( m/s) 2 P = W s

7 8. [4 marks] Electrons in a uniform magnetic field travel in circular orbits with a frequency of Hz. Determine the strength of the magnetic field. Solution: Because the electrons travel in a circular orbit at a constant speed, we can write Newton s second law of motion and use the expression for the centripetal acceleration: F = ma F = m v2 r The force is caused by the uniform magnetic field, and so F = qvb. Inserting this expression into the equation above, we can obtain an expression for the magnetic field strength: qvb = m v2 r B = mv2 qvr B = mv qr We don t know the speed of the electrons and we don t know the radius of their orbit either. However, there must be a connection between these quantities and the frequency of the electron motions around the circle. You can obtain this connection by realizing that for motion at a constant speed, distance = speed time. Using T for the period of the motion (i.e., the time needed for an electron to go once around the circle), we have 2πr = vt 2πr = v 1 f 2πf = v r Using the equation in the previous line, we can substitute for v/r in the equation for the magnetic field strength: B = mv qr B = m q v r B = m q 2πf B = 2π( Hz)( kg) C B = 86 mt 9. [10 marks] Circle the best response in each case.

8 (a) Two strings of different linear density are joined together and pulled taut. A sinusoidal wave on these strings is travelling to the right, as shown in the figure. When the wave crosses the boundary from String 1 to String 2, the frequency does not change and the speed of the wave i. increases. ii. decreases. iii. does not change. iv. [The question can t be answered because we need to know the values of the linear densities of the strings.] v. [The question can t be answered because we need to know the values of the tensions in the strings.] Solution: (ii) Remember that v = fλ for a wave. Thus, if the frequency stays the same but the wavelength decreases, the speed also decreases. (b) Electric equipotential surfaces i. are close together where the electric field is strong, and far apart where the electric field is weak. ii. point away from positive charges and towards negative charges. iii. are such that electric field vectors are tangent to them. iv. are such that electric potential vectors are tangent to them. v. [All of the above are true.] Solution: (i) Remember, electric potential is a scalar quantity, not a vector quantity. (c) When two resistors are connected in series, the equivalent resistance of the combination i. is certainly greater than each individual resistance. ii. is certainly less than each individual resistance. iii. might be greater than, less than, or equal to each individual resistance, depending on the current flowing in the circuit. iv. might be greater than, less than, or equal to each individual resistance, depending on the specific values of the resistances. v. [None of the above.] Solution: (i) (d) The superposition principle

9 i. is like the position principle, only much better. ii. forms the basis for wave superkinematics, together with the supervelocity principle and the superacceleration principle. iii. explains why constructive interference occurs, but not destructive interference. iv. explains why destructive interference occurs, but not constructive interference. v. explains why both constructive and destructive interference occur. Solution: (v) (e) When two resistors are connected in parallel, the equivalent resistance of the combination i. is certainly greater than each individual resistance. ii. is certainly less than each individual resistance. iii. might be greater than, less than, or equal to each individual resistance, depending on the current flowing in the circuit. iv. might be greater than, less than, or equal to each individual resistance, depending on the specific values of the resistances. v. [None of the above.] Solution: (ii) (f) Neutron diffraction provides strong evidence i. that crystals are subject to Heisenberg s uncertainty principle. ii. for both the Big Bang theory and LeBron James s big crunch-time abilities. iii. that neutrons can interfere constructively with crystals. iv. for Bohr s atomic model. v. that neutrons have a wave-like nature. Solution: (v) (g) The ultimate microscopic origin of all magnetic fields is thought to be i. an elementary subatomic particle called the Bohr magneton. ii. an elementary subatomic particle called the magnetic monopole. iii. circulating electric charges. iv. interacting subatomic electric dipoles. v. interacting subatomic magnetic dipoles. Solution: (iii) (h) Experiments involving the photoelectric effect provide strong support for i. the wave model of light. ii. the particle model of light. iii. Bohr s atomic model. iv. Rutherford s atomic model.

10 v. the quark theory of particle physics. Solution: (ii) (i) Electric field lines i. are close together where the electric field is strong, and far apart where the electric field is weak. ii. point away from positive charges and towards negative charges. iii. are such that electric field vectors are tangent to them. iv. never cross where the electric field is nonzero. v. [All of the above are true.] Solution: (v) (j) The figure shows four particles moving to the right as they enter a region of uniform magnetic field. All particles move at the same speed and have the same charge. Which particle has the largest mass? i. Particle A. ii. Particle B. iii. Particle C. iv. Particle D. v. [It s impossible to determine from the information given.] Solution: (iv)

BROCK UNIVERSITY SOLUTIONS

BROCK UNIVERSITY SOLUTIONS BROCK UNIVERSITY Mid-term Test 3: July 2014 Number of pages: 7 (+ formula sheet) Course: PHYS 1P22/1P92 Number of students: 38 Examination date: 10 July 2014 Number of hours: 1 Time of Examination: 18:00

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 115.3 Physics and the Universe FINAL EXAMINATION December 9, 011 NAME: (Last) Please Print (Given) Time: 3 hours STUDENT

More information

Magnets and Electromagnetism

Magnets and Electromagnetism Review 9 Magnets and Electromagnetism 1. A 1.2 cm wire carrying a current of 0.8 A is perpendicular to a 2.4 T magnetic field. What is the magnitude of the force on the wire? 2. A 24 cm length of wire

More information

21 MAGNETIC FORCES AND MAGNETIC FIELDS

21 MAGNETIC FORCES AND MAGNETIC FIELDS CHAPTER 1 MAGNETIC FORCES AND MAGNETIC FIELDS ANSWERS TO FOCUS ON CONCEPTS QUESTIONS 1 (d) Right-Hand Rule No 1 gives the direction of the magnetic force as x for both drawings A and B In drawing C, the

More information

we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron.

we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron. Physics II we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron. Particle Symbol Charge (e) Mass (kg) Proton P +1 1.67

More information

Select the response that best answers the given statement. Be sure to write all final multiple choice answers on your Scantron answer sheet.

Select the response that best answers the given statement. Be sure to write all final multiple choice answers on your Scantron answer sheet. Chapters 15-30 PHYS 1402 - Brooks This practice test is similar to the actual final. The final exam will focus on questions involving solving problems, and not so much on conceptual questions. The final

More information

Physics 6B. Practice Final Solutions

Physics 6B. Practice Final Solutions Physics 6B Practice Final Solutions . Two speakers placed 4m apart produce sound waves with frequency 45Hz. A listener is standing m in front of the left speaker. Describe the sound that he hears. Assume

More information

Louisiana State University Physics 2102, Exam 2, March 5th, 2009.

Louisiana State University Physics 2102, Exam 2, March 5th, 2009. PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 2, March 5th, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),

More information

Physics 106, Section 1

Physics 106, Section 1 Physics 106, Section 1 Magleby Exam 2, Summer 2012 Exam Cid You are allowed a pencil and a testing center calculator. No scratch paper is allowed. Testing center calculators only. 1. A circular coil lays

More information

Physics 2020 Exam 2 Constants and Formulae

Physics 2020 Exam 2 Constants and Formulae Physics 2020 Exam 2 Constants and Formulae Useful Constants k e = 8.99 10 9 N m 2 /C 2 c = 3.00 10 8 m/s ɛ = 8.85 10 12 C 2 /(N m 2 ) µ = 4π 10 7 T m/a e = 1.602 10 19 C h = 6.626 10 34 J s m p = 1.67

More information

BROCK UNIVERSITY. Name: Student #: Page 1 of 8

BROCK UNIVERSITY. Name: Student #: Page 1 of 8 Name: Student #: BROCK UNIVERSITY Page 1 of 8 Mid-term Test 2: March 2010 Number of pages: 8 Course: PHYS 1P22/1P92 Number of students: 125 Examination date: 19 March 2010 Number of hours: 2 Time of Examination:

More information

1P22/1P92 Exam Review Problems 2013 Friday, January 14, :03 AM. Chapter 20

1P22/1P92 Exam Review Problems 2013 Friday, January 14, :03 AM. Chapter 20 Exam Review Problems 2011 Page 1 1P22/1P92 Exam Review Problems 2013 Friday, January 14, 2011 10:03 AM Chapter 20 True or false? 1 It's impossible to place a charge on an insulator, because no current

More information

Exam 2 Solutions. = /10 = / = /m 3, where the factor of

Exam 2 Solutions. = /10 = / = /m 3, where the factor of PHY049 Fall 007 Prof. Yasu Takano Prof. Paul Avery Oct. 17, 007 Exam Solutions 1. (WebAssign 6.6) A current of 1.5 A flows in a copper wire with radius 1.5 mm. If the current is uniform, what is the electron

More information

PHYSICS Units 3 & 4 Written examination (TSSM s 2009 trial exam updated for the current study design) SOLUTIONS

PHYSICS Units 3 & 4 Written examination (TSSM s 2009 trial exam updated for the current study design) SOLUTIONS PHYSICS Units 3 & 4 Written examination (TSSM s 009 trial exam updated for the current study design) SOLUTIONS TSSM 017 Page 1 of 1 SECTION A - Multiple Choice (1 mark each) Question 1 Answer: D ( ) (

More information

APRIL 2015 EXAMINATION version A PHY 132H1S Duration - 2 hours

APRIL 2015 EXAMINATION version A PHY 132H1S Duration - 2 hours Family Name Given Name(s) Student Number Practical Group (Please print in BLOCK LETTERS) as on student card Code as on student card UNIVERSITY OF TORONTO Faculty of Arts and Science APRIL 2015 EXAMINATION

More information

14 December Physics Final Exam. Class PIN. Please give all your answers in 3 significant figures And remember units!

14 December Physics Final Exam. Class PIN. Please give all your answers in 3 significant figures And remember units! 14 December 2011 Physics 2220 Final Exam Class PIN Please give all your answers in 3 significant figures And remember units! Closed Book Equation Sheets Permitted (Unmarked) Non-programmed Calculators

More information

Phys 2B Final Exam Name:

Phys 2B Final Exam Name: Phys 2B Final Exam Name: Multiple Choice (3 points each) 1. Two capacitors initially uncharged are connected in series to a battery, as shown. What is the charge on the top plate of C 1? a. 81 μc b. 18

More information

An ion follows a circular path in a uniform magnetic field. Which single change decreases the radius of the path?

An ion follows a circular path in a uniform magnetic field. Which single change decreases the radius of the path? T5-1 [237 marks] 1. A circuit is formed by connecting a resistor between the terminals of a battery of electromotive force (emf) 6 V. The battery has internal resistance. Which statement is correct when

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Introduction to Quantum Mechanics In order to understand the current-voltage characteristics, we need some knowledge of electron behavior in semiconductor when the electron is subjected to various potential

More information

Subject Area Competencies and Skills (22nd Edition)

Subject Area Competencies and Skills (22nd Edition) Science Education (Physics) Program Requirements Physics 6-12 "C" below indicates where content is covered through coursework 1. Knowledge of the nature of scientific investigation and instruction in physics

More information

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli Lecture PowerPoints Chapter 27 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Final Exam April 21, a) No books, notes, or other such materials are permitted.

Final Exam April 21, a) No books, notes, or other such materials are permitted. Phys 5 Spring 004 Name: Final Exam April, 004 INSTRUCTIONS: a) No books, notes, or other such materials are permitted. b) You may use a calculator. c) You must solve all problems beginning with the equations

More information

AP Physics B Summer Assignment

AP Physics B Summer Assignment BERGEN COUNTY TECHNICAL SCHOOL AP Physics B Summer Assignment 2011 Solve all problems on separate paper. This will be due the first week of school. If you need any help you can e-mail Mr. Zavorotniy at

More information

Physics 212 Midterm 2 Form A

Physics 212 Midterm 2 Form A 1. A wire contains a steady current of 2 A. The charge that passes a cross section in 2 s is: A. 3.2 10-19 C B. 6.4 10-19 C C. 1 C D. 2 C E. 4 C 2. In a Physics 212 lab, Jane measures the current versus

More information

Chapter 10. Electrostatics

Chapter 10. Electrostatics Chapter 10 Electrostatics 3 4 AP Physics Multiple Choice Practice Electrostatics 1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity. A solid conducting sphere

More information

Chapter 12. Magnetism and Electromagnetism

Chapter 12. Magnetism and Electromagnetism Chapter 12 Magnetism and Electromagnetism 167 168 AP Physics Multiple Choice Practice Magnetism and Electromagnetism SECTION A Magnetostatics 1. Four infinitely long wires are arranged as shown in the

More information

= e = e 3 = = 4.98%

= e = e 3 = = 4.98% PHYS 212 Exam 2 - Practice Test - Solutions 1E In order to use the equation for discharging, we should consider the amount of charge remaining after three time constants, which would have to be q(t)/q0.

More information

AP Physics Electromagnetic Wrap Up

AP Physics Electromagnetic Wrap Up AP Physics Electromagnetic Wrap Up Here are the glorious equations for this wonderful section. This is the equation for the magnetic force acting on a moving charged particle in a magnetic field. The angle

More information

Physics 3204 Final Review (Based on June 2014 exam) Name:

Physics 3204 Final Review (Based on June 2014 exam) Name: Physics 3204 Final Review (Based on June 2014 exam) Name: Scan this QR code (or go to http://www.ed.gov.nl.ca/edu/k12/evaluation/physics3204/ june_2014_physics_3204_outcome_report.pdf) to see the Exam

More information

Engage Education Foundation

Engage Education Foundation B Free Exam for 2013-16 VCE study design Engage Education Foundation Units 3 and 4 Physics Practice Exam Solutions Stop! Don t look at these solutions until you have attempted the exam. Any questions?

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 115.3 Physics and the Universe FINAL EXAMINATION December 11, 2009 Time: 3 hours NAME: STUDENT NO.: (Last) Please Print

More information

Exam 2, Phy 2049, Spring Solutions:

Exam 2, Phy 2049, Spring Solutions: Exam 2, Phy 2049, Spring 2017. Solutions: 1. A battery, which has an emf of EMF = 10V and an internal resistance of R 0 = 50Ω, is connected to three resistors, as shown in the figure. The resistors have

More information

PHY 131 Review Session Fall 2015 PART 1:

PHY 131 Review Session Fall 2015 PART 1: PHY 131 Review Session Fall 2015 PART 1: 1. Consider the electric field from a point charge. As you move farther away from the point charge, the electric field decreases at a rate of 1/r 2 with r being

More information

Exam 4 (Final) Solutions

Exam 4 (Final) Solutions PHY049 Spring 006 Prof. Darin Acosta Prof. Greg Stewart May 1, 006 Exam 4 (Final) Solutions 1. Four charges are arranged into a square with side length a=1 cm as shown in the figure. The charges (clockwise

More information

Profs. P. Avery, A. Rinzler, S. Hershfield. Final Exam Solution

Profs. P. Avery, A. Rinzler, S. Hershfield. Final Exam Solution PHY2049 Spring 2010 Profs. P. Avery, A. Rinzler, S. Hershfield Final Exam Solution 1. A proton traveling along the x axis (toward increasing x) has a speed of 1.0 10 5 m/s. At time t = 0 it enters a region

More information

Venue: The University of Melbourne Lecturer: Dr Eddy de Jong

Venue: The University of Melbourne Lecturer: Dr Eddy de Jong PHYSICS VCE SUMMER SCHOOL 2012 A headstart on VCE Physics Units 3&4 Venue: The University of Melbourne Lecturer: Dr Eddy de Jong Thursday 19 January 10:00 am 3:00 pm and Friday 20 January 10:00 3:00 pm

More information

PHYS 212 Final Exam (Old Material) Solutions - Practice Test

PHYS 212 Final Exam (Old Material) Solutions - Practice Test PHYS 212 Final Exam (Old Material) Solutions - Practice Test 1E If the ball is attracted to the rod, it must be made of a conductive material, otherwise it would not have been influenced by the nearby

More information

Welcome to PHY2054C. Office hours: MoTuWeTh 10:00-11:00am (and after class) at PS140

Welcome to PHY2054C. Office hours: MoTuWeTh 10:00-11:00am (and after class) at PS140 Welcome to PHY2054C Office hours: MoTuWeTh 10:00-11:00am (and after class) at PS140 Book: Physics 8 ed. by Cutnell & Johnson, Volume 2 and PHY2054 Lab manual for your labs. One Midterm (July 14) and final

More information

Phys102 Final-163 Zero Version Coordinator: Saleem Rao Tuesday, August 22, 2017 Page: 1. = m/s

Phys102 Final-163 Zero Version Coordinator: Saleem Rao Tuesday, August 22, 2017 Page: 1. = m/s Coordinator: Saleem Rao Tuesday, August 22, 2017 Page: 1 Q1. A 125 cm long string has a mass of 2.00 g and a tension of 7.00 N. Find the lowest resonant frequency of the string. A) 2.5 Hz B) 53.0 Hz C)

More information

From Last Time. Electron diffraction. Making a particle out of waves. Planetary model of atom. Using quantum mechanics ev 1/ 2 nm E kinetic

From Last Time. Electron diffraction. Making a particle out of waves. Planetary model of atom. Using quantum mechanics ev 1/ 2 nm E kinetic From Last Time All objects show both wave-like properties and particle-like properties. Electromagnetic radiation (e.g. light) shows interference effects (wave-like properties), but also comes in discrete

More information

Induction and Inductance

Induction and Inductance Welcome Back to Physics 1308 Induction and Inductance Michael Faraday 22 September 1791 25 August 1867 Announcements Assignments for Tuesday, November 6th: - Reading: Chapter 30.6-30.8 - Watch Videos:

More information

YOUR NAME Sample Final Physics 1404 (Dr. Huang)), Correct answers are underlined.

YOUR NAME Sample Final Physics 1404 (Dr. Huang)), Correct answers are underlined. YOUR NAME Sample Final Physics 1404 (Dr. Huang)), Correct answers are underlined. Useful constants: e=1.6 10-19 C, m e =9.1 10-31 kg, m p =1.67 10-27 kg, ε 0 =8.85 10-12 C 2 /N m 2, c=3 10 8 m/s k e =8.99

More information

Physics 208 Exam 3 Nov. 28, 2006

Physics 208 Exam 3 Nov. 28, 2006 Name: Student ID: Section #: Physics 208 Exam 3 Nov. 28, 2006 Print your name and section clearly above. If you do not know your section number, write your TA s name. Your final answer must be placed in

More information

SUMMARY Phys 2523 (University Physics II) Compiled by Prof. Erickson. F e (r )=q E(r ) dq r 2 ˆr = k e E = V. V (r )=k e r = k q i. r i r.

SUMMARY Phys 2523 (University Physics II) Compiled by Prof. Erickson. F e (r )=q E(r ) dq r 2 ˆr = k e E = V. V (r )=k e r = k q i. r i r. SUMMARY Phys 53 (University Physics II) Compiled by Prof. Erickson q 1 q Coulomb s Law: F 1 = k e r ˆr where k e = 1 4π =8.9875 10 9 N m /C, and =8.85 10 1 C /(N m )isthepermittivity of free space. Generally,

More information

Student ID Number. Part I. Lecture Multiple Choice (43 points total)

Student ID Number. Part I. Lecture Multiple Choice (43 points total) Name Student ID Number Part I. Lecture Multiple Choice (43 points total). (5 pts.) The voltage between the cathode and the screen of a television set is 22 kv. If we assume a speed of zero for an electron

More information

PHYSICS Units 3&4 Written examination

PHYSICS Units 3&4 Written examination PHYSICS Units 3&4 Written examination (TSSM s 2013 trial exam updated for the current study design) SOLUTIONS TSSM 2017 Page 1 of 14 SECTION A - Multiple Choice (1 mark each) Question 1 Answer: D Question

More information

Student number: Question # Mark Maximum Mark. Multiple Choice 20

Student number: Question # Mark Maximum Mark. Multiple Choice 20 Name: Student number: Academic Honesty: Cheating in an examination includes the following: 1. the unauthorized sharing of material such as textbooks during an open book examination; 2. concealing information

More information

g E. An object whose weight on 6 Earth is 5.0 N is dropped from rest above the Moon s surface. What is its momentum after falling for 3.0s?

g E. An object whose weight on 6 Earth is 5.0 N is dropped from rest above the Moon s surface. What is its momentum after falling for 3.0s? PhysicsndMathsTutor.com 1 1. Take the acceleration due to gravity, g E, as 10 m s on the surface of the Earth. The acceleration due to gravity on the surface of the Moon is g E. n object whose weight on

More information

2012 Assessment Report

2012 Assessment Report 2012 Physics GA 3: Examination 2 GENERAL COMMENTS This examination was the final Unit 4 November examination for the VCE Physics Study Design. From 2013, a single examination covering both Units 3 and

More information

Selected "Phacts" for the Physics Regents Exam You Should Know

Selected Phacts for the Physics Regents Exam You Should Know Selected "Phacts" for the Physics Regents Exam You Should Know I. Mechanics Study Hard! 1. Mass and inertia are the same thing. (Mass actually measures inertia in kilograms Much as monetary resources measures

More information

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law Maxwell s equations and EM waves This Lecture More on Motional EMF and Faraday s law Displacement currents Maxwell s equations EM Waves From previous Lecture Time dependent fields and Faraday s Law 1 Radar

More information

Physics 208 Final Exam Dec. 21, 2007

Physics 208 Final Exam Dec. 21, 2007 Page 1 Name: Student ID: Section #: Physics 208 Final Exam Dec. 21, 2007 Print your name and section clearly above. If you do not know your section number, write your TA s name. Your final answer must

More information

How fast can things go?

How fast can things go? Heinemann Physics 12 4e Year 12 Physics Student Name: Practice Exam 1 (Units 3 & 4) This sample exam has been prepared as part of the Pearson suite of resources for the Units 3 and 4 VCE Physics course,

More information

Exam 1 Solutions. The ratio of forces is 1.0, as can be seen from Coulomb s law or Newton s third law.

Exam 1 Solutions. The ratio of forces is 1.0, as can be seen from Coulomb s law or Newton s third law. Prof. Eugene Dunnam Prof. Paul Avery Feb. 6, 007 Exam 1 Solutions 1. A charge Q 1 and a charge Q = 1000Q 1 are located 5 cm apart. The ratio of the electrostatic force on Q 1 to that on Q is: (1) none

More information

Practice Exam 1. Necessary Constants and Equations: Electric force (Coulomb s Law): Electric field due to a point charge:

Practice Exam 1. Necessary Constants and Equations: Electric force (Coulomb s Law): Electric field due to a point charge: Practice Exam 1 Necessary Constants and Equations: Electric force (Coulomb s Law): Electric field due to a point charge: Electric potential due to a point charge: Electric potential energy: Capacitor energy:

More information

GCE AS and A Level. Physics A. AS exams 2009 onwards A2 exams 2010 onwards. Unit 4A: Approved specimen question paper. Version 1.3

GCE AS and A Level. Physics A. AS exams 2009 onwards A2 exams 2010 onwards. Unit 4A: Approved specimen question paper. Version 1.3 GE S and Level Physics S exams 009 onwards exams 010 onwards Unit 4: pproved specimen question paper Version 1.3 General ertificate of Education 010 dvanced Examination abc version 1.3 PHYSIS Unit 4: Fields

More information

Anglo-Chinese Junior College Physics Preliminary Examination Higher 1

Anglo-Chinese Junior College Physics Preliminary Examination Higher 1 Anglo-Chinese Junior College Physics Preliminary Examination Higher 1 CANDIDATE NAME CENTRE NUMBER CLASS INDEX NUMBER PHYSICS Paper 2 Structured questions Candidates answer on the Question Paper No additional

More information

PHYSICS HIGHER LEVEL

PHYSICS HIGHER LEVEL PRE-LEAVING CERTIFICATE EXAMINATION, 2009 PHYSICS HIGHER LEVEL Ti m e : 3 h o u r s Answer three questions from section A and five questions from section B. Page 1 of 8 SECTION A (120 marks) Answer three

More information

Describe the forces and torques exerted on an electric dipole in a field.

Describe the forces and torques exerted on an electric dipole in a field. Learning Outcomes - PHYS 2015 Electric charges and forces: Describe the electrical nature of matter; Explain how an object can be charged; Distinguish between electrical conductors and insulators and the

More information

Subject: PHYSICS Level: ADVANCED Time: 3 hrs

Subject: PHYSICS Level: ADVANCED Time: 3 hrs SIR MICHELANGELO REFALO CENTRE FOR FURTHER STUDIES VICTORIA GOZO Annual Exam 2013 Subject: PHYSICS Level: ADVANCED Time: 3 hrs Take the acceleration due to gravity g = 10m/s 2 Section A Answer all questions

More information

A) I B) II C) III D) IV E) V

A) I B) II C) III D) IV E) V 1. A square loop of wire moves with a constant speed v from a field-free region into a region of uniform B field, as shown. Which of the five graphs correctly shows the induced current i in the loop as

More information

CBSE Sample Paper 1. Question 4 What are the maximum and minimum values of power factor in a LCR circuit and under what conditions?

CBSE Sample Paper 1. Question 4 What are the maximum and minimum values of power factor in a LCR circuit and under what conditions? CBSE Sample Paper General Instruction:. Answer all questions. Internal choices are provided for some questions 3. Question numbers to 8 are very short answer questions and carry mark each. 4. Question

More information

PHY2054 Exam II, Fall, Solutions

PHY2054 Exam II, Fall, Solutions PHY2054 Exam II, Fall, 2011 Solutions 1.) A 5 kω resistor in series with an uncharged capacitor C is connected to a 9 V battery. 3 seconds after the connection, the voltage across the capacitor is 3 V.

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 115.3 Physics and the Universe FINAL EXAMINATION December 8, 2012 NAME: (Last) Please Print (Given) Time: 3 hours STUDENT

More information

Physics 12 Final exam review key

Physics 12 Final exam review key Physics 12 Final exam review key 1) A scalar field differs from a vector field in that A. a scalar field acts in only one direction B. a vector field acts in only one direction C. direction is irrelevant

More information

Chapter 28 Assignment Solutions

Chapter 28 Assignment Solutions Chapter 28 Assignment Solutions Page 770 #23-26, 29-30, 43-48, 55 23) Complete the following concept map using these terms: energy levels, fixed electron radii, Bohr model, photon emission and absorption,

More information

Physics Standard level Paper 1

Physics Standard level Paper 1 Physics Standard level Paper 1 Tuesday 8 November 2016 (morning) 45 minutes Instructions to candidates Do not open this examination paper until instructed to do so. Answer all the questions. For each question,

More information

Modesto Junior College Course Outline of Record PHYS 143

Modesto Junior College Course Outline of Record PHYS 143 Modesto Junior College Course Outline of Record PHYS 143 I. OVERVIEW The following information will appear in the 2011-2012 catalog PHYS 143 Electricity, Magnetism, Optics, Atomic and Nuclear Structure

More information

DEFINITIONS. Linear Motion. Conservation of Momentum. Vectors and Scalars. Circular Motion. Newton s Laws of Motion

DEFINITIONS. Linear Motion. Conservation of Momentum. Vectors and Scalars. Circular Motion. Newton s Laws of Motion DEFINITIONS Linear Motion Mass: The mass of a body is the amount of matter in it. Displacement: The displacement of a body from a point is its distance from a point in a given direction. Velocity: The

More information

Physics 208 Final Exam December 15, 2008

Physics 208 Final Exam December 15, 2008 Page 1 Name: Student ID: Section #: Physics 208 Final Exam December 15, 2008 Print your name and section clearly above. If you do not know your section number, write your TA s name. Your final answer must

More information

Figure 1 A) 2.3 V B) +2.3 V C) +3.6 V D) 1.1 V E) +1.1 V Q2. The current in the 12- Ω resistor shown in the circuit of Figure 2 is:

Figure 1 A) 2.3 V B) +2.3 V C) +3.6 V D) 1.1 V E) +1.1 V Q2. The current in the 12- Ω resistor shown in the circuit of Figure 2 is: Term: 13 Wednesday, May 1, 014 Page: 1 Q1. What is the potential difference V B -V A in the circuit shown in Figure 1 if R 1 =70.0 Ω, R=105 Ω, R 3 =140 Ω, ε 1 =.0 V and ε =7.0 V? Figure 1 A).3 V B) +.3

More information

PHYSICS. Paper 1 (THEORY) Three hours and a quarter

PHYSICS. Paper 1 (THEORY) Three hours and a quarter PHYSICS Paper 1 (THEORY) Three hours and a quarter (The first 15 minutes of the examination are for reading the paper only. Candidates must NOT start writing during this time). -------------------------------------------------------------------

More information

PHYSICS 3204 PUBLIC EXAM QUESTIONS (Quantum pt.1)

PHYSICS 3204 PUBLIC EXAM QUESTIONS (Quantum pt.1) PHYSICS 3204 PUBLIC EXAM QUESTIONS (Quantum pt.1) NAME: August 2009--------------------------------------------------------------------------------------------------------------------------------- 11 41.

More information

PHY 101 Practice Exam III Monday, November 27, 2:15-3:35PM

PHY 101 Practice Exam III Monday, November 27, 2:15-3:35PM 1 PHY 101 Practice Exam III Monday, November 27, 2:15-3:35PM Please be sure to show your work where it is requested. If no work is shown where it is requested, you will not receive any points. Partial

More information

= 560 W C. Watt = second but kilowatt. hr = 1000 J s. 3600s = J This last is a unit of work nor of power.

= 560 W C. Watt = second but kilowatt. hr = 1000 J s. 3600s = J This last is a unit of work nor of power. AP Physics Physics B Exam - 998 Solutions to Multiple Choice BASIC IDEA SOLUTION ANSWER #. v = at + v i The acceleration of all object near the earth surface and in B a vacuum is the same, that is 9.8

More information

ELECTRIC FORCE, FIELD AND POTENTIAL

ELECTRIC FORCE, FIELD AND POTENTIAL AP PHYSICS 2 LEARNING OBJECTIVES AND TOPICS ELECTRIC FORCE, FIELD AND POTENTIAL Static Electricity; Electric Charge and its Conservation Insulators and Conductors Charging Processes: Friction, Conduction

More information

PHYS 1102 EXAM - II. SECTION: (Circle one) 001 (TH 9:30 AM to 10:45AM) 002 (TH 3:30 PM to 4:45 PM) You have 1 hr 45 minutes to complete the test

PHYS 1102 EXAM - II. SECTION: (Circle one) 001 (TH 9:30 AM to 10:45AM) 002 (TH 3:30 PM to 4:45 PM) You have 1 hr 45 minutes to complete the test PHYS 1102 EXAM - II SECTION: (Circle one) 001 (TH 9:30 AM to 10:45AM) 002 (TH 3:30 PM to 4:45 PM) Your Name: Student ID: You have 1 hr 45 minutes to complete the test PLEASE DO NOT START TILL YOU ARE INSTRUCTED

More information

Fig. 2.1 I =... A [2] Suggest why it would be impossible for overhead cables carrying an alternating current to float in the Earth s magnetic field.

Fig. 2.1 I =... A [2] Suggest why it would be impossible for overhead cables carrying an alternating current to float in the Earth s magnetic field. 1 (a) Fig. 2.1 shows a horizontal current-carrying wire placed in a uniform magnetic field. I region of uniform magnetic field wire Fig. 2.1 The magnetic field of flux density 0.070 T is at right angles

More information

Circle correct course: PHYS 1P21 or PHYS 1P91 BROCK UNIVERSITY

Circle correct course: PHYS 1P21 or PHYS 1P91 BROCK UNIVERSITY Tutorial #: Circle correct course: PHYS 1P21 or PHYS 1P91 Name: Student #: BROCK UNIVERSITY Test 7: November 2015 Number of pages: 5 Course: PHYS 1P21/1P91 Number of students: 218 Examination date: 17

More information

time/s force/n Polesworth High School 1

time/s force/n Polesworth High School 1 1. A toy locomotive of mass 0.50kg is initially at rest on a horizontal track. The locomotive is powered by a twisted rubber band which, as it unwinds, exerts a force which varies with time as shown in

More information

Physics 126 Practice Exam #4 Professor Siegel

Physics 126 Practice Exam #4 Professor Siegel Physics 126 Practice Exam #4 Professor Siegel Name: Lab Day: 1. Light is usually thought of as wave-like in nature and electrons as particle-like. In which one of the following instances does light behave

More information

2. Determine the excess charge on the outer surface of the outer sphere (a distance c from the center of the system).

2. Determine the excess charge on the outer surface of the outer sphere (a distance c from the center of the system). Use the following to answer question 1. Two point charges, A and B, lie along a line separated by a distance L. The point x is the midpoint of their separation. 1. Which combination of charges will yield

More information

Physics. Student Materials Advanced Higher. Tutorial Problems Electrical Phenomena HIGHER STILL. Spring 2000

Physics. Student Materials Advanced Higher. Tutorial Problems Electrical Phenomena HIGHER STILL. Spring 2000 Spring 2000 HIGHER STILL Physics Student Materials Advanced Higher Tutorial Problems Electrical Phenomena TUTORIAL 1 Coulomb's Inverse Square Law 1 A charge of 2.0 x 10-8 C is placed a distance of 2.0

More information

Unified School District of De Pere Physics Benchmarks

Unified School District of De Pere Physics Benchmarks Content Standards: A. Students will understand that among the science disciplines, there are unifying themes: systems, order, organization, and interactions; evidence, models, and explanations; constancy,

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 2 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 2 Course Objectives correlated to the College Board AP Physics 2 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring Understanding 1.A:

More information

MOCK CET PHYSICS PAPER 1

MOCK CET PHYSICS PAPER 1 MOCK CET PHYSICS PAPER 1 1. Rotational kinetic energy of a body is given by the equation 2 2 where I is moment of inertia and ω angular velocity of the body. The dimensional formula of I using the above

More information

PHYS 241 EXAM #2 November 9, 2006

PHYS 241 EXAM #2 November 9, 2006 1. ( 5 points) A resistance R and a 3.9 H inductance are in series across a 60 Hz AC voltage. The voltage across the resistor is 23 V and the voltage across the inductor is 35 V. Assume that all voltages

More information

MR. HOLL S PHYSICS FACTS MECHANICS. 1) Velocity is a vector quantity that has both magnitude and direction.

MR. HOLL S PHYSICS FACTS MECHANICS. 1) Velocity is a vector quantity that has both magnitude and direction. MR. HOLL S PHYSICS FACTS MECHANICS 1) Velocity is a vector quantity that has both magnitude and direction. 2) Speed is a scalar quantity that has ONLY magnitude. 3) Distance is a scalar and represents

More information

Physics 208 Final Exam May 12, 2008

Physics 208 Final Exam May 12, 2008 Page 1 Name: Solutions Student ID: Section #: Physics 208 Final Exam May 12, 2008 Print your name and section clearly above. If you do not know your section number, write your TA s name. Your final answer

More information

Gen. Phys. II Exam 2 - Chs. 21,22,23 - Circuits, Magnetism, EM Induction Mar. 5, 2018

Gen. Phys. II Exam 2 - Chs. 21,22,23 - Circuits, Magnetism, EM Induction Mar. 5, 2018 Gen. Phys. II Exam 2 - Chs. 21,22,23 - Circuits, Magnetism, EM Induction Mar. 5, 2018 Rec. Time Name For full credit, make your work clear. Show formulas used, essential steps, and results with correct

More information

Chapter 22 Quantum Mechanics & Atomic Structure 22.1 Photon Theory of Light and The Photoelectric Effect Homework # 170

Chapter 22 Quantum Mechanics & Atomic Structure 22.1 Photon Theory of Light and The Photoelectric Effect Homework # 170 22.1 Photon Theory of Light and The Photoelectric Effect Homework # 170 See Homework #95 in "Chapter 12-Electrostatics" for the table of "Useful nformation" on atomic particles. 01. What is the energy

More information

2010 Physics GA 3: Examination 2

2010 Physics GA 3: Examination 2 2010 Physics GA 3: Examination 2 GENERAL COMMENTS The number of students who sat for the 2010 Physics examination 2 was 6839. The mean score was 63 per cent; this indicated that students generally found

More information

Physics 102 Spring 2007: Final Exam Multiple-Choice Questions

Physics 102 Spring 2007: Final Exam Multiple-Choice Questions Last Name: First Name: Physics 102 Spring 2007: Final Exam Multiple-Choice Questions 1. The circuit on the left in the figure below contains a battery of potential V and a variable resistor R V. The circuit

More information

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009.

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),

More information

Objects usually are charged up through the transfer of electrons from one object to the other.

Objects usually are charged up through the transfer of electrons from one object to the other. 1 Part 1: Electric Force Review of Vectors Review your vectors! You should know how to convert from polar form to component form and vice versa add and subtract vectors multiply vectors by scalars Find

More information

Chapter 1: Electrostatics

Chapter 1: Electrostatics 1.1 Coulomb s law a) State Coulomb s law, Chapter 1: Electrostatics b) Sketch the electric force diagram and apply Coulomb s law for a system of point charges. 1.2 Electric field a) Define and use electric

More information

Profs. Y. Takano, P. Avery, S. Hershfield. Final Exam Solution

Profs. Y. Takano, P. Avery, S. Hershfield. Final Exam Solution PHY2049 Fall 2008 Profs. Y. Takano, P. Avery, S. Hershfield Final Exam Solution Note that each problem has three versions, each with different numbers and answers (separated by ). The numbers for each

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 2 Electrostatics Electric flux and Gauss s law Electrical energy potential difference and electric potential potential energy of charged conductors http://www.physics.wayne.edu/~alan/

More information

PHYSICS : CLASS XII ALL SUBJECTIVE ASSESSMENT TEST ASAT

PHYSICS : CLASS XII ALL SUBJECTIVE ASSESSMENT TEST ASAT PHYSICS 202 203: CLASS XII ALL SUBJECTIVE ASSESSMENT TEST ASAT MM MARKS: 70] [TIME: 3 HOUR General Instructions: All the questions are compulsory Question no. to 8 consist of one marks questions, which

More information

Your name: Your TA: Your section Day/Time: PHY 101 Practice in-class exam III Wednesday, November 28, 3:15-3:35PM

Your name: Your TA: Your section Day/Time: PHY 101 Practice in-class exam III Wednesday, November 28, 3:15-3:35PM 1 Your name: Your TA: Your section Day/Time: PHY 101 Practice in-class exam III Wednesday, November 28, 3:15-3:35PM Please be sure to show your work where it is requested. If no work is shown where it

More information