V. Practical Optimization

Size: px
Start display at page:

Download "V. Practical Optimization"

Transcription

1 V. Practical Otimization Scaling Practical Otimality Parameterization Otimization Objectives Means Solutions ω c -otimization Observer based design V-

2 Definition of Gain and Frequency Scales G ( s) kg () s G ( s) G ( s/ ω ) k = = ss ( +.4) s s s s ( + ) ( + ).4.4 ω ω k =.67 ω =.4 V-

3 Unit-Gain Unit-Bandwidth Plants,,,,,,... s+ s s + ξs+ s(s+) s s + ξ s + ξ s+ 3 s+ s + ξ zs+ 3 ξ ξ ξ,,... s + s+ s + s + s+ Controllers for UGUB lants are redetermined V-3

4 Scaling of a controller for a new lant Sto reinventing the wheel A class of rocesses/lants, differ only in dc-gain and bandwidth Normalization of lants: unit-gain unit-bandwidth Controller design for UGUB lants Controller is obtained by scaling UGUB controllers {G (s), G c (s) } {kg (s/ω ), G c (s/ω )/k} V-4

5 Scaling of PID ki { G(), s Gc() s = k+ + ks d } s ω s { kg( s/ ω ), Gc() s = ( k + ki + kd )/ k} s ω k kiω kd k =, ki =, kd = k k kω V-5

6 Scaling Examle G () s = s + s+.5 ste resonse original PID scaled PID k =3, k i =, and k d =. G () s = s s ( ) + + k = 3, k =, k =. i d zoomed in control signal time second V-6

7 Practical Otimality Otimization of Control Law: To maximizing a function of given erformance measures subject to the hysical limitations of the design Quality of Control: Seed, Accuracy, Disturbance Rejection Constraints: Samling Rate, Sensor Noise, Uncertainty, Actuation Smoothness, Saturations V-7

8 w c -Otimization maximizing the loo gain bandwidth, ω c, subject to the hysical limitations of the design. V-8

9 w c - Parameterization arameterization of the controllers, G c (s,ω c ), for the unit gain and unit bandwidth that result in the loo gain bandwidth to be ω c, or closed-loo transfer function to be ω ω ω,,,... s+ s+ s+ 3 c c c 3 ωc ( ωc) ( ωc) V-9

10 w c - Parameterization Examles G (s) s + s s + ξ s+ s ss+ ( ) G c (s,ω c ) ω c ( s + ) s ω c ω s + ξ s+ c ss ( + ωc) ω c ( s + ) s + ω c ωc s s + ω c V-

11 Parameterization of Loo Shaing Controller db G ( jω) G ( jω) c Command Following Disturbance Rejection - db/dec ω ω c ω Sensor Noise Unknown Dynamics ω s + ω Ls () = G () sg () s = s s + s ω + c ω c n m m s + ω c() () n G s = G s s s + s ω + c ω V-

12 Assumtions The lant is minimum hase; G (s) is given; G c (s) is ω c -arameterized A transient rofile is defined; A simulator is available V-

13 Otimization Procedure. Find lant frequency and gain scales, ω and k;. Select controller G c (s, ω c ) 3. Scale G c (s, ω c ) to obtain G c (s/ω, ω c )/k 5. Digitization and imlementation in simulator; 6. Set an initial value of ω c 7. Gradually increase ω c until a. Control signal becomes too noisy and/or to uneven b. Indication of instability (oscillatory behavior) V-3

14 Examle y = (.4y + 3. T ) + 3.u d G k () s =, k=.67, ω =.4 s s ( + ) ω ω G () s = ss ( + ) G cl ( s) = ωc ( s + ω ) c V-4

15 Control Law u = k ( r y) + k ( y) k = ω and k = ω c d c d k ω ω = =.86 and = =.6( ) c c ωc kd ωc k kω aroximate differentiator: s s ( ) ω + c V-5

16 Secs Settling time: sec Noise is control signal (u) not exceeding mv Torque disturbance: 3%, ste Sensor noise:.% white noise V-6

17 Simulation.5.5 Ste Resonse ste resonse bandwidth: 4 rad/sec bandwidth: rad/sec error With Transient Profile transient rofile and outut bandwidth: 4 rad/sec bandwidth: rad/sec transient rofile error control 3signal time second control 3signal time second V-7

18 Otimization of Observer Based Design Otimization of the observer Otimization of the control law Combined otimization V-8

19 A Generalized Disturbance Observer ( n) ( n ) ( n ) y f(, t y, y,, y =, uu,,... u, w) + bu x = x x = x 3... x n = xn+ + bu x n+ = h y = x z = z β( z yt ()) z = z3 β( z yt ())... z n zn+ βn( z yt ()) bu = + z n+ = βn+ ( z yt ()) z t yt z t yt z t y t ( n ) () (), () (),, n() () zn + t f t y y y uu u w ( n ) ( n ) () (,,,,,,,..., ) V-9

20 w o -otimization Observer bandwidth: ω o s + β s β s+ β = ( s+ ω ) n n n n n o Otimization: Maximize ω o until noise reaches threshold V-

21 Control Law u = z + n+ u b ( n) y = ( f zn+ ) + u u u = k ( r z ) k z... k z n d d n s + k s k s+ k = ( s+ ω ) n n n d d c n V-

22 Design Procedure Ste : Design a arameterized observer and feedback controller; Ste : Design a transient rofile with the equivalent bandwidth of ω ct ; Ste 3: Select an ω o to 5- times larger than ω ct ; Ste 4: Set ω c = ω o and increase both by the same amount until the noises levels and/or oscillations in the control signal and outut exceed the tolerance; Ste 5: Incrementally increase or decrease ω c and ω o individually, but kee the sum the same. V-

23 Examle y = (.4y + 3. T ) + (3. 4) u+ 4u = f + 4u d z 3ωo 3ωo u = 3ωo z+ 4 3ω o y 3 3 ωo ω o z yz, yand, z f =.4y + 3. T +(3.-4)u, as t 3 d u u 3 = d 4 z u = k ( r z ) kz k = ξω, ξ =, and k = ω d c c V-3

24 Simulation outut PD Controller Disturbance Observer Based Controller osition y z error control 3signals time second velocity dy/dt z - disturbance and unknown 3 dyanmics f z time second V-4

25 Self-Tuning ω o Automatically resonse to the noise level ω c Bandwidth scheduling Scaling Factors (k,ω ) Adatation to lant dynamics variations V-5

26 CAD Package Bluerint User Enters Plant Info and Design Sec lant model or resonse hysical limitations design secifications No Feasible? No Yes find a arameterized solution otimize the solution via simulation V-6

27 Summary Three new concets Scaling Parameterization Practical Otimization Alications From art to science Stos reinventing the wheels Otimization in real world V-7

ECSE 4962 Control Systems Design. A Brief Tutorial on Control Design

ECSE 4962 Control Systems Design. A Brief Tutorial on Control Design ECSE 4962 Control Systems Design A Brief Tutorial on Control Design Instructor: Professor John T. Wen TA: Ben Potsaid http://www.cat.rpi.edu/~wen/ecse4962s04/ Don t Wait Until The Last Minute! You got

More information

Radar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D.

Radar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D. Radar Dish ME 304 CONTROL SYSTEMS Mechanical Engineering Deartment, Middle East Technical University Armature controlled dc motor Outside θ D outut Inside θ r inut r θ m Gearbox Control Transmitter θ D

More information

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21-211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21-211 1 / 39 Feedback

More information

6.1 Sketch the z-domain root locus and find the critical gain for the following systems K., the closed-loop characteristic equation is K + z 0.

6.1 Sketch the z-domain root locus and find the critical gain for the following systems K., the closed-loop characteristic equation is K + z 0. 6. Sketch the z-domain root locus and find the critical gain for the following systems K (i) Gz () z 4. (ii) Gz K () ( z+ 9. )( z 9. ) (iii) Gz () Kz ( z. )( z ) (iv) Gz () Kz ( + 9. ) ( z. )( z 8. ) (i)

More information

D(s) G(s) A control system design definition

D(s) G(s) A control system design definition R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure

More information

Time Response Analysis (Part II)

Time Response Analysis (Part II) Time Response Analysis (Part II). A critically damped, continuous-time, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary

More information

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications: 1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.

More information

AN INTRODUCTION TO THE CONTROL THEORY

AN INTRODUCTION TO THE CONTROL THEORY Open-Loop controller An Open-Loop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, non-linear dynamics and parameter

More information

Outline. Classical Control. Lecture 1

Outline. Classical Control. Lecture 1 Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction

More information

Stability of CL System

Stability of CL System Stability of CL System Consider an open loop stable system that becomes unstable with large gain: At the point of instability, K( j) G( j) = 1 0dB K( j) G( j) K( j) G( j) K( j) G( j) =± 180 o 180 o Closed

More information

Feedback-error control

Feedback-error control Chater 4 Feedback-error control 4.1 Introduction This chater exlains the feedback-error (FBE) control scheme originally described by Kawato [, 87, 8]. FBE is a widely used neural network based controller

More information

Robust Performance Design of PID Controllers with Inverse Multiplicative Uncertainty

Robust Performance Design of PID Controllers with Inverse Multiplicative Uncertainty American Control Conference on O'Farrell Street San Francisco CA USA June 9 - July Robust Performance Design of PID Controllers with Inverse Multilicative Uncertainty Tooran Emami John M Watkins Senior

More information

CDS 101/110a: Lecture 8-1 Frequency Domain Design

CDS 101/110a: Lecture 8-1 Frequency Domain Design CDS 11/11a: Lecture 8-1 Frequency Domain Design Richard M. Murray 17 November 28 Goals: Describe canonical control design problem and standard performance measures Show how to use loop shaping to achieve

More information

Today (10/23/01) Today. Reading Assignment: 6.3. Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10

Today (10/23/01) Today. Reading Assignment: 6.3. Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10 Today Today (10/23/01) Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10 Reading Assignment: 6.3 Last Time In the last lecture, we discussed control design through shaping of the loop gain GK:

More information

(a) Find the transfer function of the amplifier. Ans.: G(s) =

(a) Find the transfer function of the amplifier. Ans.: G(s) = 126 INTRDUCTIN T CNTR ENGINEERING 10( s 1) (a) Find the transfer function of the amplifier. Ans.: (. 02s 1)(. 001s 1) (b) Find the expected percent overshoot for a step input for the closed-loop system

More information

Control System Design

Control System Design ELEC ENG 4CL4: Control System Design Notes for Lecture #11 Wednesday, January 28, 2004 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Relative Stability: Stability

More information

Performance of Feedback Control Systems

Performance of Feedback Control Systems Performance of Feedback Control Systems Design of a PID Controller Transient Response of a Closed Loop System Damping Coefficient, Natural frequency, Settling time and Steady-state Error and Type 0, Type

More information

Classify a transfer function to see which order or ramp it can follow and with which expected error.

Classify a transfer function to see which order or ramp it can follow and with which expected error. Dr. J. Tani, Prof. Dr. E. Frazzoli 5-059-00 Control Systems I (Autumn 208) Exercise Set 0 Topic: Specifications for Feedback Systems Discussion: 30.. 208 Learning objectives: The student can grizzi@ethz.ch,

More information

MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions

MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions Question 1. SIGNALS: Design of a noise-cancelling headphone system. 1a. Based on the low-pass filter given, design a high-pass filter,

More information

9. Two-Degrees-of-Freedom Design

9. Two-Degrees-of-Freedom Design 9. Two-Degrees-of-Freedom Design In some feedback schemes we have additional degrees-offreedom outside the feedback path. For example, feed forwarding known disturbance signals or reference signals. In

More information

Introduction to MVC. least common denominator of all non-identical-zero minors of all order of G(s). Example: The minor of order 2: 1 2 ( s 1)

Introduction to MVC. least common denominator of all non-identical-zero minors of all order of G(s). Example: The minor of order 2: 1 2 ( s 1) Introduction to MVC Definition---Proerness and strictly roerness A system G(s) is roer if all its elements { gij ( s)} are roer, and strictly roer if all its elements are strictly roer. Definition---Causal

More information

FEEDBACK CONTROL SYSTEMS

FEEDBACK CONTROL SYSTEMS FEEDBAC CONTROL SYSTEMS. Control System Design. Open and Closed-Loop Control Systems 3. Why Closed-Loop Control? 4. Case Study --- Speed Control of a DC Motor 5. Steady-State Errors in Unity Feedback Control

More information

Root Locus. Motivation Sketching Root Locus Examples. School of Mechanical Engineering Purdue University. ME375 Root Locus - 1

Root Locus. Motivation Sketching Root Locus Examples. School of Mechanical Engineering Purdue University. ME375 Root Locus - 1 Root Locus Motivation Sketching Root Locus Examples ME375 Root Locus - 1 Servo Table Example DC Motor Position Control The block diagram for position control of the servo table is given by: D 0.09 Position

More information

Topic # Feedback Control. State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback

Topic # Feedback Control. State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback Topic #17 16.31 Feedback Control State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback Back to reality Copyright 21 by Jonathan How. All Rights reserved 1 Fall

More information

Control Systems I Lecture 10: System Specifications

Control Systems I Lecture 10: System Specifications Control Systems I Lecture 10: System Specifications Readings: Guzzella, Chapter 10 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 24, 2017 E. Frazzoli (ETH) Lecture

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect

More information

Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL. Glenn Vinnicombe HANDOUT 5. An Introduction to Feedback Control Systems

Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL. Glenn Vinnicombe HANDOUT 5. An Introduction to Feedback Control Systems Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL Glenn Vinnicombe HANDOUT 5 An Introduction to Feedback Control Systems ē(s) ȳ(s) Σ K(s) G(s) z(s) H(s) z(s) = H(s)G(s)K(s) L(s) ē(s)=

More information

Analysis of Fractional order PID controller for Ceramic Infrared Heater

Analysis of Fractional order PID controller for Ceramic Infrared Heater 06 IJEDR Volume 4, Issue ISSN: 3-9939 Analysis of Fractional order PID controller for Ceramic Infrared Heater Vineet Shekher, V.S. Guta, Sumit Saroha EEE, Deartment SRM, University, NCR Camus, Ghaziabad,

More information

Active Control? Contact : Website : Teaching

Active Control? Contact : Website :   Teaching Active Control? Contact : bmokrani@ulb.ac.be Website : http://scmero.ulb.ac.be Teaching Active Control? Disturbances System Measurement Control Controler. Regulator.,,, Aims of an Active Control Disturbances

More information

Positioning Servo Design Example

Positioning Servo Design Example Positioning Servo Design Example 1 Goal. The goal in this design example is to design a control system that will be used in a pick-and-place robot to move the link of a robot between two positions. Usually

More information

Dr Ian R. Manchester

Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign

More information

Controllability and Resiliency Analysis in Heat Exchanger Networks

Controllability and Resiliency Analysis in Heat Exchanger Networks 609 A ublication of CHEMICAL ENGINEERING RANSACIONS VOL. 6, 07 Guest Editors: Petar S Varbanov, Rongxin Su, Hon Loong Lam, Xia Liu, Jiří J Klemeš Coyright 07, AIDIC Servizi S.r.l. ISBN 978-88-95608-5-8;

More information

Lecture 5 Classical Control Overview III. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 5 Classical Control Overview III. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lecture 5 Classical Control Overview III Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore A Fundamental Problem in Control Systems Poles of open

More information

Multivariable Generalized Predictive Scheme for Gas Turbine Control in Combined Cycle Power Plant

Multivariable Generalized Predictive Scheme for Gas Turbine Control in Combined Cycle Power Plant Multivariable Generalized Predictive Scheme for Gas urbine Control in Combined Cycle Power Plant L.X.Niu and X.J.Liu Deartment of Automation North China Electric Power University Beiing, China, 006 e-mail

More information

ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques

ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques [] For the following system, Design a compensator such

More information

DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD

DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD 206 Spring Semester ELEC733 Digital Control System LECTURE 7: DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD For a unit ramp input Tz Ez ( ) 2 ( z ) D( z) G( z) Tz e( ) lim( z) z 2 ( z ) D( z)

More information

Video 5.1 Vijay Kumar and Ani Hsieh

Video 5.1 Vijay Kumar and Ani Hsieh Video 5.1 Vijay Kumar and Ani Hsieh Robo3x-1.1 1 The Purpose of Control Input/Stimulus/ Disturbance System or Plant Output/ Response Understand the Black Box Evaluate the Performance Change the Behavior

More information

Use of Monte Carlo Techniques in Robustness Evaluation of Different Temperature Control Methods of Heated Plates. SC Solutions

Use of Monte Carlo Techniques in Robustness Evaluation of Different Temperature Control Methods of Heated Plates. SC Solutions Use of Monte Carlo Techniques in Robustness Evaluation of Different Temperature Control Methods of Heated Plates Dick de Roover, A. Emami-Naeini, J. L. Ebert, G.W. van der Linden, L. L. Porter and R. L.

More information

Input-output Controllability Analysis

Input-output Controllability Analysis Input-output Controllability Analysis Idea: Find out how well the process can be controlled - without having to design a specific controller Note: Some processes are impossible to control Reference: S.

More information

Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control

Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control Chapter 2 Classical Control System Design Overview Ch. 2. 2. Classical control system design Introduction Introduction Steady-state Steady-state errors errors Type Type k k systems systems Integral Integral

More information

Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types

Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types Venkata Sonti Department of Mechanical Engineering Indian Institute of Science Bangalore, India, 562 This

More information

Chapter 6 - Solved Problems

Chapter 6 - Solved Problems Chapter 6 - Solved Problems Solved Problem 6.. Contributed by - James Welsh, University of Newcastle, Australia. Find suitable values for the PID parameters using the Z-N tuning strategy for the nominal

More information

A Comparative Study on Fault Detection and Self- Reconfiguration

A Comparative Study on Fault Detection and Self- Reconfiguration Cleveland State University EngagedScholarship@CSU ETD Archive 010 A Comparative Study on Fault Detection and Self- Reconfiguration Ning Ge Cleveland State University Follow this and additional works at:

More information

COURSE OUTLINE. Introduction Signals and Noise: 3) Analysis and Simulation Filtering Sensors and associated electronics. Sensors, Signals and Noise

COURSE OUTLINE. Introduction Signals and Noise: 3) Analysis and Simulation Filtering Sensors and associated electronics. Sensors, Signals and Noise Sensors, Signals and Noise 1 COURSE OUTLINE Introduction Signals and Noise: 3) Analysis and Simulation Filtering Sensors and associated electronics Noise Analysis and Simulation White Noise Band-Limited

More information

Control for. Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e

Control for. Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e Control for Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e Motion Systems m F Introduction Timedomain tuning Frequency domain & stability Filters Feedforward Servo-oriented

More information

Oil Temperature Control System PID Controller Algorithm Analysis Research on Sliding Gear Reducer

Oil Temperature Control System PID Controller Algorithm Analysis Research on Sliding Gear Reducer Key Engineering Materials Online: 2014-08-11 SSN: 1662-9795, Vol. 621, 357-364 doi:10.4028/www.scientific.net/kem.621.357 2014 rans ech Publications, Switzerland Oil emerature Control System PD Controller

More information

Chapter 15 - Solved Problems

Chapter 15 - Solved Problems Chapter 5 - Solved Problems Solved Problem 5.. Contributed by - Alvaro Liendo, Universidad Tecnica Federico Santa Maria, Consider a plant having a nominal model given by G o (s) = s + 2 The aim of the

More information

Acceleration Feedback

Acceleration Feedback Acceleration Feedback Mechanical Engineer Modeling & Simulation Electro- Mechanics Electrical- Electronics Engineer Sensors Actuators Computer Systems Engineer Embedded Control Controls Engineer Mechatronic

More information

2.004 Dynamics and Control II Spring 2008

2.004 Dynamics and Control II Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.004 Dynamics and Control II Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts Institute

More information

Feedback Structures for Vapor Compression Cycle Systems

Feedback Structures for Vapor Compression Cycle Systems Proceedings of the 27 American Control Conference Marriott Marquis Hotel at imes Square New York City, USA, July 11-, 27 FrB5.1 Feedback Structures for Vapor Compression Cycle Systems Michael C. Keir,

More information

Introduction to Feedback Control

Introduction to Feedback Control Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

More information

Chapter 12. Feedback Control Characteristics of Feedback Systems

Chapter 12. Feedback Control Characteristics of Feedback Systems Chapter 1 Feedbac Control Feedbac control allows a system dynamic response to be modified without changing any system components. Below, we show an open-loop system (a system without feedbac) and a closed-loop

More information

EE451/551: Digital Control. Relationship Between s and z Planes. The Relationship Between s and z Planes 11/10/2011

EE451/551: Digital Control. Relationship Between s and z Planes. The Relationship Between s and z Planes 11/10/2011 /0/0 EE45/55: Digital Control Chater 6: Digital Control System Design he Relationshi Between s and Planes As noted reviously: s j e e e e r s j where r e and If an analog system has oles at: s n jn a jd

More information

FREQUENCY-RESPONSE DESIGN

FREQUENCY-RESPONSE DESIGN ECE45/55: Feedback Control Systems. 9 FREQUENCY-RESPONSE DESIGN 9.: PD and lead compensation networks The frequency-response methods we have seen so far largely tell us about stability and stability margins

More information

Desired Bode plot shape

Desired Bode plot shape Desired Bode plot shape 0dB Want high gain Use PI or lag control Low freq ess, type High low freq gain for steady state tracking Low high freq gain for noise attenuation Sufficient PM near ω gc for stability

More information

THE 3-DOF helicopter system is a benchmark laboratory

THE 3-DOF helicopter system is a benchmark laboratory Vol:8, No:8, 14 LQR Based PID Controller Design for 3-DOF Helicoter System Santosh Kr. Choudhary International Science Index, Electrical and Information Engineering Vol:8, No:8, 14 waset.org/publication/9999411

More information

BASIC PROPERTIES OF FEEDBACK

BASIC PROPERTIES OF FEEDBACK ECE450/550: Feedback Control Systems. 4 BASIC PROPERTIES OF FEEDBACK 4.: Setting up an example to benchmark controllers There are two basic types/categories of control systems: OPEN LOOP: Disturbance r(t)

More information

Topic # Feedback Control Systems

Topic # Feedback Control Systems Topic #1 16.31 Feedback Control Systems Motivation Basic Linear System Response Fall 2007 16.31 1 1 16.31: Introduction r(t) e(t) d(t) y(t) G c (s) G(s) u(t) Goal: Design a controller G c (s) so that the

More information

School of Mechanical Engineering Purdue University

School of Mechanical Engineering Purdue University Case Study ME375 Frequency Response - 1 Case Study SUPPORT POWER WIRE DROPPERS Electric train derives power through a pantograph, which contacts the power wire, which is suspended from a catenary. During

More information

QFT Framework for Robust Tuning of Power System Stabilizers

QFT Framework for Robust Tuning of Power System Stabilizers 45-E-PSS-75 QFT Framework for Robust Tuning of Power System Stabilizers Seyyed Mohammad Mahdi Alavi, Roozbeh Izadi-Zamanabadi Department of Control Engineering, Aalborg University, Denmark Correspondence

More information

Position Control of Induction Motors by Exact Feedback Linearization *

Position Control of Induction Motors by Exact Feedback Linearization * BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 8 No Sofia 008 Position Control of Induction Motors by Exact Feedback Linearization * Kostadin Kostov Stanislav Enev Farhat

More information

ME 375 System Modeling and Analysis. Homework 11 Solution. Out: 18 November 2011 Due: 30 November 2011 = + +

ME 375 System Modeling and Analysis. Homework 11 Solution. Out: 18 November 2011 Due: 30 November 2011 = + + Out: 8 November Due: 3 November Problem : You are given the following system: Gs () =. s + s+ a) Using Lalace and Inverse Lalace, calculate the unit ste resonse of this system (assume zero initial conditions).

More information

Control System Design

Control System Design ELEC4410 Control System Design Lecture 19: Feedback from Estimated States and Discrete-Time Control Design Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science

More information

EE3CL4: Introduction to Linear Control Systems

EE3CL4: Introduction to Linear Control Systems 1 / 17 EE3CL4: Introduction to Linear Control Systems Section 7: McMaster University Winter 2018 2 / 17 Outline 1 4 / 17 Cascade compensation Throughout this lecture we consider the case of H(s) = 1. We

More information

Analysis and Design of Control Systems in the Time Domain

Analysis and Design of Control Systems in the Time Domain Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.

More information

Chapter 5. Standard LTI Feedback Optimization Setup. 5.1 The Canonical Setup

Chapter 5. Standard LTI Feedback Optimization Setup. 5.1 The Canonical Setup Chapter 5 Standard LTI Feedback Optimization Setup Efficient LTI feedback optimization algorithms comprise a major component of modern feedback design approach: application problems involving complex models

More information

MAS107 Control Theory Exam Solutions 2008

MAS107 Control Theory Exam Solutions 2008 MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve

More information

Homework 7 - Solutions

Homework 7 - Solutions Homework 7 - Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the

More information

Chapter 7 Control. Part Classical Control. Mobile Robotics - Prof Alonzo Kelly, CMU RI

Chapter 7 Control. Part Classical Control. Mobile Robotics - Prof Alonzo Kelly, CMU RI Chapter 7 Control 7.1 Classical Control Part 1 1 7.1 Classical Control Outline 7.1.1 Introduction 7.1.2 Virtual Spring Damper 7.1.3 Feedback Control 7.1.4 Model Referenced and Feedforward Control Summary

More information

MAE 142 Homework #5 Due Friday, March 13, 2009

MAE 142 Homework #5 Due Friday, March 13, 2009 MAE 142 Homework #5 Due Friday, March 13, 2009 Please read through the entire homework set before beginning. Also, please label clearly your answers and summarize your findings as concisely as possible.

More information

EEL2216 Control Theory CT1: PID Controller Design

EEL2216 Control Theory CT1: PID Controller Design EEL6 Control Theory CT: PID Controller Design. Objectives (i) To design proportional-integral-derivative (PID) controller for closed loop control. (ii) To evaluate the performance of different controllers

More information

DSP IC, Solutions. The pseudo-power entering into the adaptor is: 2 b 2 2 ) (a 2. Simple, but long and tedious simplification, yields p = 0.

DSP IC, Solutions. The pseudo-power entering into the adaptor is: 2 b 2 2 ) (a 2. Simple, but long and tedious simplification, yields p = 0. 5 FINITE WORD LENGTH EFFECTS 5.4 For a two-ort adator we have: b a + α(a a ) b a + α(a a ) α R R R + R The seudo-ower entering into the adator is: R (a b ) + R (a b ) Simle, but long and tedious simlification,

More information

Robust Predictive Control of Input Constraints and Interference Suppression for Semi-Trailer System

Robust Predictive Control of Input Constraints and Interference Suppression for Semi-Trailer System Vol.7, No.7 (4),.37-38 htt://dx.doi.org/.457/ica.4.7.7.3 Robust Predictive Control of Inut Constraints and Interference Suression for Semi-Trailer System Zhao, Yang Electronic and Information Technology

More information

Outline. Classical Control. Lecture 5

Outline. Classical Control. Lecture 5 Outline Outline Outline 1 What is 2 Outline What is Why use? Sketching a 1 What is Why use? Sketching a 2 Gain Controller Lead Compensation Lag Compensation What is Properties of a General System Why use?

More information

Analysis of SISO Control Loops

Analysis of SISO Control Loops Chapter 5 Analysis of SISO Control Loops Topics to be covered For a given controller and plant connected in feedback we ask and answer the following questions: Is the loop stable? What are the sensitivities

More information

Subject: BT6008 Process Measurement and Control. The General Control System

Subject: BT6008 Process Measurement and Control. The General Control System WALJAT COLLEGES OF APPLIED SCIENCES In academic partnership with BIRLA INSTITUTE OF TECHNOLOGY Question Bank Course: Biotechnology Session: 005-006 Subject: BT6008 Process Measurement and Control Semester:

More information

Improving the Control System for Pumped Storage Hydro Plant

Improving the Control System for Pumped Storage Hydro Plant 011 International Conference on Computer Communication and Management Proc.of CSIT vol.5 (011) (011) IACSIT Press, Singapore Improving the Control System for Pumped Storage Hydro Plant 1 Sa ad. P. Mansoor

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open

More information

MODEL-BASED MULTIPLE FAULT DETECTION AND ISOLATION FOR NONLINEAR SYSTEMS

MODEL-BASED MULTIPLE FAULT DETECTION AND ISOLATION FOR NONLINEAR SYSTEMS MODEL-BASED MULIPLE FAUL DEECION AND ISOLAION FOR NONLINEAR SYSEMS Ivan Castillo, and homas F. Edgar he University of exas at Austin Austin, X 78712 David Hill Chemstations Houston, X 77009 Abstract A

More information

Iterative Feedback Tuning

Iterative Feedback Tuning Iterative Feedback Tuning Michel Gevers CESAME - UCL Louvain-la-Neuve Belgium Collaboration : H. Hjalmarsson, S. Gunnarsson, O. Lequin, E. Bosmans, L. Triest, M. Mossberg Outline Problem formulation Iterative

More information

Task 1 (24%): PID-control, the SIMC method

Task 1 (24%): PID-control, the SIMC method Final Exam Course SCE1106 Control theory with implementation (theory part) Wednesday December 18, 2014 kl. 9.00-12.00 SKIP THIS PAGE AND REPLACE WITH STANDARD EXAM FRONT PAGE IN WORD FILE December 16,

More information

INTRODUCTION TO DIGITAL CONTROL

INTRODUCTION TO DIGITAL CONTROL ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a linear-time-invariant

More information

CHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING. Professor Dae Ryook Yang

CHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING. Professor Dae Ryook Yang CHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING Professor Dae Ryook Yang Spring 2018 Dept. of Chemical and Biological Engineering 11-1 Road Map of the Lecture XI Controller Design and PID

More information

06 Feedback Control System Characteristics The role of error signals to characterize feedback control system performance.

06 Feedback Control System Characteristics The role of error signals to characterize feedback control system performance. Chapter 06 Feedback 06 Feedback Control System Characteristics The role of error signals to characterize feedback control system performance. Lesson of the Course Fondamenti di Controlli Automatici of

More information

Alireza Mousavi Brunel University

Alireza Mousavi Brunel University Alireza Mousavi Brunel University 1 » Control Process» Control Systems Design & Analysis 2 Open-Loop Control: Is normally a simple switch on and switch off process, for example a light in a room is switched

More information

Positioning Control of One Link Arm with Parametric Uncertainty using Quantitative Feedback Theory

Positioning Control of One Link Arm with Parametric Uncertainty using Quantitative Feedback Theory Memoirs of the Faculty of Engineering, Okayama University, Vol. 43, pp. 39-48, January 2009 Positioning Control of One Link Arm with Parametric Uncertainty using Quantitative Feedback Theory Takayuki KUWASHIMA,

More information

Design of NARMA L-2 Control of Nonlinear Inverted Pendulum

Design of NARMA L-2 Control of Nonlinear Inverted Pendulum International Research Journal of Alied and Basic Sciences 016 Available online at www.irjabs.com ISSN 51-838X / Vol, 10 (6): 679-684 Science Exlorer Publications Design of NARMA L- Control of Nonlinear

More information

Part II. Advanced PID Design Methods

Part II. Advanced PID Design Methods Part II Advanced PID Design Methods 54 Controller transfer function C(s) = k p (1 + 1 T i s + T d s) (71) Many extensions known to the basic design methods introduced in RT I. Four advanced approaches

More information

MODELLING, SIMULATION AND ROBUST ANALYSIS OF THE TEMPERATURE PROCESS CONTROL

MODELLING, SIMULATION AND ROBUST ANALYSIS OF THE TEMPERATURE PROCESS CONTROL The 6 th edition of the Interdiscilinarity in Engineering International Conference Petru Maior University of Tîrgu Mureş, Romania, 2012 MODELLING, SIMULATION AND ROBUST ANALYSIS OF THE TEMPERATURE PROCESS

More information

Exam. 135 minutes + 15 minutes reading time

Exam. 135 minutes + 15 minutes reading time Exam January 23, 27 Control Systems I (5-59-L) Prof. Emilio Frazzoli Exam Exam Duration: 35 minutes + 5 minutes reading time Number of Problems: 45 Number of Points: 53 Permitted aids: Important: 4 pages

More information

Minimax Design of Nonnegative Finite Impulse Response Filters

Minimax Design of Nonnegative Finite Impulse Response Filters Minimax Design of Nonnegative Finite Imulse Resonse Filters Xiaoing Lai, Anke Xue Institute of Information and Control Hangzhou Dianzi University Hangzhou, 3118 China e-mail: laix@hdu.edu.cn; akxue@hdu.edu.cn

More information

Engraving Machine Example

Engraving Machine Example Engraving Machine Example MCE44 - Fall 8 Dr. Richter November 24, 28 Basic Design The X-axis of the engraving machine has the transfer function G(s) = s(s + )(s + 2) In this basic example, we use a proportional

More information

On Fractional Predictive PID Controller Design Method Emmanuel Edet*. Reza Katebi.**

On Fractional Predictive PID Controller Design Method Emmanuel Edet*. Reza Katebi.** On Fractional Predictive PID Controller Design Method Emmanuel Edet*. Reza Katebi.** * echnology and Innovation Centre, Level 4, Deartment of Electronic and Electrical Engineering, University of Strathclyde,

More information

Review: stability; Routh Hurwitz criterion Today s topic: basic properties and benefits of feedback control

Review: stability; Routh Hurwitz criterion Today s topic: basic properties and benefits of feedback control Plan of the Lecture Review: stability; Routh Hurwitz criterion Today s topic: basic properties and benefits of feedback control Goal: understand the difference between open-loop and closed-loop (feedback)

More information

System Modeling: Motor position, θ The physical parameters for the dc motor are:

System Modeling: Motor position, θ The physical parameters for the dc motor are: Dept. of EEE, KUET, Sessional on EE 3202: Expt. # 2 2k15 Batch Experiment No. 02 Name of the experiment: Modeling of Physical systems and study of their closed loop response Objective: (i) (ii) (iii) (iv)

More information

Plan of the Lecture. Review: stability; Routh Hurwitz criterion Today s topic: basic properties and benefits of feedback control

Plan of the Lecture. Review: stability; Routh Hurwitz criterion Today s topic: basic properties and benefits of feedback control Plan of the Lecture Review: stability; Routh Hurwitz criterion Today s topic: basic properties and benefits of feedback control Plan of the Lecture Review: stability; Routh Hurwitz criterion Today s topic:

More information

Answers to multiple choice questions

Answers to multiple choice questions Answers to multiple choice questions Chapter 2 M2.1 (b) M2.2 (a) M2.3 (d) M2.4 (b) M2.5 (a) M2.6 (b) M2.7 (b) M2.8 (c) M2.9 (a) M2.10 (b) Chapter 3 M3.1 (b) M3.2 (d) M3.3 (d) M3.4 (d) M3.5 (c) M3.6 (c)

More information

PID controllers, part I

PID controllers, part I Faculty of Mechanical and Power Engineering Dr inŝ. JANUSZ LICHOTA CONTROL SYSTEMS PID controllers, part I Wrocław 2007 CONTENTS Controller s classification PID controller what is it? Typical controller

More information

LABORATORY INSTRUCTION MANUAL CONTROL SYSTEM II LAB EE 693

LABORATORY INSTRUCTION MANUAL CONTROL SYSTEM II LAB EE 693 LABORATORY INSTRUCTION MANUAL CONTROL SYSTEM II LAB EE 693 ELECTRICAL ENGINEERING DEPARTMENT JIS COLLEGE OF ENGINEERING (AN AUTONOMOUS INSTITUTE) KALYANI, NADIA EXPERIMENT NO : CS II/ TITLE : FAMILIARIZATION

More information

An Internal Stability Example

An Internal Stability Example An Internal Stability Example Roy Smith 26 April 2015 To illustrate the concept of internal stability we will look at an example where there are several pole-zero cancellations between the controller and

More information