Voltage, Current, Resistance and Power Report Tips

Size: px
Start display at page:

Download "Voltage, Current, Resistance and Power Report Tips"

Transcription

1 Voltage, Current, Resistance and Power Report Tips

2 Power in a Circuit Power can be supplied/delivered to a circuit or it can be absorbed by a circuit component. WHAT IS POWER? POWER GENERATED POWER CONSUMMED + If power is supplied by a circuit component (battery), the power is negative - CURRENT FLOWING FROM TO + If power is absorbed by a circuit component, the power is positive CURRENT FLOWING FROM + TO PASSIVE SIGN CONVENTION

3 Power in a Circuit While voltage is related to Potential Energy and is equal to V = IR WHAT IS POWER? The Power is equal to the voltage across a device times the current entering through its positive terminal. or When one joule of energy is required to transfer one coulomb of charge through a device in one second, this produces a rate of energy transfer of one Watt. P = IV The algebraic sum of all power in a circuit must equal zero based on the LAW OF CONSERVATION OF POWER. Sources: Engineering Circuit Analysis, by Hayt, Kemmerly and Durbin,2007 and Circuits by Ulaby and Maharbiz, 2010

4 Power in a Circuit Visualizing Power WHAT IS POWER

5 Power Relationships VOLTAGE CURRENT RESISTANCE POWER Image Source:

6 Power = IV: Variables, Symbols, and Units REMEMBER SOME OF OUR VARIABLES AND UNITS VOLTAGE CURRENT RESISTANCE - POWER VARIABLE SYMBOL UNIT SYMBOL UNIT CONVERSIONS VOLTAGE V VOLTS V V = A, V = J/C CURRENT I AMPS A A = C/s RESISTANCE R OHMS POWER P WATTS W W = J/s OTHERS: ENERGY-FORCE-CHARGE-CAPACITANCE VARIABLE SYMBOL UNIT SYMBOL UNIT CONVERSIONS ENERGY E JOULES J J = Nm FORCE F NEWTON N N=kgm 2 /s 2 CHARGE q COULOMB C CAPACITANCE C FARAD F F = C/V

7 Calculating Power Unit Conversions V 2 R = V2 J VC A V C As Ws J = W (Watts) I V = A V J VC C As Ws J = W (Watts) R I 2 = A2 V A C As J VC Ws J = W (Watts) V = J C 1 Joule is equal to the energy associated with moving 1 coulomb charge through 1 volt of potential Image Source:

8 Calculating Power Where does current flow? 5 V 1 k 1 k WHY DO WE HAVE CURRENT? k

9 Calculating Power Where is there resistance? 5 V 1 k 1 k WHAT DOES RESISTANCE CONTRIBUTE TO? k

10 Calculating Power Where are there a voltage rises? 5 V 1 k 1 k WHAT DOES VOLTAGE CONTRIBUTE TO? k

11 Calculating Power Where are there voltage drops? 5 V 1 k 1 k k

12 Calculating Power Where is power supplied or consumed? 5 V 1 k 1 k WHERE IS POWER POSITIVE? k WHERE IS POWER NEGATIVE?

13 Recall Voltage Divider Method: Can help analyze circuits The voltage divider relates the total voltage to the potential drop across one of the resistors. R eq = R 1 + R 2 I I = V s R eq = V s R 1 +R 2 V s V 1 = I R 1 = V s R 1 + R 2 R 1 = Vs R 1 R 1 + R 2 v i = v s R i R eq V 2 = I R 2 = V s R 1 + R 2 R 2 = Vs R 2 R 1 + R 2 VOLTAGE DIVIDER METHOD VERY POWERFUL TOOL USED TO ANALYZE CIRCUITS!!!

14 Calculating Power Where is power supplied or consumed? 5 V A A 1 k A 1 k k 5 V 4 V 1.33 V WHERE IS POWER POSITIVE? A A WHERE IS POWER NEGATIVE? A A (1) Identify voltage values at all nodes using voltage sources and voltage divider. (2) Identify all currents using Ohm s Law

15 Calculating Power Where is power supplied or consumed? 5 V A A 1 k A 1 k k 5 V 4 V 1.33 V WHERE IS POWER POSITIVE? A A WHERE IS POWER NEGATIVE? A A (1) Identify voltage values at all nodes using voltage sources and voltage divider. (2) Identify all currents using Ohm s Law (3) Determine the power supplied and consumed, and prove that power is conserved for this circuit

16 5 V 1 k 3.0 V 1 k (a) Determine the voltages at nodes A, B, C and D. Calculating Power Where is power supplied or consumed? Node A: Node B: Node C: Node D: 500 A B I3 C I1 I2 I4 I5 (a) Determine the currents I 1 I 7. Label each step according to current. Show your work for each calculation. I4 D I6

17 Module 4: EKG Sensor Objectives READ MODULE CAREFULLY BEFORE LAB THIS WILL SAVE YOU A LOT OF TIME!!! Construct and analyze three types of RC filters. Compare the filter s input and output behavior (amplitude and phase) to the RC time constant. Construct and analyze Bode Plots for each filter to determine the type of filter (low, high or band pass). Construct a circuit that isolates a 1 Hz signal for a 3-wire EKG instrument. Be able to identify low pass and high pass filters in a circuit diagram.

18 These tips will help you get started: 1. Create a folder for your Intro to ECE Course, and create a folder for each module (1 9). 2. Take notes of each file you save and what the data represents. Your notes will help you to write your report, and you will not need to start from scratch. You will be prompted to take notes in each Module. 3. Make sure you have all items needed for your report at hand: Results (graphs and tables) open on computer or print Research Info in bullet format (easier to collect and interpret) References by author and date (you can add numbers and citations at the end). Ex. The operation of the potentiometer is based on change in resistance as a function of the angle motion [Smith2009].

19 Template Highlights 1. Font Requirements (12 Font, single spaced) 2. Table Labels, Units, Captions, and References. SET UP EACH TABLE AND FIGURE FOR EACH PROCEDURE/STEP. Table 1. LED Band Gap Data [1] Material Color Wavelength, nm Max. Forward Current, ma AlGaAs Red GaAsP Yellow GaP Green

20 Template Highlights 3. Figure Labels, Units, Captions, and References. Figure 1. Photon Energy as a function of Wavelength for several LED Materials [1]. 4. Legible Text on all graphs and tables. Compare it to your 12 font text in narrative.

21 Template Highlights 5. Refer to all tables and figures in your narrative. 6. Include all appropriate headings in bold font. See template. Ex. Procedure I: Description 6. For the results section, include subheadings referring back to each procedure in your module handout. 7. Keep report organized, concise and short. 8. Use your own words throughout your report.

22 Template Highlights 10. You can copy and past the circuits from each module handout, with a citation. See example below. Figure 5: Ultrasonic Sensor Circuit [5] This citation would be included under References [5] Ultrasonic Sensor Circuit, Introduction to Sensors, Instrumentation, and Measurements Course: Module II, [Online document], 2015, 2/9/2018, Available HTTP:

23 Template Highlights 11. Make sure to follow the citation formal for all references. See example below for online documents. Online Document: [3] Author name(s), title, [Online document], year month day webpage created, [cited year month day], Available HTTP: full internet address. Example: [3] T. Land, "Web extension to American Psychological Association style (WEAPAS)," [Online document], 1996 Mar 31(Rev 1.2.4), [cited 1996 Sept 14], Available HTTP:

24 Organization of Information It will be easy to put your report together if you do the following: 1. Set up template for the Module coming up. 2. Collect your research before arriving to your lab by using the techniques described in the previous section. 3. Take notes on the data you gather, and label each by the procedure and step number indicated on the module handout. Ex. Procedure 1: Step Collect all the required information needed for each citation (Author, Title, Year, etc ) as you read your research information. Create the shorthand notation for each reference (AuthorYear). You can write the complete reference at the end very quickly if you do not need to go searching for the reference information again. 5. Be careful in preparing your first couple of reports, paying attention to detail. After a couple times of practice, you will begin to follow the procedure almost automatically.

25 Tips for writing 3. Start with the TEMPLATE and erase all the extra information. 4. Add the appropriate HEADINGS and SUBHEADINGS. 5. Write your INTRODUCTION based on your research. Make sure to complete your research step before beginning to write. 6. Write your RESULTS using ACTION sentences. Avoid the use of any contractions. Ex. Didn t, Wouldn t, Can t, etc. 7. AVOID the use of first person. Ex. I noticed that the Voltage increased as a function of Angle. The voltage increased as a function of angle. 8. Add the correct FIGURE and TABLE captions. Make sure all variables include UNITS. 9. Make sure you have all the CITATIONS in order. Your first citation in your report should begin with [1], and increase in number as you read through your report. 10. After your draft is complete, run the SPELL CHECK. 11. After a day has passed, REVIEW/EDIT your draft again.

26 Lab Report Rubric LAB REPORT RUBRIC LINK Used by TAs to grade report. Include a copy of the rubric with your report every week. Use the rubric to grade yourself before you turn in your report.

27 Examples of good and bad reports GOOD REPORTS Refer to your figures and tables in your text. Provide descriptions of your data. What is it? How did you collect it? Why does it behave that way? Make all font for figures and tables large enough to read. Make headings distinctive. BAD REPORTS Missing part of Abstract and/or Intro Missing data (Tables/Figures) Missing explanation of data Format not followed for Figures/Tables. Cannot read data, figures, graphs.

28 Success Points SUCCESS POINTS: TRY TO FIGURE OUT YOUR GRADE AS OF TODAY? WHAT INFORMATION DO YOU NEED AND WHERE CAN YOU GET IT?

29 Homework P7 and P8 + Problem An electron has a velocity of 4.80 x 10 5 km/s. a) Determine the kinetic energy of the electron assuming the mass of the electron is 9.11 x kg. b) If work is done on an electron, and we assume the energy associated with the work is equal to the kinetic energy from part (a), determine the force on the electron if this force moves the electron a distance of 5 mm. c) Assume the electron in part (b) is affected by an electric field and that the force of the electric field is equal to the force calculated in part (b). Determine the magnitude of the electric field if the charge of the electron is assumed to be 1.6 x C.

30 What s Next in Week 4? Will introduce LAB Module IV: EKG LECTURE Quiz 3 Ohm s Law Power con t Intro to Op-Amp NO CLASS ON WED JULY 4 TH Please bring laptops to all lectures and labs.

31 Questions?

Calendar Update Energy of Charges Intro to Circuits Ohm s Law Analog Discovery MATLAB What s next?

Calendar Update Energy of Charges Intro to Circuits Ohm s Law Analog Discovery MATLAB What s next? Calendar Update Energy of Charges Intro to Circuits Ohm s Law Analog Discovery MATLAB What s next? Calendar Update http://www.ece.utep.edu/courses/web1305/ee1305/reso urces.html P2 FOLLOW YOUR PROBLEM

More information

EE1305/EE1105 Intro to Electrical and Computer Engineering Lecture Week 6

EE1305/EE1105 Intro to Electrical and Computer Engineering Lecture Week 6 EE1305/EE1105 Intro to Electrical and Computer Engineering Lecture Week 6 Homework Passive Components Capacitors RC Filters fc Calculations Bode Plots Module III Homework- due 2/20 (Najera), due 2/23 (Quinones)

More information

Lab 10: DC RC circuits

Lab 10: DC RC circuits Name: Lab 10: DC RC circuits Group Members: Date: TA s Name: Objectives: 1. To understand current and voltage characteristics of a DC RC circuit 2. To understand the effect of the RC time constant Apparatus:

More information

Notes on Electricity (Circuits)

Notes on Electricity (Circuits) A circuit is defined to be a collection of energy-givers (batteries) and energy-takers (resistors, light bulbs, radios, etc.) that form a closed path (or complete path) through which electrical current

More information

ELECTRICITY. Electric Circuit. What do you already know about it? Do Smarty Demo 5/30/2010. Electric Current. Voltage? Resistance? Current?

ELECTRICITY. Electric Circuit. What do you already know about it? Do Smarty Demo 5/30/2010. Electric Current. Voltage? Resistance? Current? ELECTRICITY What do you already know about it? Voltage? Resistance? Current? Do Smarty Demo 1 Electric Circuit A path over which electrons travel, out through the negative terminal, through the conductor,

More information

Notes on Electricity (Circuits)

Notes on Electricity (Circuits) A circuit is defined to be a collection of energy-givers (active elements) and energy-takers (passive elements) that form a closed path (or complete path) through which electrical current can flow. The

More information

ECE 220 Laboratory 4 Volt Meter, Comparators, and Timer

ECE 220 Laboratory 4 Volt Meter, Comparators, and Timer ECE 220 Laboratory 4 Volt Meter, Comparators, and Timer Michael W. Marcellin Please follow all rules, procedures and report requirements as described at the beginning of the document entitled ECE 220 Laboratory

More information

Coulomb s constant k = 9x10 9 N m 2 /C 2

Coulomb s constant k = 9x10 9 N m 2 /C 2 1 Part 2: Electric Potential 2.1: Potential (Voltage) & Potential Energy q 2 Potential Energy of Point Charges Symbol U mks units [Joules = J] q 1 r Two point charges share an electric potential energy

More information

Fundamental of Electrical circuits

Fundamental of Electrical circuits Fundamental of Electrical circuits 1 Course Description: Electrical units and definitions: Voltage, current, power, energy, circuit elements: resistors, capacitors, inductors, independent and dependent

More information

Lab Week 6. Quiz #3 Voltage Divider Homework P11, P12 Kirchhoff's Voltage Law (KVL) Kirchhoff's Current Law (KCL) KCL + KVL Module Report tips

Lab Week 6. Quiz #3 Voltage Divider Homework P11, P12 Kirchhoff's Voltage Law (KVL) Kirchhoff's Current Law (KCL) KCL + KVL Module Report tips Lab Week 6 Quiz #3 Voltage Divider Homework P11, P12 Kirchhoff's Voltage Law (KVL) Kirchhoff's Current Law (KCL) KCL + KVL Module Report tips Quiz 3 Voltage Divider (20 pts.) Please clear desks and turn

More information

first name (print) last name (print) brock id (ab17cd) (lab date)

first name (print) last name (print) brock id (ab17cd) (lab date) (ta initials) first name (print) last name (print) brock id (ab17cd) (lab date) Experiment 1 Capacitance In this Experiment you will learn the relationship between the voltage and charge stored on a capacitor;

More information

Experiment 4. RC Circuits. Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor.

Experiment 4. RC Circuits. Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. Experiment 4 RC Circuits 4.1 Objectives Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. Graphically determine the time constant τ for the decay. 4.2

More information

Electric Circuits. June 12, 2013

Electric Circuits. June 12, 2013 Electric Circuits June 12, 2013 Definitions Coulomb is the SI unit for an electric charge. The symbol is "C". Electric Current ( I ) is the flow of electrons per unit time. It is measured in coulombs per

More information

LCR Series Circuits. AC Theory. Introduction to LCR Series Circuits. Module. What you'll learn in Module 9. Module 9 Introduction

LCR Series Circuits. AC Theory. Introduction to LCR Series Circuits. Module. What you'll learn in Module 9. Module 9 Introduction Module 9 AC Theory LCR Series Circuits Introduction to LCR Series Circuits What you'll learn in Module 9. Module 9 Introduction Introduction to LCR Series Circuits. Section 9.1 LCR Series Circuits. Amazing

More information

Lecture 1. EE70 Fall 2007

Lecture 1. EE70 Fall 2007 Lecture 1 EE70 Fall 2007 Instructor Joel Kubby (that would be me) Office: BE-249 Office Hours: M,W,F 2-3 PM or by appointment Phone: (831) 459-1073 E-mail: jkubby@soe.ucsc.edu Teaching Assistant Drew Lohn

More information

In this unit, we will examine the movement of electrons, which we call CURRENT ELECTRICITY.

In this unit, we will examine the movement of electrons, which we call CURRENT ELECTRICITY. Recall: Chemistry and the Atom! What are the 3 subatomic Where are they found in the particles? atom? What electric charges do they have? How was a positive ion created? How was a negative ion created?

More information

Physics 7B-1 (A/B) Professor Cebra. Winter 2010 Lecture 2. Simple Circuits. Slide 1 of 20

Physics 7B-1 (A/B) Professor Cebra. Winter 2010 Lecture 2. Simple Circuits. Slide 1 of 20 Physics 7B-1 (A/B) Professor Cebra Winter 2010 Lecture 2 Simple Circuits Slide 1 of 20 Conservation of Energy Density In the First lecture, we started with energy conservation. We divided by volume (making

More information

Objects usually are charged up through the transfer of electrons from one object to the other.

Objects usually are charged up through the transfer of electrons from one object to the other. 1 Part 1: Electric Force Review of Vectors Review your vectors! You should know how to convert from polar form to component form and vice versa add and subtract vectors multiply vectors by scalars Find

More information

1 of 23. Boardworks Ltd Electrical Power

1 of 23. Boardworks Ltd Electrical Power 1 of 23 Boardworks Ltd 2016 Electrical Power Electrical Power 2 of 23 Boardworks Ltd 2016 What is electrical power? 3 of 23 Boardworks Ltd 2016 Electrical power is the rate at which energy is transferred

More information

Lab 08 Capacitors 2. Figure 2 Series RC circuit with SPDT switch to charge and discharge capacitor.

Lab 08 Capacitors 2. Figure 2 Series RC circuit with SPDT switch to charge and discharge capacitor. Lab 08: Capacitors Last edited March 5, 2018 Learning Objectives: 1. Understand the short-term and long-term behavior of circuits containing capacitors. 2. Understand the mathematical relationship between

More information

Current Electricity.notebook. December 17, 2012

Current Electricity.notebook. December 17, 2012 1 Circuit Diagrams and Assembly 1. Draw a circuit diagram containing a battery, a single throw switch, and a light. 2. Once the diagram has been checked by your teacher, assemble the circuit. Keep the

More information

Lab 5 RC Circuits. What You Need To Know: Physics 212 Lab

Lab 5 RC Circuits. What You Need To Know: Physics 212 Lab Lab 5 R ircuits What You Need To Know: The Physics In the previous two labs you ve dealt strictly with resistors. In today s lab you ll be using a new circuit element called a capacitor. A capacitor consists

More information

EE301 RESISTANCE AND OHM S LAW

EE301 RESISTANCE AND OHM S LAW Learning Objectives a. Describe the concept of resistance b. Use Ohm s law to calculate current, voltage, and resistance values in a circuit c. Discuss the difference between an open circuit and a short

More information

Experiment Guide for RC Circuits

Experiment Guide for RC Circuits Guide-P1 Experiment Guide for RC Circuits I. Introduction 1. Capacitors A capacitor is a passive electronic component that stores energy in the form of an electrostatic field. The unit of capacitance is

More information

Physics 2020 Lab 5 Intro to Circuits

Physics 2020 Lab 5 Intro to Circuits Physics 2020 Lab 5 Intro to Circuits Name Section Tues Wed Thu 8am 10am 12pm 2pm 4pm Introduction In this lab, we will be using The Circuit Construction Kit (CCK). CCK is a computer simulation that allows

More information

Dr. Julie J. Nazareth

Dr. Julie J. Nazareth Name: Dr. Julie J. Nazareth Lab Partner(s): Physics: 133L Date lab performed: Section: Capacitors Parts A & B: Measurement of capacitance single, series, and parallel combinations Table 1: Voltage and

More information

Lab 5 RC Circuits. What You Need To Know: Physics 212 Lab

Lab 5 RC Circuits. What You Need To Know: Physics 212 Lab Lab 5 R ircuits What You Need To Know: The Physics In the previous two labs you ve dealt strictly with resistors. In today s lab you ll be using a new circuit element called a capacitor. A capacitor consists

More information

E40M Review - Part 1

E40M Review - Part 1 E40M Review Part 1 Topics in Part 1 (Today): KCL, KVL, Power Devices: V and I sources, R Nodal Analysis. Superposition Devices: Diodes, C, L Time Domain Diode, C, L Circuits Topics in Part 2 (Wed): MOSFETs,

More information

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and

More information

Electricity. From the word Elektron Greek for amber

Electricity. From the word Elektron Greek for amber Electricity From the word Elektron Greek for amber Electrical systems have two main objectives: To gather, store, process, transport information & Energy To distribute and convert energy Electrical Engineering

More information

Science Olympiad Circuit Lab

Science Olympiad Circuit Lab Science Olympiad Circuit Lab Key Concepts Circuit Lab Overview Circuit Elements & Tools Basic Relationships (I, V, R, P) Resistor Network Configurations (Series & Parallel) Kirchhoff s Laws Examples Glossary

More information

Separating Mixtures - lab diagrams Slip Quiz 1 (New) Classification of Matter (Pogil=notes) Homework Slip Quiz 2

Separating Mixtures - lab diagrams Slip Quiz 1 (New) Classification of Matter (Pogil=notes) Homework Slip Quiz 2 20 Sept 2017 Agenda Separating Mixtures - lab diagrams Slip Quiz 1 (New) Classification of Matter (Pogil=notes) Homework Slip Quiz 2 Separating Mixtures: What could we do to separate the mixture of materials

More information

E40M Charge, Current, Voltage and Electrical Circuits KCL, KVL, Power & Energy Flow. M. Horowitz, J. Plummer, R. Howe 1

E40M Charge, Current, Voltage and Electrical Circuits KCL, KVL, Power & Energy Flow. M. Horowitz, J. Plummer, R. Howe 1 E40M Charge, Current, Voltage and Electrical Circuits KCL, KVL, Power & Energy Flow M. Horowitz, J. Plummer, R. Howe 1 Reading For Topics In These Slides Chapter 1 in the course reader OR A&L 1.6-1.7 -

More information

a + b Time Domain i(τ)dτ.

a + b Time Domain i(τ)dτ. R, C, and L Elements and their v and i relationships We deal with three essential elements in circuit analysis: Resistance R Capacitance C Inductance L Their v and i relationships are summarized below.

More information

ES250: Electrical Science. HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws

ES250: Electrical Science. HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws ES250: Electrical Science HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws Introduction Engineers use electric circuits to solve problems that are important to modern society, such as: 1.

More information

ELEC 250: LINEAR CIRCUITS I COURSE OVERHEADS. These overheads are adapted from the Elec 250 Course Pack developed by Dr. Fayez Guibaly.

ELEC 250: LINEAR CIRCUITS I COURSE OVERHEADS. These overheads are adapted from the Elec 250 Course Pack developed by Dr. Fayez Guibaly. Elec 250: Linear Circuits I 5/4/08 ELEC 250: LINEAR CIRCUITS I COURSE OVERHEADS These overheads are adapted from the Elec 250 Course Pack developed by Dr. Fayez Guibaly. S.W. Neville Elec 250: Linear Circuits

More information

2. Basic Components and Electrical Circuits

2. Basic Components and Electrical Circuits 1 2. Basic Components and Electrical Circuits 2.1 Units and Scales The International System of Units (SI) defines 6 principal units from which the units of all other physical quantities can be derived

More information

Physics 102: Lecture 05 Circuits and Ohm s Law

Physics 102: Lecture 05 Circuits and Ohm s Law Physics 102: Lecture 05 Circuits and Ohm s Law Physics 102: Lecture 5, Slide 1 Summary of Last Time Capacitors Physical C = ke 0 A/d C=Q/V Series 1/C eq = 1/C 1 + 1/C 2 Parallel C eq = C 1 + C 2 Energy

More information

Basic Electricity. ME 120 Lecture Notes. Portland State University Mechanical and Materials Engineering

Basic Electricity. ME 120 Lecture Notes. Portland State University Mechanical and Materials Engineering Basic Electricity ME 120 Lecture Notes Portland State University Mechanical and Materials Engineering Learning Objectives Successful completion of this module will enable students to Link the basic model

More information

Physics 248, Spring 2009 Lab 7: Capacitors and RC-Decay

Physics 248, Spring 2009 Lab 7: Capacitors and RC-Decay Name Section Physics 248, Spring 2009 Lab 7: Capacitors and RC-Decay Your TA will use this sheet to score your lab. It is to be turned in at the end of lab. To receive full credit you must use complete

More information

CHAPTER ONE. 1.1 International System of Units and scientific notation : Basic Units: Quantity Basic unit Symbol as shown in table 1

CHAPTER ONE. 1.1 International System of Units and scientific notation : Basic Units: Quantity Basic unit Symbol as shown in table 1 CHAPTER ONE 1.1 International System of Units and scientific notation : 1.1.1 Basic Units: Quantity Basic unit Symbol as shown in table 1 Table 1 1.1.2 Some scientific notations : as shown in table 2 Table

More information

the electrical nature of matter is inherent in its atomic structure E & M atoms are made up of p+, n, and e- the nucleus has p+ and n

the electrical nature of matter is inherent in its atomic structure E & M atoms are made up of p+, n, and e- the nucleus has p+ and n Electric Forces and Fields E & M the electrical nature of matter is inherent in its atomic structure atoms are made up of p+, n, and e- a.k.a Electricity and Magnetism the nucleus has p+ and n surrounding

More information

Introduction to Electrical and Computer Engineering. International System of Units (SI)

Introduction to Electrical and Computer Engineering. International System of Units (SI) Introduction to Electrical and Computer Engineering Basic Circuits and Simulation Basic Circuits and Simulation (1 of 22) International System of Units (SI) Length: meter (m) Mass: kilogram (kg) Time:

More information

GE 226 Introduction to Experimental Labs. Stan Shadick, Lab Co-ordinator

GE 226 Introduction to Experimental Labs. Stan Shadick, Lab Co-ordinator GE 226 Introduction to Experimental Labs Stan Shadick, Lab Co-ordinator Stan Shadick s Contact Information Office: Room 132.1 Physics Building Phone: 966-6434 E-mail: stan.shadick@usask.ca If you are sick

More information

Gr. 11 Physics Electricity

Gr. 11 Physics Electricity Gr. 11 Physics Electricity This chart contains a complete list of the lessons and homework for Gr. 11 Physics. Please complete all the worksheets and problems listed under Homework before the next class.

More information

Simple circuits - 3 hr

Simple circuits - 3 hr Simple circuits - 3 hr Resistances in circuits Analogy of water flow and electric current An electrical circuit consists of a closed loop with a number of different elements through which electric current

More information

University of TN Chattanooga Physics 1040L 8/18/2012 PHYSICS 1040L LAB LAB 4: R.C. TIME CONSTANT LAB

University of TN Chattanooga Physics 1040L 8/18/2012 PHYSICS 1040L LAB LAB 4: R.C. TIME CONSTANT LAB PHYSICS 1040L LAB LAB 4: R.C. TIME CONSTANT LAB OBJECT: To study the discharging of a capacitor and determine the time constant for a simple circuit. APPARATUS: Capacitor (about 24 μf), two resistors (about

More information

Review of Ohm's Law: The potential drop across a resistor is given by Ohm's Law: V= IR where I is the current and R is the resistance.

Review of Ohm's Law: The potential drop across a resistor is given by Ohm's Law: V= IR where I is the current and R is the resistance. DC Circuits Objectives The objectives of this lab are: 1) to construct an Ohmmeter (a device that measures resistance) using our knowledge of Ohm's Law. 2) to determine an unknown resistance using our

More information

Name: Lab Partner: Section:

Name: Lab Partner: Section: Chapter 6 Capacitors and RC Circuits Name: Lab Partner: Section: 6.1 Purpose The purpose of this experiment is to investigate the physics of capacitors in circuits. The charging and discharging of a capacitor

More information

Physics 102: Lecture 06 Kirchhoff s Laws

Physics 102: Lecture 06 Kirchhoff s Laws Physics 102: Lecture 06 Kirchhoff s Laws Physics 102: Lecture 6, Slide 1 Today Last Lecture Last Time Resistors in series: R eq = R 1 R 2 R 3 Current through each is same; Voltage drop is IR i Resistors

More information

Lab E3: The Wheatstone Bridge

Lab E3: The Wheatstone Bridge E3.1 Lab E3: The Wheatstone Bridge Introduction The Wheatstone bridge is a circuit used to compare an unknown resistance with a known resistance. The bridge is commonly used in control circuits. For instance,

More information

Charge The most basic quantity in an electric circuit is the electric charge. Charge is an electrical property of the atomic particles of which matter

Charge The most basic quantity in an electric circuit is the electric charge. Charge is an electrical property of the atomic particles of which matter Basic Concepts of DC Circuits Introduction An electric circuit is an interconnection of electrical elements. Systems of Units 1 Charge The most basic quantity in an electric circuit is the electric charge.

More information

PHY222 - Lab 7 RC Circuits: Charge Changing in Time Observing the way capacitors in RC circuits charge and discharge.

PHY222 - Lab 7 RC Circuits: Charge Changing in Time Observing the way capacitors in RC circuits charge and discharge. PHY222 Lab 7 RC Circuits: Charge Changing in Time Observing the way capacitors in RC circuits charge and discharge. Print Your Name Print Your Partners' Names You will return this handout to the instructor

More information

Electric Power * OpenStax HS Physics. : By the end of this section, you will be able to:

Electric Power * OpenStax HS Physics. : By the end of this section, you will be able to: OpenStax-CNX module: m54446 1 Electric Power * OpenStax HS Physics This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 1 : By the end of this section,

More information

Kirchhoff s Rules and RC Circuits

Kirchhoff s Rules and RC Circuits PHYSICS II LAB 5 SP212 Kirchhoff s Rules and RC Circuits Pages 10 11 are Appendixes added for extra information. Pages 1 9 only are the Lab instructions. I. Introduction A. Today s Lab will investigate

More information

Lecture #3. Review: Power

Lecture #3. Review: Power Lecture #3 OUTLINE Power calculations Circuit elements Voltage and current sources Electrical resistance (Ohm s law) Kirchhoff s laws Reading Chapter 2 Lecture 3, Slide 1 Review: Power If an element is

More information

In the following information, you will study these three physical quantities as they relate to simple electrical circuits.

In the following information, you will study these three physical quantities as they relate to simple electrical circuits. Module 7 Ohm's Law INTRODUCTION In this experiment, you will study Ohm's Law, the most fundamental relation used in the analysis of electrical circuits. Ohm's Law relates the quantities of voltage, electric

More information

Electric Current. Note: Current has polarity. EECS 42, Spring 2005 Week 2a 1

Electric Current. Note: Current has polarity. EECS 42, Spring 2005 Week 2a 1 Electric Current Definition: rate of positive charge flow Symbol: i Units: Coulombs per second Amperes (A) i = dq/dt where q = charge (in Coulombs), t = time (in seconds) Note: Current has polarity. EECS

More information

Complete all the identification fields below or 10% of the lab value will be deduced from your final mark for this lab.

Complete all the identification fields below or 10% of the lab value will be deduced from your final mark for this lab. Simple circuits 3 hr Identification page Instructions: Print this page and the following ones before your lab session to prepare your lab report. Staple them together with your graphs at the end. If you

More information

Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer

Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer J. McNames Portland State University ECE 221 Circuit Theorems Ver. 1.36 1

More information

Class #12: Experiment The Exponential Function in Circuits, Pt 1

Class #12: Experiment The Exponential Function in Circuits, Pt 1 Class #12: Experiment The Exponential Function in Circuits, Pt 1 Purpose: The objective of this experiment is to begin to become familiar with the properties and uses of the exponential function in circuits

More information

What is electricity? Charges that could be either positive or negative and that they could be transferred from one object to another.

What is electricity? Charges that could be either positive or negative and that they could be transferred from one object to another. Electricity What is electricity? Charges that could be either positive or negative and that they could be transferred from one object to another. What is electrical charge Protons carry positive charges

More information

Experiment Aim: Students will describe the magnitude of resistance and define the EMF (electromotive force) of a cell.

Experiment Aim: Students will describe the magnitude of resistance and define the EMF (electromotive force) of a cell. Experiment I: Electromotive force and internal resistance Experiment Aim: Students will describe the magnitude of resistance and define the EMF (electromotive force) of a cell. Experimental tools and materials:

More information

2 One-dimensional motion with constant acceleration

2 One-dimensional motion with constant acceleration 2 One-dimensional motion with constant acceleration Experiment objectives: 1. Achieve a better understanding of how to solve position, velocity and acceleration problems in one-dimensional motion with

More information

What happens when things change. Transient current and voltage relationships in a simple resistive circuit.

What happens when things change. Transient current and voltage relationships in a simple resistive circuit. Module 4 AC Theory What happens when things change. What you'll learn in Module 4. 4.1 Resistors in DC Circuits Transient events in DC circuits. The difference between Ideal and Practical circuits Transient

More information

DEPARTMENT OF COMPUTER ENGINEERING UNIVERSITY OF LAHORE

DEPARTMENT OF COMPUTER ENGINEERING UNIVERSITY OF LAHORE DEPARTMENT OF COMPUTER ENGINEERING UNIVERSITY OF LAHORE NAME. Section 1 2 3 UNIVERSITY OF LAHORE Department of Computer engineering Linear Circuit Analysis Laboratory Manual 2 Compiled by Engr. Ahmad Bilal

More information

Ohms Law. V = IR V = voltage in volts (aka potential difference) I = Current in amps R = resistance in ohms (Ω)

Ohms Law. V = IR V = voltage in volts (aka potential difference) I = Current in amps R = resistance in ohms (Ω) Ohms Law V = IR V = voltage in volts (aka potential difference) I = Current in amps R = resistance in ohms (Ω) Current How would you define it? Current the movement of electric charge through a medium

More information

52 VOLTAGE, CURRENT, RESISTANCE, AND POWER

52 VOLTAGE, CURRENT, RESISTANCE, AND POWER 52 VOLTAGE, CURRENT, RESISTANCE, AND POWER 1. What is voltage, and what are its units? 2. What are some other possible terms for voltage? 3. Batteries create a potential difference. The potential/voltage

More information

Electrical Engineering Fundamentals for Non-Electrical Engineers

Electrical Engineering Fundamentals for Non-Electrical Engineers Electrical Engineering Fundamentals for Non-Electrical Engineers by Brad Meyer, PE Contents Introduction... 3 Definitions... 3 Power Sources... 4 Series vs. Parallel... 9 Current Behavior at a Node...

More information

Lecture Outline Chapter 21. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 21. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 21 Physics, 4 th Edition James S. Walker Chapter 21 Electric Current and Direct- Current Circuits Units of Chapter 21 Electric Current Resistance and Ohm s Law Energy and Power

More information

EXPERIMENT 12 OHM S LAW

EXPERIMENT 12 OHM S LAW EXPERIMENT 12 OHM S LAW INTRODUCTION: We will study electricity as a flow of electric charge, sometimes making analogies to the flow of water through a pipe. In order for electric charge to flow a complete

More information

ECE2262 Electric Circuits. Chapter 1: Basic Concepts. Overview of the material discussed in ENG 1450

ECE2262 Electric Circuits. Chapter 1: Basic Concepts. Overview of the material discussed in ENG 1450 ECE2262 Electric Circuits Chapter 1: Basic Concepts Overview of the material discussed in ENG 1450 1 Circuit Analysis 2 Lab -ECE 2262 3 LN - ECE 2262 Basic Quantities: Current, Voltage, Energy, Power The

More information

7/06 Electric Fields and Energy

7/06 Electric Fields and Energy Part ASome standard electric field and potential configurations About this lab: Electric fields are created by electric charges and exert force on charges. Electric potential gives an alternative description.

More information

Electricity Courseware Instructions

Electricity Courseware Instructions Physics Electricity Courseware Instructions This courseware acts as a supplement to the classroom instruction. The five sections on the following slide link to the topic areas. Following the topic area

More information

Chapter 21 Electric Current and Circuits

Chapter 21 Electric Current and Circuits Chapter 21 Electric Current and Circuits 1 As an introduction to this chapter you should view the following movie. If you cannot click on the link, then copy it and paste it into your web browser. http://www.ionaphysics.org/movies/vir.mp4

More information

ENGG 225. David Ng. Winter January 9, Circuits, Currents, and Voltages... 5

ENGG 225. David Ng. Winter January 9, Circuits, Currents, and Voltages... 5 ENGG 225 David Ng Winter 2017 Contents 1 January 9, 2017 5 1.1 Circuits, Currents, and Voltages.................... 5 2 January 11, 2017 6 2.1 Ideal Basic Circuit Elements....................... 6 3 January

More information

Direct Current (DC) Circuits

Direct Current (DC) Circuits Direct Current (DC) Circuits NOTE: There are short answer analysis questions in the Participation section the informal lab report. emember to include these answers in your lab notebook as they will be

More information

CIRCUITS AND ELECTRONICS. Introduction and Lumped Circuit Abstraction

CIRCUITS AND ELECTRONICS. Introduction and Lumped Circuit Abstraction 6.002 CIRCUITS AND ELECTRONICS Introduction and Lumped Circuit Abstraction ADMINISTRIVIA Lecturer: Prof. Anant Agarwal Textbook: Agarwal and Lang (A&L) Readings are important! Handout no. 3 Web site http://web.mit.edu/6.002/www/fall00

More information

Experiment 4: Resistances in Circuits

Experiment 4: Resistances in Circuits Name: Partners: Date: Experiment 4: Resistances in Circuits EQUIPMENT NEEDED: Circuits Experiment Board Multimeter Resistors Purpose The purpose of this lab is to begin experimenting with the variables

More information

Capacitor investigations

Capacitor investigations Sensors: Loggers: Voltage Any EASYSENSE Capacitor investigations Logging time: EasyLog (20 s) Teacher s notes 01 Time constant for a capacitor - resistor circuit Theory The charging and discharging of

More information

Some Important Electrical Units

Some Important Electrical Units Some Important Electrical Units Quantity Unit Symbol Current Charge Voltage Resistance Power Ampere Coulomb Volt Ohm Watt A C V W W These derived units are based on fundamental units from the meterkilogram-second

More information

Basic Electrical Circuits Analysis ECE 221

Basic Electrical Circuits Analysis ECE 221 Basic Electrical Circuits Analysis ECE 221 PhD. Khodr Saaifan http://trsys.faculty.jacobs-university.de k.saaifan@jacobs-university.de 1 2 Reference: Electric Circuits, 8th Edition James W. Nilsson, and

More information

Measurement of Electrical Resistance and Ohm s Law

Measurement of Electrical Resistance and Ohm s Law Measurement of Electrical Resistance and Ohm s Law Objectives In this experiment, measurements of the voltage across a wire coil and the current in the wire coil will be used to accomplish the following

More information

Chapter 18 Electric Currents

Chapter 18 Electric Currents Chapter 18 Electric Currents 1 The Electric Battery Volta discovered that electricity could be created if dissimilar metals were connected by a conductive solution called an electrolyte. This is a simple

More information

Today s agenda: Capacitors and Capacitance. You must be able to apply the equation C=Q/V.

Today s agenda: Capacitors and Capacitance. You must be able to apply the equation C=Q/V. Today s agenda: Capacitors and Capacitance. You must be able to apply the equation C=Q/V. Capacitors: parallel plate, cylindrical, spherical. You must be able to calculate the capacitance of capacitors

More information

4.2.1 Current, potential difference and resistance Standard circuit diagram symbols. Content. Key opportunities for skills development WS 1.

4.2.1 Current, potential difference and resistance Standard circuit diagram symbols. Content. Key opportunities for skills development WS 1. 4.2 Electricity Electric charge is a fundamental property of matter everywhere. Understanding the difference in the microstructure of conductors, semiconductors and insulators makes it possible to design

More information

Physics 1214 Chapter 19: Current, Resistance, and Direct-Current Circuits

Physics 1214 Chapter 19: Current, Resistance, and Direct-Current Circuits Physics 1214 Chapter 19: Current, Resistance, and Direct-Current Circuits 1 Current current: (also called electric current) is an motion of charge from one region of a conductor to another. Current When

More information

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations Op-Amp Integrator and Op-Amp Differentiator 1 CAPACITANCE AND INDUCTANCE Introduces

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Review The resistance R of a device is given by Physics for Scientists & Engineers 2 Spring Semester 2005 Lecture 8 R =! L A ρ is resistivity of the material from which the device is constructed L is the

More information

Solutions to these tests are available online in some places (but not all explanations are good)...

Solutions to these tests are available online in some places (but not all explanations are good)... The Physics GRE Sample test put out by ETS https://www.ets.org/s/gre/pdf/practice_book_physics.pdf OSU physics website has lots of tips, and 4 additional tests http://www.physics.ohiostate.edu/undergrad/ugs_gre.php

More information

E40M. RC Circuits and Impedance. M. Horowitz, J. Plummer, R. Howe

E40M. RC Circuits and Impedance. M. Horowitz, J. Plummer, R. Howe E40M RC Circuits and Impedance Reading Reader: Chapter 6 Capacitance (if you haven t read it yet) Section 7.3 Impedance You should skip all the parts about inductors We will talk about them in a lecture

More information

Bfh Ti Control F Ws 2008/2009 Lab Matlab-1

Bfh Ti Control F Ws 2008/2009 Lab Matlab-1 Bfh Ti Control F Ws 2008/2009 Lab Matlab-1 Theme: The very first steps with Matlab. Goals: After this laboratory you should be able to solve simple numerical engineering problems with Matlab. Furthermore,

More information

BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING

BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING Introduction Ismail Mohd Khairuddin, Zulkifil Md Yusof Faculty of Manufacturing Engineering Universiti Malaysia Pahang Introduction BFF1303 ELECTRICAL/ELECTRONICS

More information

E40M Charge, Current, Voltage and Electrical Circuits. M. Horowitz, J. Plummer, R. Howe 1

E40M Charge, Current, Voltage and Electrical Circuits. M. Horowitz, J. Plummer, R. Howe 1 E40M Charge, Current, Voltage and Electrical Circuits M. Horowitz, J. Plummer, R. Howe 1 Understanding the Solar Charger Lab Project #1 We need to understand how: 1. Current, voltage and power behave in

More information

DC motor / generator. Jeffrey A. Meunier

DC motor / generator. Jeffrey A. Meunier DC motor / generator Jeffrey A. Meunier jeffm@engr.uconn.edu Electric motor An electric motor is used to convert electrical energy into mechanical energy. Electric motor An electric motor is used to convert

More information

EE-201 Review Exam I. 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6) None of above

EE-201 Review Exam I. 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6) None of above EE-201, Review Probs Test 1 page-1 Spring 98 EE-201 Review Exam I Multiple Choice (5 points each, no partial credit.) 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6)

More information

1. Review of Circuit Theory Concepts

1. Review of Circuit Theory Concepts 1. Review of Circuit Theory Concepts Lecture notes: Section 1 ECE 65, Winter 2013, F. Najmabadi Circuit Theory is an pproximation to Maxwell s Electromagnetic Equations circuit is made of a bunch of elements

More information

Problem Solver Skill 5. Defines multiple or complex problems and brainstorms a variety of solutions

Problem Solver Skill 5. Defines multiple or complex problems and brainstorms a variety of solutions Motion and Forces Broad Concept: Newton s laws of motion and gravitation describe and predict the motion of most objects. LS 1.1 Compare and contrast vector quantities (such as, displacement, velocity,

More information

EIT Review. Electrical Circuits DC Circuits. Lecturer: Russ Tatro. Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1

EIT Review. Electrical Circuits DC Circuits. Lecturer: Russ Tatro. Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1 EIT Review Electrical Circuits DC Circuits Lecturer: Russ Tatro Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1 Session Outline Basic Concepts Basic Laws Methods of Analysis Circuit

More information

Name Date Time to Complete

Name Date Time to Complete Name Date Time to Complete h m Partner Course/ Section / Grade Complex Circuits In this laboratory you will connect electric lamps together in a variety of circuits. The purpose of these exercises is to

More information