Additional Exercises for Chapter What is the slope-intercept form of the equation of the line given by 3x + 5y + 2 = 0?

Size: px
Start display at page:

Download "Additional Exercises for Chapter What is the slope-intercept form of the equation of the line given by 3x + 5y + 2 = 0?"

Transcription

1 ddiional Eercises for Caper 5 bou Lines, Slopes, and Tangen Lines 39. Find an equaion for e line roug e wo poins (, 7) and (5, ). 4. Wa is e slope-inercep form of e equaion of e line given by 3 + 5y + =? 4. Find an equaion of e line wi slope 3 roug ( 6, 7). 4. Skec e line wi slope and y-inercep. 43. Two lines L and L, neier of em verical nor orizonal, are given. Le eir slopes be m and m respecively. Sow a if e lines are perpendicular, en m = m. Conversely, sow a if m = m, en e lines are perpendicular. One way of doing is is oulined below. Move e lines wiou canging eir slopes so a ey bo go roug e origin O. Le e poins P = (, y ) and P = (, y ) and e angles α, α, β, and β be as sown y P = (, y ) α β' O α' β P = (, y ) L L in e figure. i. Suppose a P OP = 9 and sow a m = m. [Hin: If P OP = 9, en e wo riangles depiced are similar. Wy?] ii. Sow a if α and α are wo acue angles wi an α = an α, en α = α. [Hin: Use wo rig riangles wi e same base o illusrae is.] iii. ssume a m = m and sow a P OP = 9. [Hin: Noice a an α = an α and use (ii).] 44. Skec e grap of e equaion y = + 7. Le P = (, y) be any poin on is grap wi

2 y, and use Leibniz s meod o compue e slope of e angen o e curve a a poin. Find e slope of e angen a e poin (, 3) and deermine an equaion of is angen line. ns: ( 3, 9 4 ) 45. Consider e circle + y = r. Le (, y ) be any poin on e circle wi y and use Leibniz s angen meod o sow a e slope of e angen line o e circle a (, y ) is equal o y. i. Consider e radius of e circle from e origin o e poin (, y ) and sow a i is perpendicular o is angen. ii. Suppose a r =. Consider a line y = + b wi slope and y-inercep b. For 3 3 wic consans b is e line angen o e circle? ns: b = ± 3 ( ) 46. Use e Leibniz angen meod for y 3 = o sow a e slope of e angen a a poin P = (, y) on e grap of is equaion is equal o m P =. (3 +7) 3 Use Facs (no limis) o Compue e Required Derivaives and niderivaives 47. Compue e derivaives of e funcions f() = 3, g() = 4 + 5, () = Use e conclusion of Eercises 45 and 46 o sow a e derivaive of f() = is f () = and a e derivaive of f() = (3 + 7) 3 is f () =. (3 +7) Consider e funcion f() = 5 3 and le P = (, y) be some poin on is grap. Deermine an equaion for e angen line o e grap a P. [Suggesion: Cange e noaion for e coordinaes of P.] 5. Consider e parabola y = and e line y = 3 4. Sow a ey do no inersec. Move e line oward e parabola wiou canging is slope. wa poin will i firs ouc e parabola? 5. Find aniderivaives for e funcions f() = 3 3 +, g() = , and () = Use e resuls of Eercise 49 o find aniderivaives for g() = and g() = (3 +7) Le P = (, y) be a poin on e grap of some funcion f. Illusrae e meaning of e raio f(+ ) f( ) f(+ ) f( ). Wa do you ink a lim is equal o? Ten prove a your answer is correc..

3 Problem from Tokyo 54. Waer is poured a a consan rae ino eac of e ree drinking glasses and ree vases sown below. Eac vessel is empy a e sar. Te grap under e glass labeled (a) represens e eig of e waer in e glass as a funcion of ime. Tink carefully wa is going on in e oer five cases and draw e ime/eig graps for eac. [Tis problem was adaped from a 6 adverisemen in a Tokyo subway for a uorial service for middle scool sudens.] a b c d e f 3

4 More reas and Differenials 55. Consider e funcion g() = 9 wi. Selec e poins on e -ais beween and and compue e sum of e areas y d = g() d of all e recangles a is se of poins deermines. Do so wi ree decimal place accuracy. Tis sum is an approimaion of e area under e grap of g() = 9 over. Repea is compuaion (again wi ree decimal accuracy) wi e poins o ge anoer approimaion of e area under e grap. Wic of ese wo approimaions would you epec o be beer? Use rcimedes s Teorem o ge e eac answer. ns: 8.779, 8.75, Consider e funcion f() = 6 wi. Selec e poins on e -ais beween - and. Compue e sum of e areas y d = f() d of all e recangles a is seup deermines. Do so wi ree decimal place accuracy. Tis sum is an approimaion of e area under e grap of f() = 6 over. Use rcimedes s Teorem o compue is area precisely. ns: , Consider e funcion y = f() = 4. Is grap is e upper alf of e circle of radius wi cener e origin. Selec e poins <. <.4 <.5 <.6 <.8 < <. <.3 <.5 <.6 <.8 <.9 < on e -ais beween and, and compue e sum of e areas y d = f() d of all e recangles a is seup deermines (again wi ree decimal place accuracy). Observe a is sum is an esimae of e area under e upper alf of e circle and over e segmen from o on e -ais. Wa is is area equal o precisely? ns: 3.68, π Consider e funcion y = f() = 9. Is grap is e upper alf of e circle of radius 3 wi cener e origin. Selec e poins < < < < < < on e -ais beween and, and compue e sum of e areas y d = f() d of all e recangles a is seup deermines (again wi ree decimal place accuracy). Observe a is sum is an esimae of e definie inegral 9 d. Use e formula for e area of a circular secor o find e precise value of is inegral. 4

5 Compuing reas and Inegrals by using e Fundamenal Teorem 59. Skec e grap of e funcion f() = +. Compue e area under e grap and over e -ais from = o = 9. ns: Consider e funcion f() = 3 + for 4. Skec is grap and compue e area under e grap and over e -ais. ns: Consider e parabolic secion obained by cuing e parabola y = wi e -ais. Epress e area of e parabolic secion as a definie inegral. Compue is area by applying e Fundamenal Teorem of Calculus and en again by using rcimedes s Teorem. ns: Consider e parabolic secion obained by cuing e parabola y = wi e line y =. Epress e area of e parabolic secion as a definie inegral. To compue e area consider e applicaion of bo e Fundamenal Teorem of Calculus and rcimedes s Teorem. Coose e simpler of e wo meods. ns: Eplain wy b a (f() + g()) d is equal o b a f() d + b a g() d firs by appealing o e definiion, and en again by using o e Fundamenal Teorem of Calculus. Using Derivaives and Inegrals 64. Consider a polynomial of e from f() = a + b + c wi a > and suppose a i as wo (real) roos. Locae e wo roos on e -ais and compue e midpoin beween em. How is is poin relaed o e minimum value of e funcion f()? Wa propery of e grap of f() confirms is connecion. ns: ( b a, ), f () = for = b a. 65. Use derivaives o compue e disance beween e line y = + 5 and e poin ( 4, 3). [Hin: Le (, y) be any poin on e line. Epress e disance beween ( 4, 3) and (, y) as a funcion of. Ten deermine e smalles value of e square of is disance.] ns: Consider e parabola y = and cu i wi e line from (, ) o (4, 8) o obain e parabolic secion sown below. Sow a e equaion of e line of e cu is y =

6 (4, 8) (-, ) O i. Make use of e Fundamenal Teorem o compue e area of e parabolic secion. ii. Compue e coordinaes of e vere V of e parabolic secion. iii. Use calculus o compue e disance from V o e line of e cu. sraegy of Eercise 65.] [Hin: Use e iv. Compue e area of e parabolic secion again, is ime wi rcimedes s Teorem. ns: i. 5, ii. ( 3, 9 8 ), iii Draw e grap of e funcion f() =. Le Q be a poin on e grap and ake e poin P on e -ais so a e segmen QP is perpendicular o e ais. Le be e area of e region under e grap of f and over e segmen from e origin O o P. Le B be e area of e riangle deermined by e angen o e grap a Q, e segmen P Q, and e -ais. Sow a = B no maer were Q is aken Consider e funcion f() = 4 = ( ). i. Sow a f() = for =,, and, bu for no oer. ii. Sow a f() for and a f() < for all oer. iii. Sow a f () = 4( ). iv. Wa is e slope of e angen o e grap a =? =? Find ose a wic e grap as a orizonal angen. v. For wa values of does f acieve is larges value? Wa is e larges value of f? 69. Coninue o consider e funcion f() = 4 = ( ) and is derivaive f () = 4( ). i. Sar wi a large negaive on e -ais. Move owards =. Is f () increasing or decreasing in e process? Now sar a = and move o e rig. Is f () increasing or decreasing? Wa do your answers ell you abou e slopes of e angen lines of e grap of f? ii. Use all e informaion you ave abou f and f o skec e grap of f. iii. pply e Fundamenal Teorem o sow a e area under e grap of f() from 6

7 o is equal o e area under e grap of f() from o. Wa basic feaure of e grap of f is is fac relaed o? Definie Inegrals and Lengs of Circular rcs 7. Consider e circle + y = 4. Refer o e diagrams below, and sow a e -coordinae B o 3 6 o (a) B 45 o 45 o (b) B 6 o 3 (a) o of e poin B is in (a), in (b), and 3 in (c). I follows, as in e discussion of e circle of radius 5 a concludes Secion 5., a e slope of e angen o e circle a any poin (, y) wi y is. Use is o sow a e derivaive of f() = 4 y is f () = 4. Deduce from is and e diagrams a d = π 4 6, d = π 3 4 4, and 4 d = π Consider e funcion f() = r. Te figure below sows is grap, e poin = (, r), a poin B in e firs quadran, and e angle θ wi θ π a B deermines. Use e B θ r fac a f () = r, o verify e equaliy r cos θ r d = π θ. Definie Inegrals as reas, Volumes, and Lengs of Curves 7. Te definie inegral d is bo i. e area under e grap of e funcion f() = over e inerval, and ii. e leng of e grap of e funcion f() = poin (, ). 7 from e poin (, ) o e

8 73. Te definie inegral 3 + d is i. e area under e grap of f() = from = o =, as well as ii. e volume obained by roaing a region under e grap of g() = revoluion abou e -ais, and also iii. e leng of a piece of e grap of () =. 74. Sow a e grap of f() = + 4 is e upper alf of a yperbola and skec i. i. Compue e volume of e solid obained by roaing e region below e grap and above e segmen 6 one complee revoluion around e -ais. ii. Use Leibniz s angen meod for e curve y = + 4 o sow a e derivaive of e funcion f is f () =. +4 iii. Epress as a definie inegral e leng of e yperbolic arc from e poin (, 4) o e poin (3, 5). iv. Compue e area under e grap of e funcion g() = 5. ns: i. 4π 3, iv one and above e segmen 75. Epress as definie inegrals e volumes obained by roaing e graps of e funcions y = sin, π, and y = cos, π, one revoluion around e -ais. Use e relaionsip beween em, o compue eac of ese volumes. bou Hyperbolas 76. Deermine e and y inerceps of e yperbolas 5 y 3 = and y 3 5 = and eir asympoes. Skec eir graps. 77. Skec e asympoes of e yperbolas y = for b equal o,, and on e same b ais sysem. Draw in e graps of e ree yperbolas. 78. Skec e asympoes of e yperbolas y = for b equal o,, and 4 on e same a 4 ais sysem. Draw in e graps of e ree yperbolas. 79. Skec e asympoes of e yperbolas y = for b equal o,, and on e same b ais sysem. Draw in e graps of e ree yperbolas. 8. Sudy e soluion of Eercise 6 of Caper 4 and en sow a e focal poins of e yperbola y = are ( a a b + b, ) and ( a + b, ). 8

9 n sserion of Leibniz 8. Leibniz assers e following (see e boom of e rig column on page 5): nd i was no difficul for me o figure ou a e descripion of is curve could be reduced o e quadraure of e yperbola. Refer o Eercise 9. Te Fundamenal Teorem of Calculus ells us a e problem of finding an aniderivaive of y = a (e sign is no relevan in is regard) is closely relaed o e problem of finding e area under e grap of is funcion. So is is e quadraure a Leibniz appears o ave ad in mind. Tus Leibniz seems o ink a e grap of y = a, for < a, lies on a yperbola. Is is correc? [Hin: Recall from Secion 5. a any yperbola (in fac any conic secion) is given by an equaion of e form + By + Cy + D + Ey + F = for some consans, B, C, D, E, and F, no all of wic are zero. ssuming a Leibniz is correc, y = a saisfies suc an equaion. Tis implies, afer subsiuing and rearranging ings, a C(a ) + E a = 4 B a D 3 F for all wi < a. Now pus o zero and conclude a C mus be zero. fer cancelling, pus o zero again and conclude a E =. So B a = D F. Sow a e grap of y = B a as a verical angen a = a and conclude a B =. Bu is implies a + D + F = for < a. So all e consan, B, C, D, E, and F are zero.] 9

Comparison between the Discrete and Continuous Time Models

Comparison between the Discrete and Continuous Time Models Comparison beween e Discree and Coninuous Time Models D. Sulsky June 21, 2012 1 Discree o Coninuous Recall e discree ime model Î = AIS Ŝ = S Î. Tese equaions ell us ow e populaion canges from one day o

More information

Mathematics Paper- II

Mathematics Paper- II R Prerna Tower, Road No -, Conracors Area, Bisupur, Jamsedpur - 8, Tel - (65789, www.prernaclasses.com Maemaics Paper- II Jee Advance PART III - MATHEMATICS SECTION - : (One or more opions correc Type

More information

SMT 2014 Calculus Test Solutions February 15, 2014 = 3 5 = 15.

SMT 2014 Calculus Test Solutions February 15, 2014 = 3 5 = 15. SMT Calculus Tes Soluions February 5,. Le f() = and le g() =. Compue f ()g (). Answer: 5 Soluion: We noe ha f () = and g () = 6. Then f ()g () =. Plugging in = we ge f ()g () = 6 = 3 5 = 5.. There is a

More information

02. MOTION. Questions and Answers

02. MOTION. Questions and Answers CLASS-09 02. MOTION Quesions and Answers PHYSICAL SCIENCE 1. Se moves a a consan speed in a consan direcion.. Reprase e same senence in fewer words using conceps relaed o moion. Se moves wi uniform velociy.

More information

4.6 One Dimensional Kinematics and Integration

4.6 One Dimensional Kinematics and Integration 4.6 One Dimensional Kinemaics and Inegraion When he acceleraion a( of an objec is a non-consan funcion of ime, we would like o deermine he ime dependence of he posiion funcion x( and he x -componen of

More information

Fuzzy Laplace Transforms for Derivatives of Higher Orders

Fuzzy Laplace Transforms for Derivatives of Higher Orders Maemaical Teory and Modeling ISSN -58 (Paper) ISSN 5-5 (Online) Vol, No, 1 wwwiiseorg Fuzzy Laplace Transforms for Derivaives of Higer Orders Absrac Amal K Haydar 1 *and Hawrra F Moammad Ali 1 College

More information

Chapters 6 & 7: Trigonometric Functions of Angles and Real Numbers. Divide both Sides by 180

Chapters 6 & 7: Trigonometric Functions of Angles and Real Numbers. Divide both Sides by 180 Algebra Chapers & : Trigonomeric Funcions of Angles and Real Numbers Chapers & : Trigonomeric Funcions of Angles and Real Numbers - Angle Measures Radians: - a uni (rad o measure he size of an angle. rad

More information

Solutions from Chapter 9.1 and 9.2

Solutions from Chapter 9.1 and 9.2 Soluions from Chaper 9 and 92 Secion 9 Problem # This basically boils down o an exercise in he chain rule from calculus We are looking for soluions of he form: u( x) = f( k x c) where k x R 3 and k is

More information

15. Vector Valued Functions

15. Vector Valued Functions 1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

More information

Chapter 7: Solving Trig Equations

Chapter 7: Solving Trig Equations Haberman MTH Secion I: The Trigonomeric Funcions Chaper 7: Solving Trig Equaions Le s sar by solving a couple of equaions ha involve he sine funcion EXAMPLE a: Solve he equaion sin( ) The inverse funcions

More information

F (u) du. or f(t) = t

F (u) du. or f(t) = t 8.3 Topic 9: Impulses and dela funcions. Auor: Jeremy Orloff Reading: EP 4.6 SN CG.3-4 pp.2-5. Warmup discussion abou inpu Consider e rae equaion d + k = f(). To be specific, assume is in unis of d kilograms.

More information

!!"#"$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

!!#$%&#'()!#&'(*%)+,&',-)./0)1-*23) "#"$%&#'()"#&'(*%)+,&',-)./)1-*) #$%&'()*+,&',-.%,/)*+,-&1*#$)()5*6$+$%*,7&*-'-&1*(,-&*6&,7.$%$+*&%'(*8$&',-,%'-&1*(,-&*6&,79*(&,%: ;..,*&1$&$.$%&'()*1$$.,'&',-9*(&,%)?%*,('&5

More information

AP Calculus BC Chapter 10 Part 1 AP Exam Problems

AP Calculus BC Chapter 10 Part 1 AP Exam Problems AP Calculus BC Chaper Par AP Eam Problems All problems are NO CALCULATOR unless oherwise indicaed Parameric Curves and Derivaives In he y plane, he graph of he parameric equaions = 5 + and y= for, is a

More information

Method For Solving Fuzzy Integro-Differential Equation By Using Fuzzy Laplace Transformation

Method For Solving Fuzzy Integro-Differential Equation By Using Fuzzy Laplace Transformation INERNAIONAL JOURNAL OF SCIENIFIC & ECHNOLOGY RESEARCH VOLUME 3 ISSUE 5 May 4 ISSN 77-866 Meod For Solving Fuzzy Inegro-Differenial Equaion By Using Fuzzy Laplace ransformaion Manmoan Das Danji alukdar

More information

û s L u t 0 s a ; i.e., û s 0

û s L u t 0 s a ; i.e., û s 0 Te Hille-Yosida Teorem We ave seen a wen e absrac IVP is uniquely solvable en e soluion operaor defines a semigroup of bounded operaors. We ave no ye discussed e condiions under wic e IVP is uniquely solvable.

More information

(π 3)k. f(t) = 1 π 3 sin(t)

(π 3)k. f(t) = 1 π 3 sin(t) Mah 6 Fall 6 Dr. Lil Yen Tes Show all our work Name: Score: /6 No Calculaor permied in his par. Read he quesions carefull. Show all our work and clearl indicae our final answer. Use proper noaion. Problem

More information

PROBLEMS FOR MATH 162 If a problem is starred, all subproblems are due. If only subproblems are starred, only those are due. SLOPES OF TANGENT LINES

PROBLEMS FOR MATH 162 If a problem is starred, all subproblems are due. If only subproblems are starred, only those are due. SLOPES OF TANGENT LINES PROBLEMS FOR MATH 6 If a problem is sarred, all subproblems are due. If onl subproblems are sarred, onl hose are due. 00. Shor answer quesions. SLOPES OF TANGENT LINES (a) A ball is hrown ino he air. Is

More information

The equation to any straight line can be expressed in the form:

The equation to any straight line can be expressed in the form: Sring Graphs Par 1 Answers 1 TI-Nspire Invesigaion Suden min Aims Deermine a series of equaions of sraigh lines o form a paern similar o ha formed by he cables on he Jerusalem Chords Bridge. Deermine he

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

10.1 EXERCISES. y 2 t 2. y 1 t y t 3. y e

10.1 EXERCISES. y 2 t 2. y 1 t y t 3. y e 66 CHAPTER PARAMETRIC EQUATINS AND PLAR CRDINATES SLUTIN We use a graphing device o produce he graphs for he cases a,,.5,.,,.5,, and shown in Figure 7. Noice ha all of hese curves (ecep he case a ) have

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

72 Calculus and Structures

72 Calculus and Structures 72 Calculus and Srucures CHAPTER 5 DISTANCE AND ACCUMULATED CHANGE Calculus and Srucures 73 Copyrigh Chaper 5 DISTANCE AND ACCUMULATED CHANGE 5. DISTANCE a. Consan velociy Le s ake anoher look a Mary s

More information

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow 1 KEY Mah 4 Miderm I Fall 8 secions 1 and Insrucor: Sco Glasgow Please do NOT wrie on his eam. No credi will be given for such work. Raher wrie in a blue book, or on our own paper, preferabl engineering

More information

Facilitator Guide. Unit 10

Facilitator Guide. Unit 10 Faciliaor Guide Uni 0 UNIT 0 Faciliaor Guide ACTIVITIES NOTE: A many poins in e aciviies for Maemaics Illuminaed, worksop paricipans will be asked o explain, eier verbally or in wrien form, e process

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B)

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B) SCORING GUIDELINES (Form B) Quesion A blood vessel is 6 millimeers (mm) long Disance wih circular cross secions of varying diameer. x (mm) 6 8 4 6 Diameer The able above gives he measuremens of he B(x)

More information

Our main purpose in this section is to undertake an examination of the stock

Our main purpose in this section is to undertake an examination of the stock 3. Caial gains ax and e sock rice volailiy Our main urose in is secion is o underake an examinaion of e sock rice volailiy by considering ow e raional seculaor s olding canges afer e ax rae on caial gains

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

Math 115 Final Exam December 14, 2017

Math 115 Final Exam December 14, 2017 On my honor, as a suden, I have neiher given nor received unauhorized aid on his academic work. Your Iniials Only: Iniials: Do no wrie in his area Mah 5 Final Exam December, 07 Your U-M ID # (no uniqname):

More information

V.sin. AIM: Investigate the projectile motion of a rigid body. INTRODUCTION:

V.sin. AIM: Investigate the projectile motion of a rigid body. INTRODUCTION: EXPERIMENT 5: PROJECTILE MOTION: AIM: Invesigae e projecile moion of a rigid body. INTRODUCTION: Projecile moion is defined as e moion of a mass from op o e ground in verical line, or combined parabolic

More information

Answers to 1 Homework

Answers to 1 Homework Answers o Homework. x + and y x 5 y To eliminae he parameer, solve for x. Subsiue ino y s equaion o ge y x.. x and y, x y x To eliminae he parameer, solve for. Subsiue ino y s equaion o ge x y, x. (Noe:

More information

CHEMISTRY 047 STUDY PACKAGE

CHEMISTRY 047 STUDY PACKAGE CHEMISTRY 047 STUDY PACKAGE Tis maerial is inended as a review of skills you once learned. PREPARING TO WRITE THE ASSESSMENT VIU/CAP/D:\Users\carpenem\AppDaa\Local\Microsof\Windows\Temporary Inerne Files\Conen.Oulook\JTXREBLD\Cemisry

More information

Chapter 2 The Derivative Applied Calculus 97

Chapter 2 The Derivative Applied Calculus 97 Caper Te Derivaive Applie Calculus 97 Secion 3: Power an Sum Rules for Derivaives In e ne few secions, we ll ge e erivaive rules a will le us fin formulas for erivaives wen our funcion comes o us as a

More information

ADDITIONAL MATHEMATICS PAPER 1

ADDITIONAL MATHEMATICS PAPER 1 000-CE A MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 000 ADDITIONAL MATHEMATICS PAPER 8.0 am 0.0 am ( hours This paper mus be answered in English. Answer

More information

Math 116 Practice for Exam 2

Math 116 Practice for Exam 2 Mah 6 Pracice for Exam Generaed Ocober 3, 7 Name: SOLUTIONS Insrucor: Secion Number:. This exam has 5 quesions. Noe ha he problems are no of equal difficuly, so you may wan o skip over and reurn o a problem

More information

3, so θ = arccos

3, so θ = arccos Mahemaics 210 Professor Alan H Sein Monday, Ocober 1, 2007 SOLUTIONS This problem se is worh 50 poins 1 Find he angle beween he vecors (2, 7, 3) and (5, 2, 4) Soluion: Le θ be he angle (2, 7, 3) (5, 2,

More information

Check in: 1 If m = 2(x + 1) and n = find y when. b y = 2m n 2

Check in: 1 If m = 2(x + 1) and n = find y when. b y = 2m n 2 7 Parameric equaions This chaer will show ou how o skech curves using heir arameric equaions conver arameric equaions o Caresian equaions find oins of inersecion of curves and lines using arameric equaions

More information

Perpendicular Lines. 4 Do the fold lines appear perpendicular? Use a protractor to measure each angle. How many right angles are formed?

Perpendicular Lines. 4 Do the fold lines appear perpendicular? Use a protractor to measure each angle. How many right angles are formed? 3. Teorems bou Perpendicular Lines oal Use eorems abou perpendicular lines. Key Words complemenary angles p. 67 perpendicular lines p. 08 eo-civiy Inersecing Lines old a piece of old e paper 3 Unfold e

More information

Approximating the Powers with Large Exponents and Bases Close to Unit, and the Associated Sequence of Nested Limits

Approximating the Powers with Large Exponents and Bases Close to Unit, and the Associated Sequence of Nested Limits In. J. Conemp. Ma. Sciences Vol. 6 211 no. 43 2135-2145 Approximaing e Powers wi Large Exponens and Bases Close o Uni and e Associaed Sequence of Nesed Limis Vio Lampre Universiy of Ljubljana Slovenia

More information

ln y t 2 t c where c is an arbitrary real constant

ln y t 2 t c where c is an arbitrary real constant SOLUTION TO THE PROBLEM.A y y subjec o condiion y 0 8 We recognize is as a linear firs order differenial equaion wi consan coefficiens. Firs we sall find e general soluion, and en we sall find one a saisfies

More information

THE CATCH PROCESS (continued)

THE CATCH PROCESS (continued) THE CATCH PROCESS (coninued) In our previous derivaion of e relaionsip beween CPUE and fis abundance we assumed a all e fising unis and all e fis were spaially omogeneous. Now we explore wa appens wen

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

Steel members come in a wide variety of shapes; the properties of the cross section are needed for analysis and design. (Bob Scott/Getty Images)

Steel members come in a wide variety of shapes; the properties of the cross section are needed for analysis and design. (Bob Scott/Getty Images) Seel memers come in a wide varie of sapes; e properies of e cross secion are needed for analsis and design. (Bo Sco/Ge Images) 01 engage Learning. All Rigs Reserved. Ma no e scanned, copied or duplicaed,

More information

The Quantum Theory of Atoms and Molecules: The Schrodinger equation. Hilary Term 2008 Dr Grant Ritchie

The Quantum Theory of Atoms and Molecules: The Schrodinger equation. Hilary Term 2008 Dr Grant Ritchie e Quanum eory of Aoms and Molecules: e Scrodinger equaion Hilary erm 008 Dr Gran Ricie An equaion for maer waves? De Broglie posulaed a every paricles as an associaed wave of waveleng: / p Wave naure of

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

15. Bicycle Wheel. Graph of height y (cm) above the axle against time t (s) over a 6-second interval. 15 bike wheel

15. Bicycle Wheel. Graph of height y (cm) above the axle against time t (s) over a 6-second interval. 15 bike wheel 15. Biccle Wheel The graph We moun a biccle wheel so ha i is free o roae in a verical plane. In fac, wha works easil is o pu an exension on one of he axles, and ge a suden o sand on one side and hold he

More information

TMA4329 Intro til vitensk. beregn. V2017

TMA4329 Intro til vitensk. beregn. V2017 Norges eknisk naurvienskapelige universie Insiu for Maemaiske Fag TMA439 Inro il viensk. beregn. V7 ving 6 [S]=T. Sauer, Numerical Analsis, Second Inernaional Ediion, Pearson, 4 Teorioppgaver Oppgave 6..3,

More information

Lab #2: Kinematics in 1-Dimension

Lab #2: Kinematics in 1-Dimension Reading Assignmen: Chaper 2, Secions 2-1 hrough 2-8 Lab #2: Kinemaics in 1-Dimension Inroducion: The sudy of moion is broken ino wo main areas of sudy kinemaics and dynamics. Kinemaics is he descripion

More information

Review - Quiz # 1. 1 g(y) dy = f(x) dx. y x. = u, so that y = xu and dy. dx (Sometimes you may want to use the substitution x y

Review - Quiz # 1. 1 g(y) dy = f(x) dx. y x. = u, so that y = xu and dy. dx (Sometimes you may want to use the substitution x y Review - Quiz # 1 (1) Solving Special Tpes of Firs Order Equaions I. Separable Equaions (SE). d = f() g() Mehod of Soluion : 1 g() d = f() (The soluions ma be given implicil b he above formula. Remember,

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

( ) 2. Review Exercise 2. cos θ 2 3 = = 2 tan. cos. 2 x = = x a. Since π π, = 2. sin = = 2+ = = cotx. 2 sin θ 2+

( ) 2. Review Exercise 2. cos θ 2 3 = = 2 tan. cos. 2 x = = x a. Since π π, = 2. sin = = 2+ = = cotx. 2 sin θ 2+ Review Eercise sin 5 cos sin an cos 5 5 an 5 9 co 0 a sinθ 6 + 4 6 + sin θ 4 6+ + 6 + 4 cos θ sin θ + 4 4 sin θ + an θ cos θ ( ) + + + + Since π π, < θ < anθ should be negaive. anθ ( + ) Pearson Educaion

More information

Parametrics and Vectors (BC Only)

Parametrics and Vectors (BC Only) Paramerics and Vecors (BC Only) The following relaionships should be learned and memorized. The paricle s posiion vecor is r() x(), y(). The velociy vecor is v(),. The speed is he magniude of he velociy

More information

THE SINE INTEGRAL. x dt t

THE SINE INTEGRAL. x dt t THE SINE INTEGRAL As one learns in elemenary calculus, he limi of sin(/ as vanishes is uniy. Furhermore he funcion is even and has an infinie number of zeros locaed a ±n for n1,,3 Is plo looks like his-

More information

TEACHER NOTES MATH NSPIRED

TEACHER NOTES MATH NSPIRED Naural Logarihm Mah Objecives Sudens will undersand he definiion of he naural logarihm funcion in erms of a definie inegral. Sudens will be able o use his definiion o relae he value of he naural logarihm

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

3 at MAC 1140 TEST 3 NOTES. 5.1 and 5.2. Exponential Functions. Form I: P is the y-intercept. (0, P) When a > 1: a = growth factor = 1 + growth rate

3 at MAC 1140 TEST 3 NOTES. 5.1 and 5.2. Exponential Functions. Form I: P is the y-intercept. (0, P) When a > 1: a = growth factor = 1 + growth rate 1 5.1 and 5. Eponenial Funcions Form I: Y Pa, a 1, a > 0 P is he y-inercep. (0, P) When a > 1: a = growh facor = 1 + growh rae The equaion can be wrien as The larger a is, he seeper he graph is. Y P( 1

More information

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration PHYS 54 Tes Pracice Soluions Spring 8 Q: [4] Knowing ha in he ne epression a is acceleraion, v is speed, is posiion and is ime, from a dimensional v poin of view, he equaion a is a) incorrec b) correc

More information

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole Phys 221 Fall 2014 Chaper 2 Moion in One Dimension 2014, 2005 A. Dzyubenko 2004 Brooks/Cole 1 Kinemaics Kinemaics, a par of classical mechanics: Describes moion in erms of space and ime Ignores he agen

More information

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k Challenge Problems DIS 03 and 0 March 6, 05 Choose one of he following problems, and work on i in your group. Your goal is o convince me ha your answer is correc. Even if your answer isn compleely correc,

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

Starting from a familiar curve

Starting from a familiar curve In[]:= NoebookDirecory Ou[]= C:\Dropbox\Work\myweb\Courses\Mah_pages\Mah_5\ You can evaluae he enire noebook by using he keyboard shorcu Al+v o, or he menu iem Evaluaion Evaluae Noebook. Saring from a

More information

UCLA: Math 3B Problem set 3 (solutions) Fall, 2018

UCLA: Math 3B Problem set 3 (solutions) Fall, 2018 UCLA: Mah 3B Problem se 3 (soluions) Fall, 28 This problem se concenraes on pracice wih aniderivaives. You will ge los of pracice finding simple aniderivaives as well as finding aniderivaives graphically

More information

Topics covered in tutorial 01: 1. Review of definite integrals 2. Physical Application 3. Area between curves. 1. Review of definite integrals

Topics covered in tutorial 01: 1. Review of definite integrals 2. Physical Application 3. Area between curves. 1. Review of definite integrals MATH4 Calculus II (8 Spring) MATH 4 Tuorial Noes Tuorial Noes (Phyllis LIANG) IA: Phyllis LIANG Email: masliang@us.hk Homepage: hps://masliang.people.us.hk Office: Room 3 (Lif/Lif 3) Phone number: 3587453

More information

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION MATH 28A, SUMME 2009, FINAL EXAM SOLUTION BENJAMIN JOHNSON () (8 poins) [Lagrange Inerpolaion] (a) (4 poins) Le f be a funcion defined a some real numbers x 0,..., x n. Give a defining equaion for he Lagrange

More information

Numerical Dispersion

Numerical Dispersion eview of Linear Numerical Sabiliy Numerical Dispersion n he previous lecure, we considered he linear numerical sabiliy of boh advecion and diffusion erms when approimaed wih several spaial and emporal

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

Motion along a Straight Line

Motion along a Straight Line chaper 2 Moion along a Sraigh Line verage speed and average velociy (Secion 2.2) 1. Velociy versus speed Cone in he ebook: fer Eample 2. Insananeous velociy and insananeous acceleraion (Secions 2.3, 2.4)

More information

Math 116 Second Midterm March 21, 2016

Math 116 Second Midterm March 21, 2016 Mah 6 Second Miderm March, 06 UMID: EXAM SOLUTIONS Iniials: Insrucor: Secion:. Do no open his exam unil you are old o do so.. Do no wrie your name anywhere on his exam. 3. This exam has pages including

More information

u(x) = e x 2 y + 2 ) Integrate and solve for x (1 + x)y + y = cos x Answer: Divide both sides by 1 + x and solve for y. y = x y + cos x

u(x) = e x 2 y + 2 ) Integrate and solve for x (1 + x)y + y = cos x Answer: Divide both sides by 1 + x and solve for y. y = x y + cos x . 1 Mah 211 Homework #3 February 2, 2001 2.4.3. y + (2/x)y = (cos x)/x 2 Answer: Compare y + (2/x) y = (cos x)/x 2 wih y = a(x)x + f(x)and noe ha a(x) = 2/x. Consequenly, an inegraing facor is found wih

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

Midterm Exam Review Questions Free Response Non Calculator

Midterm Exam Review Questions Free Response Non Calculator Name: Dae: Block: Miderm Eam Review Quesions Free Response Non Calculaor Direcions: Solve each of he following problems. Choose he BEST answer choice from hose given. A calculaor may no be used. Do no

More information

Section 7.4 Modeling Changing Amplitude and Midline

Section 7.4 Modeling Changing Amplitude and Midline 488 Chaper 7 Secion 7.4 Modeling Changing Ampliude and Midline While sinusoidal funcions can model a variey of behaviors, i is ofen necessary o combine sinusoidal funcions wih linear and exponenial curves

More information

The Homeless Traveling Salesman: Investigating Quadrilaterals with a Variable Home Point

The Homeless Traveling Salesman: Investigating Quadrilaterals with a Variable Home Point Te Homeless Traveling Salesman: Invesigaing Quadrilaerals wi a Variable Home Poin Lawrence Garcia Dana Tompson Meropolian Sae College of Denver Nor Park Universiy Te radiional raveling salesman problem

More information

(1) (2) Differentiation of (1) and then substitution of (3) leads to. Therefore, we will simply consider the second-order linear system given by (4)

(1) (2) Differentiation of (1) and then substitution of (3) leads to. Therefore, we will simply consider the second-order linear system given by (4) Phase Plane Analysis of Linear Sysems Adaped from Applied Nonlinear Conrol by Sloine and Li The general form of a linear second-order sysem is a c b d From and b bc d a Differeniaion of and hen subsiuion

More information

Math 105 Second Midterm March 16, 2017

Math 105 Second Midterm March 16, 2017 Mah 105 Second Miderm March 16, 2017 UMID: Insrucor: Iniials: Secion: 1. Do no open his exam unil you are old o do so. 2. Do no wrie your name anywhere on his exam. 3. This exam has 9 pages including his

More information

CS537. Numerical Analysis

CS537. Numerical Analysis CS57 Numerical Analsis Lecure Numerical Soluion o Ordinar Dierenial Equaions Proessor Jun Zang Deparmen o Compuer Science Universi o enuck Leingon, Y 4006 0046 April 5, 00 Wa is ODE An Ordinar Dierenial

More information

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence MATH 433/533, Fourier Analysis Secion 6, Proof of Fourier s Theorem for Poinwise Convergence Firs, some commens abou inegraing periodic funcions. If g is a periodic funcion, g(x + ) g(x) for all real x,

More information

THE 2-BODY PROBLEM. FIGURE 1. A pair of ellipses sharing a common focus. (c,b) c+a ROBERT J. VANDERBEI

THE 2-BODY PROBLEM. FIGURE 1. A pair of ellipses sharing a common focus. (c,b) c+a ROBERT J. VANDERBEI THE 2-BODY PROBLEM ROBERT J. VANDERBEI ABSTRACT. In his shor noe, we show ha a pair of ellipses wih a common focus is a soluion o he 2-body problem. INTRODUCTION. Solving he 2-body problem from scrach

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems.

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems. Mah 2250-004 Week 4 April 6-20 secions 7.-7.3 firs order sysems of linear differenial equaions; 7.4 mass-spring sysems. Mon Apr 6 7.-7.2 Sysems of differenial equaions (7.), and he vecor Calculus we need

More information

Physics for Scientists and Engineers. Chapter 2 Kinematics in One Dimension

Physics for Scientists and Engineers. Chapter 2 Kinematics in One Dimension Physics for Scieniss and Engineers Chaper Kinemaics in One Dimension Spring, 8 Ho Jung Paik Kinemaics Describes moion while ignoring he agens (forces) ha caused he moion For now, will consider moion in

More information

Review Exercises for Chapter 3

Review Exercises for Chapter 3 60_00R.qd //0 :9 M age CHATER Applicaions of Differeniaion Review Eercises for Chaper. Give he definiion of a criical number, and graph a funcion f showing he differen pes of criical numbers.. Consider

More information

1. Kinematics I: Position and Velocity

1. Kinematics I: Position and Velocity 1. Kinemaics I: Posiion and Velociy Inroducion The purpose of his eperimen is o undersand and describe moion. We describe he moion of an objec by specifying is posiion, velociy, and acceleraion. In his

More information

Math 111 Midterm I, Lecture A, version 1 -- Solutions January 30 th, 2007

Math 111 Midterm I, Lecture A, version 1 -- Solutions January 30 th, 2007 NAME: Suden ID #: QUIZ SECTION: Mah 111 Miderm I, Lecure A, version 1 -- Soluions January 30 h, 2007 Problem 1 4 Problem 2 6 Problem 3 20 Problem 4 20 Toal: 50 You are allowed o use a calculaor, a ruler,

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

3.6 Derivatives as Rates of Change

3.6 Derivatives as Rates of Change 3.6 Derivaives as Raes of Change Problem 1 John is walking along a sraigh pah. His posiion a he ime >0 is given by s = f(). He sars a =0from his house (f(0) = 0) and he graph of f is given below. (a) Describe

More information

AP CALCULUS BC 2016 SCORING GUIDELINES

AP CALCULUS BC 2016 SCORING GUIDELINES 6 SCORING GUIDELINES Quesion A ime, he posiion of a paricle moving in he xy-plane is given by he parameric funcions ( x ( ), y ( )), where = + sin ( ). The graph of y, consising of hree line segmens, is

More information

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should Cambridge Universiy Press 978--36-60033-7 Cambridge Inernaional AS and A Level Mahemaics: Mechanics Coursebook Excerp More Informaion Chaper The moion of projeciles In his chaper he model of free moion

More information

PSAT/NMSQT PRACTICE ANSWER SHEET SECTION 3 EXAMPLES OF INCOMPLETE MARKS COMPLETE MARK B C D B C D B C D B C D B C D 13 A B C D B C D 11 A B C D B C D

PSAT/NMSQT PRACTICE ANSWER SHEET SECTION 3 EXAMPLES OF INCOMPLETE MARKS COMPLETE MARK B C D B C D B C D B C D B C D 13 A B C D B C D 11 A B C D B C D PSTNMSQT PRCTICE NSWER SHEET COMPLETE MRK EXMPLES OF INCOMPLETE MRKS I i recommended a you ue a No pencil I i very imporan a you fill in e enire circle darkly and compleely If you cange your repone, erae

More information

INSTANTANEOUS VELOCITY

INSTANTANEOUS VELOCITY INSTANTANEOUS VELOCITY I claim ha ha if acceleraion is consan, hen he elociy is a linear funcion of ime and he posiion a quadraic funcion of ime. We wan o inesigae hose claims, and a he same ime, work

More information

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B)

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B) SCORING GUIDELINES (Form B) Quesion A ank conains 15 gallons of heaing oil a ime =. During he ime inerval 1 hours, heaing oil is pumped ino he ank a he rae 1 H ( ) = + ( 1 + ln( + 1) ) gallons per hour.

More information

Lesson 3.1 Recursive Sequences

Lesson 3.1 Recursive Sequences Lesson 3.1 Recursive Sequences 1) 1. Evaluae he epression 2(3 for each value of. a. 9 b. 2 c. 1 d. 1 2. Consider he sequence of figures made from riangles. Figure 1 Figure 2 Figure 3 Figure a. Complee

More information

On two general nonlocal differential equations problems of fractional orders

On two general nonlocal differential equations problems of fractional orders Malaya Journal of Maemaik, Vol. 6, No. 3, 478-482, 28 ps://doi.org/.26637/mjm63/3 On wo general nonlocal differenial equaions problems of fracional orders Abd El-Salam S. A. * and Gaafar F. M.2 Absrac

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

III. Direct evolution of the density: The Liouville Operator

III. Direct evolution of the density: The Liouville Operator Cem 564 Lecure 8 3mar From Noes 8 003,005,007, 009 TIME IN QUANTUM MECANICS. I Ouline I. Te ime dependen Scroedinger equaion; ime dependence of energy eigensaes II.. Sae vecor (wave funcion) ime evoluion

More information

a. Show that these lines intersect by finding the point of intersection. b. Find an equation for the plane containing these lines.

a. Show that these lines intersect by finding the point of intersection. b. Find an equation for the plane containing these lines. Mah A Final Eam Problems for onsideraion. Show all work for credi. Be sure o show wha you know. Given poins A(,,, B(,,, (,, 4 and (,,, find he volume of he parallelepiped wih adjacen edges AB, A, and A.

More information

CHAPTER 2 Signals And Spectra

CHAPTER 2 Signals And Spectra CHAPER Signals And Specra Properies of Signals and Noise In communicaion sysems he received waveform is usually caegorized ino he desired par conaining he informaion, and he undesired par. he desired par

More information

Be able to sketch a function defined parametrically. (by hand and by calculator)

Be able to sketch a function defined parametrically. (by hand and by calculator) Pre Calculus Uni : Parameric and Polar Equaions (7) Te References: Pre Calculus wih Limis; Larson, Hoseler, Edwards. B he end of he uni, ou should be able o complee he problems below. The eacher ma provide

More information

Yimin Math Centre. 4 Unit Math Homework for Year 12 (Worked Answers) 4.1 Further Geometric Properties of the Ellipse and Hyperbola...

Yimin Math Centre. 4 Unit Math Homework for Year 12 (Worked Answers) 4.1 Further Geometric Properties of the Ellipse and Hyperbola... 4 Uni Mah Homework for Year 12 (Worked Answers) Suden Name: Grade: Dae: Score: Table of conens 4 Topic 2 Conics (Par 4) 1 4.1 Furher Geomeric Properies of he Ellipse and Hyperbola............... 1 4.2

More information