Propositional Functions. Quantifiers. Assignment of values. Existential Quantification of P(x) Universal Quantification of P(x)

Size: px
Start display at page:

Download "Propositional Functions. Quantifiers. Assignment of values. Existential Quantification of P(x) Universal Quantification of P(x)"

Transcription

1 Propositional Functions Rosen (6 th Ed.) 1.3, 1.4 Propositional functions (or predicates) are propositions that contain variables. Ex: P(x) denote x > 3 P(x) has no truth value until the variable x is bound by either assigning it a value or by quantifying it. Assignment of values Q(x,y) denote x + y = 7. Each of the following can be determined as or F. Q(4,3) Q(3,2) Q(4,3) Q(3,2) ~[Q(4,3) Q(3,2)] Quantifiers Universe of Discourse, U: he domain of a variable in a propositional function. Universal Quantification of P(x) is the proposition: P(x) is true for all values of x in U. Existential Quantification of P(x) is the proposition: here exists an element, x, in U such that P(x) is true. Universal Quantification of P(x) xp(x) for all x P(x) for every x P(x) Defined as: P(x 0 ) P(x 1 ) P(x 2 ) P(x 3 )... for all x i in U Example: (½) 2 < ½ P(x) denote x 2 x If U is x such that 0 < x then xp(x) is false. If U is x such that 1 < x then xp(x) is true. Existential Quantification of P(x) xp(x) there is an x such that P(x) there is at least one x such that P(x) there exists at least one x such that P(x) Defined as: P(x 0 ) P(x 1 ) P(x 2 ) P(x 3 )... for all x i in U Example: P(x) denote x 2 x If U is x such that 0 < x < 1 then xp(x) is false. If U is x such that 0 < x 1 then xp(x) is true. 1

2 Quantifiers xp(x) rue when P(x) is true for every x. False if there is an x for which P(x) is false. xp(x) rue if there exists an x for which P(x) is true. False if P(x) is false for every x. Precedence of Quantifiers and have higher precedence than all other logical operators (,,, etc.). x P(x) Q(x) means ( x P(x)) Q(x) x P(x) Q(x) does not mean x (P(x) Q(x) ) Negation (it is not the case) xp(x) is equivalent to x P(x) rue when P(x) is false for every x False when there is an x for which P(x) is true. Example: P(x) be the statement x is a USC fan and the Universe of Discourse be the students in our CPSC2070 class. xp(x) It is not the case that there is a student in CPSC2070 who is a USC fan. x P(x) For all students in CPSC2070 it is not the case that one of us is a USC fan. Negation (it is not the case) xp(x) is equivalent to x P(x) rue is there is an x for which P(x) is false. False if P(x) is true for every x. Example: P(x) be the statement x is a Clemson fan and the Universe of Discourse be the students in our CPSC2070 class. xp(x) It is not the case every student in CPSC2070 is a Clemson fan. x P(x) here exists a student in CPSC2070 who is not a Clemson fan. Examples (a,b) denote the propositional function a trusts b. U be the set of all people in the world. Everybody trusts Bob. x(x,bob) Could also say: x U (x,bob) Bob trusts somebody. x(bob,x) Alice trusts herself. (Alice, Alice) Alice trusts nobody. x (Alice,x) Examples Carol trusts everyone trusted by David. x((david,x) (Carol,x)) Bob trusts only Alice. (Bob, Alice) x (x=alice (Bob,x)) 2

3 Bob trusts only Alice. (Bob, Alice) x (x=alice (Bob,x)) p be x=alice q be Bob trusts x p q p q F F F F F False only when Bob trusts someone who is not Alice Quantification of wo Variables (read left to right) x yp(x,y) or y xp(x,y) rue when P(x,y) is true for every pair x,y. False if there is a pair x,y for which P(x,y) is false. x yp(x,y) or y xp(x,y) rue if there is a pair x,y for which P(x,y) is true. False if P(x,y) is false for every pair x,y. Quantification of wo Variables x yp(x,y) rue when for every x there is a y for which P(x,y) is true. False if there is an x such that P(x,y) is false for every y. x yp(x,y) rue if there is an x for which P(x,y) is true for every y. False if for every x there is a y for which P(x,y) is false. P(x,y) be the statement x+y = 7 Is x yp(x,y) true or false? For every number x we can find a number y such that x + y = 7. Is x yp(x,y) true or false? For every number x we can find a number y such that x + y 7. Examples 3a L(x,y) be the statement x loves y where U for both x and y is the set of all people in the world. Everybody loves Jerry. xl(x,jerry) Everybody loves somebody. x yl(x,y) here is somebody whom everybody loves. y xl(x,y) Nobody loves everybody. x y L(x,y) Examples 3b here is somebody whom Lydia does not love. x L(Lydia,x) here is somebody whom no one loves. x y L(y,x) here is exactly one person whom everybody loves. x{ yl(y,x) z[( wl(w,z)) z=x]} 3

4 Examples 3c here are exactly two people whom Lynn loves. x y{x y L(Lynn,x) L(Lynn,y) z[l(lynn,z) (z=x z=y)]} Everyone loves himself or herself. xl(x,x) here is someone who loves no one besides himself or herself. x y(l(x,y) x=y) P Q Q P(x) Q(x) F F F x( P(x) Q(x)) F F OK by Implication equivalence. F F x(p(x) Q(x)) Does not work. Why? x(p(x) Q(x)) x (P(x) Q(x)) DeMorgans for quantifiers x ( P(x) Q(x)) Implication equivalence x ( P(x) Q(x)) DeMorgans x ( P(x) Q(x)) Double negation x ( P(x) Q(x)) P Q Q P(x) Q(x) F F F F F F F F F Only true if everyone is a Clemson student and is not ignorant. OK x( P(x) Q(x)) Implication equivalence. x(p(x) Q(x)) Was not equivalent x(p(x) Q(x)) Is equivalent. Why? x(p(x) Q(x)) x (P(x) Q(x)) DeMorgan for quantifyers x ( P(x) Q(x)) DeMorgan x (P(x) Q(x)) Implication equivalence 4

5 Examples 4b R Q R(x) Q(x) F F F F All ignorant people wear red. x(r(x) Q(x)) Q R Q(x) R(x) Is this right? No! his says there may be some ignorant people wearing orange! x(q(x) R(x)) F F F F F F Examples 4c No Clemson student wears red. x(p(x) R(x)) x(r(x) P(x)) Both are correct since one is the contraposition of the other. 5

Section Summary. Section 1.5 9/9/2014

Section Summary. Section 1.5 9/9/2014 Section 1.5 Section Summary Nested Quantifiers Order of Quantifiers Translating from Nested Quantifiers into English Translating Mathematical Statements into Statements involving Nested Quantifiers Translated

More information

Thinking of Nested Quantification

Thinking of Nested Quantification Section 1.5 Section Summary Nested Quantifiers Order of Quantifiers Translating from Nested Quantifiers into English Translating Mathematical Statements into Statements involving Nested Quantifiers. Translating

More information

CSI30. Chapter 1. The Foundations: Logic and Proofs Nested Quantifiers

CSI30. Chapter 1. The Foundations: Logic and Proofs Nested Quantifiers Chapter 1. The Foundations: Logic and Proofs 1.9-1.10 Nested Quantifiers 1 Two quantifiers are nested if one is within the scope of the other. Recall one of the examples from the previous class: x ( P(x)

More information

! Predicates! Variables! Quantifiers. ! Universal Quantifier! Existential Quantifier. ! Negating Quantifiers. ! De Morgan s Laws for Quantifiers

! Predicates! Variables! Quantifiers. ! Universal Quantifier! Existential Quantifier. ! Negating Quantifiers. ! De Morgan s Laws for Quantifiers Sec$on Summary (K. Rosen notes for Ch. 1.4, 1.5 corrected and extended by A.Borgida)! Predicates! Variables! Quantifiers! Universal Quantifier! Existential Quantifier! Negating Quantifiers! De Morgan s

More information

Logical Operators. Conjunction Disjunction Negation Exclusive Or Implication Biconditional

Logical Operators. Conjunction Disjunction Negation Exclusive Or Implication Biconditional Logical Operators Conjunction Disjunction Negation Exclusive Or Implication Biconditional 1 Statement meaning p q p implies q if p, then q if p, q when p, q whenever p, q q if p q when p q whenever p p

More information

Predicate Logic Thursday, January 17, 2013 Chittu Tripathy Lecture 04

Predicate Logic Thursday, January 17, 2013 Chittu Tripathy Lecture 04 Predicate Logic Today s Menu Predicate Logic Quantifiers: Universal and Existential Nesting of Quantifiers Applications Limitations of Propositional Logic Suppose we have: All human beings are mortal.

More information

Section Summary. Predicate logic Quantifiers. Negating Quantifiers. Translating English to Logic. Universal Quantifier Existential Quantifier

Section Summary. Predicate logic Quantifiers. Negating Quantifiers. Translating English to Logic. Universal Quantifier Existential Quantifier Section 1.4 Section Summary Predicate logic Quantifiers Universal Quantifier Existential Quantifier Negating Quantifiers De Morgan s Laws for Quantifiers Translating English to Logic Propositional Logic

More information

2-4: The Use of Quantifiers

2-4: The Use of Quantifiers 2-4: The Use of Quantifiers The number x + 2 is an even integer is not a statement. When x is replaced by 1, 3 or 5 the resulting statement is false. However, when x is replaced by 2, 4 or 6 the resulting

More information

Discrete Mathematics

Discrete Mathematics Department of Mathematics National Cheng Kung University 2008 2.4: The use of Quantifiers Definition (2.5) A declarative sentence is an open statement if 1) it contains one or more variables, and 1 ) quantifier:

More information

First order Logic ( Predicate Logic) and Methods of Proof

First order Logic ( Predicate Logic) and Methods of Proof First order Logic ( Predicate Logic) and Methods of Proof 1 Outline Introduction Terminology: Propositional functions; arguments; arity; universe of discourse Quantifiers Definition; using, mixing, negating

More information

Predicate Logic. Example. Statements in Predicate Logic. Some statements cannot be expressed in propositional logic, such as: Predicate Logic

Predicate Logic. Example. Statements in Predicate Logic. Some statements cannot be expressed in propositional logic, such as: Predicate Logic Predicate Logic Predicate Logic (Rosen, Chapter 1.4-1.6) TOPICS Predicate Logic Quantifiers Logical Equivalence Predicate Proofs Some statements cannot be expressed in propositional logic, such as: All

More information

Quantifiers Here is a (true) statement about real numbers: Every real number is either rational or irrational.

Quantifiers Here is a (true) statement about real numbers: Every real number is either rational or irrational. Quantifiers 1-17-2008 Here is a (true) statement about real numbers: Every real number is either rational or irrational. I could try to translate the statement as follows: Let P = x is a real number Q

More information

Proposi'onal Logic Not Enough

Proposi'onal Logic Not Enough Section 1.4 Proposi'onal Logic Not Enough If we have: All men are mortal. Socrates is a man. Socrates is mortal Compare to: If it is snowing, then I will study discrete math. It is snowing. I will study

More information

PREDICATE LOGIC. Schaum's outline chapter 4 Rosen chapter 1. September 11, ioc.pdf

PREDICATE LOGIC. Schaum's outline chapter 4 Rosen chapter 1. September 11, ioc.pdf PREDICATE LOGIC Schaum's outline chapter 4 Rosen chapter 1 September 11, 2018 margarita.spitsakova@ttu.ee ICY0001: Lecture 2 September 11, 2018 1 / 25 Contents 1 Predicates and quantiers 2 Logical equivalences

More information

Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Section 1.3. Section 1.3 Predicates and Quantifiers

Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Section 1.3. Section 1.3 Predicates and Quantifiers Section 1.3 Predicates and Quantifiers A generalization of propositions - propositional functions or predicates.: propositions which contain variables Predicates become propositions once every variable

More information

Review: Potential stumbling blocks

Review: Potential stumbling blocks Review: Potential stumbling blocks Whether the negation sign is on the inside or the outside of a quantified statement makes a big difference! Example: Let T(x) x is tall. Consider the following: x T(x)

More information

THE ISLAMIC UNIVERSITY OF GAZA ENGINEERING FACULTY DEPARTMENT OF COMPUTER ENGINEERING DISCRETE MATHMATICS DISCUSSION ECOM Eng. Huda M.

THE ISLAMIC UNIVERSITY OF GAZA ENGINEERING FACULTY DEPARTMENT OF COMPUTER ENGINEERING DISCRETE MATHMATICS DISCUSSION ECOM Eng. Huda M. THE ISLAMIC UNIVERSITY OF GAZA ENGINEERING FACULTY DEPARTMENT OF COMPUTER ENGINEERING DISCRETE MATHMATICS DISCUSSION ECOM 2011 Eng. Huda M. Dawoud September, 2015 Section 1: Propositional Logic 2. Which

More information

Lecture 4. Predicate logic

Lecture 4. Predicate logic Lecture 4 Predicate logic Instructor: Kangil Kim (CSE) E-mail: kikim01@konkuk.ac.kr Tel. : 02-450-3493 Room : New Milenium Bldg. 1103 Lab : New Engineering Bldg. 1202 All slides are based on CS441 Discrete

More information

Lecture 3 : Predicates and Sets DRAFT

Lecture 3 : Predicates and Sets DRAFT CS/Math 240: Introduction to Discrete Mathematics 1/25/2010 Lecture 3 : Predicates and Sets Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last time we discussed propositions, which are

More information

Predicate Logic. CSE 191, Class Note 02: Predicate Logic Computer Sci & Eng Dept SUNY Buffalo

Predicate Logic. CSE 191, Class Note 02: Predicate Logic Computer Sci & Eng Dept SUNY Buffalo Predicate Logic CSE 191, Class Note 02: Predicate Logic Computer Sci & Eng Dept SUNY Buffalo c Xin He (University at Buffalo) CSE 191 Discrete Structures 1 / 22 Outline 1 From Proposition to Predicate

More information

Section Summary. Predicates Variables Quantifiers. Negating Quantifiers. Translating English to Logic Logic Programming (optional)

Section Summary. Predicates Variables Quantifiers. Negating Quantifiers. Translating English to Logic Logic Programming (optional) Predicate Logic 1 Section Summary Predicates Variables Quantifiers Universal Quantifier Existential Quantifier Negating Quantifiers De Morgan s Laws for Quantifiers Translating English to Logic Logic Programming

More information

Lecture Predicates and Quantifiers 1.5 Nested Quantifiers

Lecture Predicates and Quantifiers 1.5 Nested Quantifiers Lecture 4 1.4 Predicates and Quantifiers 1.5 Nested Quantifiers Predicates The statement "x is greater than 3" has two parts. The first part, "x", is the subject of the statement. The second part, "is

More information

Discrete Mathematics and Its Applications

Discrete Mathematics and Its Applications Discrete Mathematics and Its Applications Lecture 1: The Foundations: Logic and Proofs (1.3-1.5) MING GAO DASE @ ECNU (for course related communications) mgao@dase.ecnu.edu.cn Sep. 19, 2017 Outline 1 Logical

More information

Mat 243 Exam 1 Review

Mat 243 Exam 1 Review OBJECTIVES (Review problems: on next page) 1.1 Distinguish between propositions and non-propositions. Know the truth tables (i.e., the definitions) of the logical operators,,,, and Write truth tables for

More information

CSCE 222 Discrete Structures for Computing. Predicate Logic. Dr. Hyunyoung Lee. !!!!! Based on slides by Andreas Klappenecker

CSCE 222 Discrete Structures for Computing. Predicate Logic. Dr. Hyunyoung Lee. !!!!! Based on slides by Andreas Klappenecker CSCE 222 Discrete Structures for Computing Predicate Logic Dr. Hyunyoung Lee Based on slides by Andreas Klappenecker 1 Predicates A function P from a set D to the set Prop of propositions is called a predicate.

More information

Logic and Modelling. Introduction to Predicate Logic. Jörg Endrullis. VU University Amsterdam

Logic and Modelling. Introduction to Predicate Logic. Jörg Endrullis. VU University Amsterdam Logic and Modelling Introduction to Predicate Logic Jörg Endrullis VU University Amsterdam Predicate Logic In propositional logic there are: propositional variables p, q, r,... that can be T or F In predicate

More information

Topic #3 Predicate Logic. Predicate Logic

Topic #3 Predicate Logic. Predicate Logic Predicate Logic Predicate Logic Predicate logic is an extension of propositional logic that permits concisely reasoning about whole classes of entities. Propositional logic treats simple propositions (sentences)

More information

Logic and Proof. Aiichiro Nakano

Logic and Proof. Aiichiro Nakano Logic and Proof Aiichiro Nakano Collaboratory for Advanced Computing & Simulations Department of Computer Science Department of Physics & Astronomy Department of Chemical Engineering & Materials Science

More information

Introduction to Sets and Logic (MATH 1190)

Introduction to Sets and Logic (MATH 1190) Introduction to Sets Logic () Instructor: Email: shenlili@yorku.ca Department of Mathematics Statistics York University Sept 18, 2014 Outline 1 2 Tautologies Definition A tautology is a compound proposition

More information

CS 220: Discrete Structures and their Applications. Predicate Logic Section in zybooks

CS 220: Discrete Structures and their Applications. Predicate Logic Section in zybooks CS 220: Discrete Structures and their Applications Predicate Logic Section 1.6-1.10 in zybooks From propositional to predicate logic Let s consider the statement x is an odd number Its truth value depends

More information

Predicate in English. Predicates and Quantifiers. Predicate in Logic. Propositional Functions: Prelude. Propositional Function

Predicate in English. Predicates and Quantifiers. Predicate in Logic. Propositional Functions: Prelude. Propositional Function Predicates and Quantifiers Chuck Cusack Predicate in English In English, a sentence has 2 parts: the subject and the predicate. The predicate is the part of the sentence that states something about the

More information

Predicate Calculus. Lila Kari. University of Waterloo. Predicate Calculus CS245, Logic and Computation 1 / 59

Predicate Calculus. Lila Kari. University of Waterloo. Predicate Calculus CS245, Logic and Computation 1 / 59 Predicate Calculus Lila Kari University of Waterloo Predicate Calculus CS245, Logic and Computation 1 / 59 Predicate Calculus Alternative names: predicate logic, first order logic, elementary logic, restricted

More information

Math.3336: Discrete Mathematics. Nested Quantifiers

Math.3336: Discrete Mathematics. Nested Quantifiers Math.3336: Discrete Mathematics Nested Quantifiers Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu Fall 2018

More information

Formal Logic: Quantifiers, Predicates, and Validity. CS 130 Discrete Structures

Formal Logic: Quantifiers, Predicates, and Validity. CS 130 Discrete Structures Formal Logic: Quantifiers, Predicates, and Validity CS 130 Discrete Structures Variables and Statements Variables: A variable is a symbol that stands for an individual in a collection or set. For example,

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I ICS141: Discrete Mathematics for Computer Science I Dept. Information & Computer Sci., Originals slides by Dr. Baek and Dr. Still, adapted by J. Stelovsky Based on slides Dr. M. P. Frank and Dr. J.L. Gross

More information

Propositional and First-Order Logic

Propositional and First-Order Logic Propositional and irst-order Logic 1 Propositional Logic 2 Propositional logic Proposition : A proposition is classified as a declarative sentence which is either true or false. eg: 1) It rained yesterday.

More information

2/18/14. What is logic? Proposi0onal Logic. Logic? Propositional Logic, Truth Tables, and Predicate Logic (Rosen, Sections 1.1, 1.2, 1.

2/18/14. What is logic? Proposi0onal Logic. Logic? Propositional Logic, Truth Tables, and Predicate Logic (Rosen, Sections 1.1, 1.2, 1. Logic? Propositional Logic, Truth Tables, and Predicate Logic (Rosen, Sections 1.1, 1.2, 1.3) TOPICS Propositional Logic Logical Operations Equivalences Predicate Logic CS160 - Spring Semester 2014 2 What

More information

3. The Logic of Quantified Statements Summary. Aaron Tan August 2017

3. The Logic of Quantified Statements Summary. Aaron Tan August 2017 3. The Logic of Quantified Statements Summary Aaron Tan 28 31 August 2017 1 3. The Logic of Quantified Statements 3.1 Predicates and Quantified Statements I Predicate; domain; truth set Universal quantifier,

More information

Negations of Quantifiers

Negations of Quantifiers Negations of Quantifiers Lecture 10 Section 3.2 Robb T. Koether Hampden-Sydney College Thu, Jan 31, 2013 Robb T. Koether (Hampden-Sydney College) Negations of Quantifiers Thu, Jan 31, 2013 1 / 20 1 Negations

More information

2. Use quantifiers to express the associative law for multiplication of real numbers.

2. Use quantifiers to express the associative law for multiplication of real numbers. 1. Define statement function of one variable. When it will become a statement? Statement function is an expression containing symbols and an individual variable. It becomes a statement when the variable

More information

Full file at Chapter 1

Full file at   Chapter 1 Chapter 1 Use the following to answer questions 1-5: In the questions below determine whether the proposition is TRUE or FALSE 1. 1 + 1 = 3 if and only if 2 + 2 = 3. 2. If it is raining, then it is raining.

More information

Chapter 1, Part II: Predicate Logic

Chapter 1, Part II: Predicate Logic Chapter 1, Part II: Predicate Logic With Question/Answer Animations Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill

More information

Announcement. Homework 1

Announcement. Homework 1 Announcement I made a few small changes to the course calendar No class on Wed eb 27 th, watch the video lecture Quiz 8 will take place on Monday April 15 th We will submit assignments using Gradescope

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I ICS141: Discrete Mathematics for Computer Science I Dept. Information & Computer Sci., Originals slides by Dr. Baek and Dr. Still, adapted by J. Stelovsky Based on slides Dr. M. P. Frank and Dr. J.L. Gross

More information

CSC165 Mathematical Expression and Reasoning for Computer Science

CSC165 Mathematical Expression and Reasoning for Computer Science CSC165 Mathematical Expression and Reasoning for Computer Science Lisa Yan Department of Computer Science University of Toronto January 21, 2015 Lisa Yan (University of Toronto) Mathematical Expression

More information

Predicates and Quantifiers. Nested Quantifiers Discrete Mathematic. Chapter 1: Logic and Proof

Predicates and Quantifiers. Nested Quantifiers Discrete Mathematic. Chapter 1: Logic and Proof Discrete Mathematic Chapter 1: Logic and Proof 1.3 Predicates and Quantifiers 1.4 Nested Quantifiers Dr Patrick Chan School of Computer Science and Engineering South China University of Technology http://125.216.243.100/dm/

More information

Today s Lecture. ICS 6B Boolean Algebra & Logic. Predicates. Chapter 1: Section 1.3. Propositions. For Example. Socrates is Mortal

Today s Lecture. ICS 6B Boolean Algebra & Logic. Predicates. Chapter 1: Section 1.3. Propositions. For Example. Socrates is Mortal ICS 6B Boolean Algebra & Logic Today s Lecture Chapter 1 Sections 1.3 & 1.4 Predicates & Quantifiers 1.3 Nested Quantifiers 1.4 Lecture Notes for Summer Quarter, 2008 Michele Rousseau Set 2 Ch. 1.3, 1.4

More information

Nested Quantifiers. Predicates and. Quantifiers. Agenda. Limitation of Propositional Logic. Try to represent them using propositional.

Nested Quantifiers. Predicates and. Quantifiers. Agenda. Limitation of Propositional Logic. Try to represent them using propositional. Disc rete M athema tic Chapter 1: Logic and Proof 1.3 Predicates and Quantifiers 1.4 Nested Quantifiers Dr Patrick Chan School of Computer Science and Engineering South China Univers ity of Technology

More information

Propositional Logic. Premises: If Jack knows Jill, then Jill knows Jack. Jack knows Jill. Conclusion: Is it the case that Jill knows Jack?

Propositional Logic. Premises: If Jack knows Jill, then Jill knows Jack. Jack knows Jill. Conclusion: Is it the case that Jill knows Jack? Relational Logic Propositional Logic Premises: If Jack knows Jill, then Jill knows Jack. Jack knows Jill. Conclusion: Is it the case that Jill knows Jack? Problem Premises: If one person knows another,

More information

Propositional Logic Not Enough

Propositional Logic Not Enough Section 1.4 Propositional Logic Not Enough If we have: All men are mortal. Socrates is a man. Does it follow that Socrates is mortal? Can t be represented in propositional logic. Need a language that talks

More information

Predicate Calculus lecture 1

Predicate Calculus lecture 1 Predicate Calculus lecture 1 Section 1.3 Limitation of Propositional Logic Consider the following reasoning All cats have tails Gouchi is a cat Therefore, Gouchi has tail. MSU/CSE 260 Fall 2009 1 MSU/CSE

More information

Exercise Set 1 Solutions Math 2020 Due: January 30, Find the truth tables of each of the following compound statements.

Exercise Set 1 Solutions Math 2020 Due: January 30, Find the truth tables of each of the following compound statements. 1. Find the truth tables of each of the following compound statements. (a) ( (p q)) (p q), p q p q (p q) q p q ( (p q)) (p q) 0 0 0 1 1 1 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 (b) [p ( p q)] [( (p

More information

Chapter 2: The Logic of Quantified Statements. January 22, 2010

Chapter 2: The Logic of Quantified Statements. January 22, 2010 Chapter 2: The Logic of Quantified Statements January 22, 2010 Outline 1 2.1- Introduction to Predicates and Quantified Statements I 2 2.2 - Introduction to Predicates and Quantified Statements II 3 2.3

More information

III. Elementary Logic

III. Elementary Logic III. Elementary Logic The Language of Mathematics While we use our natural language to transmit our mathematical ideas, the language has some undesirable features which are not acceptable in mathematics.

More information

Formal (Natural) Deduction for Predicate Calculus

Formal (Natural) Deduction for Predicate Calculus Formal (Natural) Deduction for Predicate Calculus Lila Kari University of Waterloo Formal (Natural) Deduction for Predicate Calculus CS245, Logic and Computation 1 / 42 Formal deducibility for predicate

More information

CS0441 Discrete Structures Recitation 3. Xiang Xiao

CS0441 Discrete Structures Recitation 3. Xiang Xiao CS0441 Discrete Structures Recitation 3 Xiang Xiao Section 1.5 Q10 Let F(x, y) be the statement x can fool y, where the domain consists of all people in the world. Use quantifiers to express each of these

More information

Predicate Calculus - Syntax

Predicate Calculus - Syntax Predicate Calculus - Syntax Lila Kari University of Waterloo Predicate Calculus - Syntax CS245, Logic and Computation 1 / 26 The language L pred of Predicate Calculus - Syntax L pred, the formal language

More information

Before you get started, make sure you ve read Chapter 1, which sets the tone for the work we will begin doing here.

Before you get started, make sure you ve read Chapter 1, which sets the tone for the work we will begin doing here. Chapter 2 Mathematics and Logic Before you get started, make sure you ve read Chapter 1, which sets the tone for the work we will begin doing here. 2.1 A Taste of Number Theory In this section, we will

More information

ITS336 Lecture 6 First-Order Logic

ITS336 Lecture 6 First-Order Logic ITS6 Lecture 6 First-Order Logic 6.1 Syntax for FOL Basic Elements of FOL Constant Symbols A constant is an specific object such as a person name Tom, a particular apple etc. Variable Symbols A countably

More information

Proofs. Example of an axiom in this system: Given two distinct points, there is exactly one line that contains them.

Proofs. Example of an axiom in this system: Given two distinct points, there is exactly one line that contains them. Proofs A mathematical system consists of axioms, definitions and undefined terms. An axiom is assumed true. Definitions are used to create new concepts in terms of existing ones. Undefined terms are only

More information

Predicate Logic & Quantification

Predicate Logic & Quantification Predicate Logic & Quantification Things you should do Homework 1 due today at 3pm Via gradescope. Directions posted on the website. Group homework 1 posted, due Tuesday. Groups of 1-3. We suggest 3. In

More information

Packet #2: Set Theory & Predicate Calculus. Applied Discrete Mathematics

Packet #2: Set Theory & Predicate Calculus. Applied Discrete Mathematics CSC 224/226 Notes Packet #2: Set Theory & Predicate Calculus Barnes Packet #2: Set Theory & Predicate Calculus Applied Discrete Mathematics Table of Contents Full Adder Information Page 1 Predicate Calculus

More information

EECS 1028 M: Discrete Mathematics for Engineers

EECS 1028 M: Discrete Mathematics for Engineers EECS 1028 M: Discrete Mathematics for Engineers Suprakash Datta Office: LAS 3043 Course page: http://www.eecs.yorku.ca/course/1028 Also on Moodle S. Datta (York Univ.) EECS 1028 W 18 1 / 21 Predicate Logic

More information

Handout #7 Predicate Logic Trees

Handout #7 Predicate Logic Trees Handout #7 Predicate Logic Trees Predicate trees: Decomposition Rules Negated Existential Decomposition ( D) ( x)p ( x) P Existential Decomposition ( D) ( x)p P(a/x) where a is an individual constant (name)

More information

First order logic. Example The deduction of statements: This reasoning is intuitively correct. Every man is mortal. Since Ade is a man, he is mortal.

First order logic. Example The deduction of statements: This reasoning is intuitively correct. Every man is mortal. Since Ade is a man, he is mortal. First Order Logic In the propositional logic, the most basic elements are atoms. Through atoms we build up formulas. We then use formulas to express various complex ideas. In this simple logic, an atom

More information

STRATEGIES OF PROBLEM SOLVING

STRATEGIES OF PROBLEM SOLVING STRATEGIES OF PROBLEM SOLVING Second Edition Maria Nogin Department of Mathematics College of Science and Mathematics California State University, Fresno 2014 2 Chapter 1 Introduction Solving mathematical

More information

Math Fundamentals of Higher Math

Math Fundamentals of Higher Math Lecture 9-1/29/2014 Math 3345 ematics Ohio State University January 29, 2014 Course Info Instructor - webpage https://people.math.osu.edu/broaddus.9/3345 office hours Mondays and Wednesdays 10:10am-11am

More information

Proving logical equivalencies (1.3)

Proving logical equivalencies (1.3) EECS 203 Spring 2016 Lecture 2 Page 1 of 6 Proving logical equivalencies (1.3) One thing we d like to do is prove that two logical statements are the same, or prove that they aren t. Vocabulary time In

More information

LING 501, Fall 2004: Quantification

LING 501, Fall 2004: Quantification LING 501, Fall 2004: Quantification The universal quantifier Ax is conjunctive and the existential quantifier Ex is disjunctive Suppose the domain of quantification (DQ) is {a, b}. Then: (1) Ax Px Pa &

More information

Today we will probably finish Course Notes 2.3: Predicates and Quantifiers.

Today we will probably finish Course Notes 2.3: Predicates and Quantifiers. Friday, Sept 14 Today we will probably finish Course Notes 2.3: Predicates and Quantifiers. After that, we might begin Course Notes 1.1: Definitions in Set Mathematics. EXAMPLE Let P(x): 'x is a JRR Tolkien

More information

Predicates and Quantifiers. CS 231 Dianna Xu

Predicates and Quantifiers. CS 231 Dianna Xu Predicates and Quantifiers CS 231 Dianna Xu 1 Predicates Consider P(x) = x < 5 P(x) has no truth values (x is not given a value) P(1) is true 1< 5 is true P(10) is false 10 < 5 is false Thus, P(x) will

More information

Predicates, Quantifiers and Nested Quantifiers

Predicates, Quantifiers and Nested Quantifiers Predicates, Quantifiers and Nested Quantifiers Predicates Recall the example of a non-proposition in our first presentation: 2x=1. Let us call this expression P(x). P(x) is not a proposition because x

More information

Review. Propositional Logic. Propositions atomic and compound. Operators: negation, and, or, xor, implies, biconditional.

Review. Propositional Logic. Propositions atomic and compound. Operators: negation, and, or, xor, implies, biconditional. Review Propositional Logic Propositions atomic and compound Operators: negation, and, or, xor, implies, biconditional Truth tables A closer look at implies Translating from/ to English Converse, inverse,

More information

Recall that the expression x > 3 is not a proposition. Why?

Recall that the expression x > 3 is not a proposition. Why? Predicates and Quantifiers Predicates and Quantifiers 1 Recall that the expression x > 3 is not a proposition. Why? Notation: We will use the propositional function notation to denote the expression "

More information

Announcements. CS311H: Discrete Mathematics. Introduction to First-Order Logic. A Motivating Example. Why First-Order Logic?

Announcements. CS311H: Discrete Mathematics. Introduction to First-Order Logic. A Motivating Example. Why First-Order Logic? Announcements CS311H: Discrete Mathematics Introduction to First-Order Logic Instructor: Işıl Dillig Homework due at the beginning of next lecture Please bring a hard copy of solutions to class! Instructor:

More information

MATH 22 INFERENCE & QUANTIFICATION. Lecture F: 9/18/2003

MATH 22 INFERENCE & QUANTIFICATION. Lecture F: 9/18/2003 MATH 22 Lecture F: 9/18/2003 INFERENCE & QUANTIFICATION Sixty men can do a piece of work sixty times as quickly as one man. One man can dig a post-hole in sixty seconds. Therefore, sixty men can dig a

More information

Today. Proof using contrapositive. Compound Propositions. Manipulating Propositions. Tautology

Today. Proof using contrapositive. Compound Propositions. Manipulating Propositions. Tautology 1 Math/CSE 1019N: Discrete Mathematics for Computer Science Winter 2007 Suprakash Datta datta@cs.yorku.ca Office: CSEB 3043 Phone: 416-736-2100 ext 77875 Course page: http://www.cs.yorku.ca/course/1019

More information

Predicate Logic. Andreas Klappenecker

Predicate Logic. Andreas Klappenecker Predicate Logic Andreas Klappenecker Predicates A function P from a set D to the set Prop of propositions is called a predicate. The set D is called the domain of P. Example Let D=Z be the set of integers.

More information

For all For every For each For any There exists at least one There exists There is Some

For all For every For each For any There exists at least one There exists There is Some Section 1.3 Predicates and Quantifiers Assume universe of discourse is all the people who are participating in this course. Also let us assume that we know each person in the course. Consider the following

More information

Lecture 3. Logic Predicates and Quantified Statements Statements with Multiple Quantifiers. Introduction to Proofs. Reading (Epp s textbook)

Lecture 3. Logic Predicates and Quantified Statements Statements with Multiple Quantifiers. Introduction to Proofs. Reading (Epp s textbook) Lecture 3 Logic Predicates and Quantified Statements Statements with Multiple Quantifiers Reading (Epp s textbook) 3.1-3.3 Introduction to Proofs Reading (Epp s textbook) 4.1-4.2 1 Propositional Functions

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 1

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 1 EECS 70 Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 1 Getting Started In order to be fluent in mathematical statements, you need to understand the basic framework of the language

More information

COMP 182 Algorithmic Thinking. Proofs. Luay Nakhleh Computer Science Rice University

COMP 182 Algorithmic Thinking. Proofs. Luay Nakhleh Computer Science Rice University COMP 182 Algorithmic Thinking Proofs Luay Nakhleh Computer Science Rice University 1 Reading Material Chapter 1, Section 3, 6, 7, 8 Propositional Equivalences The compound propositions p and q are called

More information

THE LOGIC OF QUANTIFIED STATEMENTS

THE LOGIC OF QUANTIFIED STATEMENTS CHAPTER 3 THE LOGIC OF QUANTIFIED STATEMENTS Copyright Cengage Learning. All rights reserved. SECTION 3.2 Predicates and Quantified Statements II Copyright Cengage Learning. All rights reserved. Negations

More information

Logic. Logic is a discipline that studies the principles and methods used in correct reasoning. It includes:

Logic. Logic is a discipline that studies the principles and methods used in correct reasoning. It includes: Logic Logic is a discipline that studies the principles and methods used in correct reasoning It includes: A formal language for expressing statements. An inference mechanism (a collection of rules) to

More information

MAT2345 Discrete Math

MAT2345 Discrete Math Fall 2013 General Syllabus Schedule (note exam dates) Homework, Worksheets, Quizzes, and possibly Programs & Reports Academic Integrity Do Your Own Work Course Web Site: www.eiu.edu/~mathcs Course Overview

More information

ECOM Discrete Mathematics

ECOM Discrete Mathematics ECOM 2311- Discrete Mathematics Chapter # 1 : The Foundations: Logic and Proofs Fall, 2013/2014 ECOM 2311- Discrete Mathematics - Ch.1 Dr. Musbah Shaat 1 / 85 Outline 1 Propositional Logic 2 Propositional

More information

CS 1571 Introduction to AI Lecture 14. First-order logic. CS 1571 Intro to AI. Midterm

CS 1571 Introduction to AI Lecture 14. First-order logic. CS 1571 Intro to AI. Midterm CS 1571 Introduction to AI Lecture 14 First-order logic Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Midterm The midterm for the course will be held on October 28, 2014 In class exam Closed book

More information

COMP Intro to Logic for Computer Scientists. Lecture 11

COMP Intro to Logic for Computer Scientists. Lecture 11 COMP 1002 Intro to Logic for Computer Scientists Lecture 11 B 5 2 J Puzzle 10 The first formulation of the famous liar s paradox, attributed to a Cretan philosopher Epimenides, stated All Cretans are liars.

More information

Solutions to Exercises (Sections )

Solutions to Exercises (Sections ) s to Exercises (Sections 1.1-1.10) Section 1.1 Exercise 1.1.1: Identifying propositions (a) Have a nice day. : Command, not a proposition. (b) The soup is cold. : Proposition. Negation: The soup is not

More information

1.3 Predicates and Quantifiers

1.3 Predicates and Quantifiers 1.3 Predicates and Quantifiers INTRODUCTION Statements x>3, x=y+3 and x + y=z are not propositions, if the variables are not specified. In this section we discuss the ways of producing propositions from

More information

Introduction. Predicates and Quantifiers. Discrete Mathematics Andrei Bulatov

Introduction. Predicates and Quantifiers. Discrete Mathematics Andrei Bulatov Introduction Predicates and Quantifiers Discrete Mathematics Andrei Bulatov Discrete Mathematics Predicates and Quantifiers 7-2 What Propositional Logic Cannot Do We saw that some declarative sentences

More information

Predicate Logic 16. Quantifiers. The Lecture

Predicate Logic 16. Quantifiers. The Lecture Predicate Logic 16. Quantifiers The Lecture First order (predicate logic) formulas Quantifiers are the final elements that first order (i.e. predicate logic) formulas are built up from. First order formulas

More information

KS MATEMATIKA DISKRIT (DISCRETE MATHEMATICS ) RULES OF INFERENCE. Discrete Math Team

KS MATEMATIKA DISKRIT (DISCRETE MATHEMATICS ) RULES OF INFERENCE. Discrete Math Team KS091201 MATEMATIKA DISKRIT (DISCRETE MATHEMATICS ) RULES OF INFERENCE Discrete Math Team 2 -- KS091201 MD W-04 Outline Valid Arguments Modus Ponens Modus Tollens Addition and Simplification More Rules

More information

2/2/2018. CS 103 Discrete Structures. Chapter 1. Propositional Logic. Chapter 1.1. Propositional Logic

2/2/2018. CS 103 Discrete Structures. Chapter 1. Propositional Logic. Chapter 1.1. Propositional Logic CS 103 Discrete Structures Chapter 1 Propositional Logic Chapter 1.1 Propositional Logic 1 1.1 Propositional Logic Definition: A proposition :is a declarative sentence (that is, a sentence that declares

More information

Discrete Structures Lecture 5

Discrete Structures Lecture 5 Introduction EXAMPLE 1 Express xx yy(xx + yy = 0) without the existential quantifier. Solution: xx yy(xx + yy = 0) is the same as xxxx(xx) where QQ(xx) is yyyy(xx, yy) and PP(xx, yy) = xx + yy = 0 EXAMPLE

More information

Part I: Propositional Calculus

Part I: Propositional Calculus Logic Part I: Propositional Calculus Statements Undefined Terms True, T, #t, 1 False, F, #f, 0 Statement, Proposition Statement/Proposition -- Informal Definition Statement = anything that can meaningfully

More information

Propositions and Proofs

Propositions and Proofs Propositions and Proofs Gert Smolka, Saarland University April 25, 2018 Proposition are logical statements whose truth or falsity can be established with proofs. Coq s type theory provides us with a language

More information

Computer Science 280 Spring 2002 Homework 2 Solutions by Omar Nayeem

Computer Science 280 Spring 2002 Homework 2 Solutions by Omar Nayeem Computer Science 280 Spring 2002 Homework 2 Solutions by Omar Nayeem Part A 1. (a) Some dog does not have his day. (b) Some action has no equal and opposite reaction. (c) Some golfer will never be eated

More information

Logic and Propositional Calculus

Logic and Propositional Calculus CHAPTER 4 Logic and Propositional Calculus 4.1 INTRODUCTION Many algorithms and proofs use logical expressions such as: IF p THEN q or If p 1 AND p 2, THEN q 1 OR q 2 Therefore it is necessary to know

More information

Introduction to first-order logic:

Introduction to first-order logic: Introduction to first-order logic: First-order structures and languages. Terms and formulae in first-order logic. Interpretations, truth, validity, and satisfaction. Valentin Goranko DTU Informatics September

More information