Intrinsic Semiconductors

Size: px
Start display at page:

Download "Intrinsic Semiconductors"

Transcription

1 Technische Universität Graz Institute of Solid State Physics Intrinsic Semiconductors

2 ermi function f(e) is the probability that a state at energy E is occupied. f( E) 1 E E 1 exp kt B

3 ermi energy The ermi energy is implicitly defined as the energy that solves the following equation. n Here n is the electron density. D( E) f( E) de The density of states, the total number of electrons and the temperature are given. To find the ermi energy, guess one and evaluate the integral. If n turns out too low, guess a higher E and if n turns out too high, guess a lower E.

4 free electrons (simple model for a metal) p E( k) 2 mv kx ky k 3-d density of states z 2m 2m E dispersion relation m 3/2 k x k y DE ( ) 2 0 for E E for E 0

5 Silicon band structure E c = bottom of the conduction band E g = E c -E v E v = top of the valence band E k x k y [111] k=0 [100] Near the bottom of the conduction band, the band structure looks like a parabola.

6 Effective mass p E( k) k k k mv 2m 2m 2 de( k ) kx dkx m 2 2 d E( k) 2 dk m x y z 2 x Effective mass 2 2 This effective mass is used to describe the response of electrons to external forces in the particle picture. m * x d E( k) dk 2 x k x E * ee m a

7 GaN

8 Anisotropic effective mass in silicon 100 The electrons seem to have different masses when the electric field is applied in different directions.

9 E 2 2 kx a k y kz 2m 2m 2m 2 l t t E c

10 Holes When all states in a band are occupied, the band does not contribute to the current. There are as many left-moving electrons as right-moving electrons. I ev occupied k I ev ev all k I k empty k empty k ev k k k

11 valence band, holes In the valence band, the effective mass is negative. m * 2 2 d E k ( ) dk 2 x 0

12 Holes Charge carriers in the valence band can be considered to be positively charged holes. The number of holes in the valence band is the number of missing electrons. m* h = effective mass of holes m * h 2 2 d E k ( ) dk 2 x ee m a * h

13 Silicon density of states D( E) Dc E Ec T = 300 K T = 300 K electrons in the conduction band

14 Boltzmann approximation f( E) 1 E E exp 1 kt B E E exp kt B E E kt B 3 E E kt B

15 Density of electrons in the conduction band E E n D( E) f( E) de Dcexp EEcdE kt E E B c c x E E c 0 x 2 xexp dx kbt kt B 3/2 E 2 E c Dc ( )exp 3/2 E E c n Nc T kbt exp kt B kt B N c * 2D 3/2 c mkt B kbt /2 = effective density of states

16 Density of electrons in the conduction band n 3/2 * mkt B E E c 2 exp 2 2 kt B L X n 3/2 T E E c Nc exp 300 kt B

17 Density of holes in the valence band D( E) Dv Ev E 1 E E 1 f( E) 1 exp E E kt B 1 exp kt B E k

18 Boltzmann approximation E E exp kt B 1 f( E) 1 1 E E exp 1 kt B E E kt B 3 E E kt B

19 Density of holes in the valence band E v v E E p DE ( ) 1 f( E) de Dv exp Ev EdE kt B E 2 v E Dv exp 3/2 Ev E p Nv kbt exp kt B kt B E N v * mkt h 2 2 B2 3/2 = Effective density of states in the valence band

20 Density of holes in the valence band p * 3/2 h B v 2 kt B mkt E E 2 exp 2 p 3/2 T Ev E Nv exp 300 kt B

21

22 Law of mass action E E c Ev E np Ncexp Nvexp kt B kt B E c np Eg NcNvexp kt B E v E g or intrinsic semiconductors (no impurities) Eg n p ni NcNv exp 2 kt B intrinsic carrier density

23 Intrinsic carrier concentration log 10 (n i ) cm -3 GaAs Si Ge n N N i v c 3 T Eg exp 300 2kT B 1/T 300 K Silicon has ~ atoms/cm 3 Good for thermometer, bad for designing circuits.

24 ermi energy of an intrinsic semiconductor E E c Ev E n p Ncexp Nvexp kt B kt B N v E Ec Ev E exp Nc kbt 2E Ec E v N v ln kt B kt B Nc E Ec Ev kt B N v ln 2 2 Nc

25 Temperature dependence of E Si GaAs E Ec Ev kt B N v ln 2 2 Nc

26

27 Technische Universität Graz Institute of Solid State Physics Extrinsic semiconductors The introduction of impurity atoms that can add electrons or holes is called doping. n-type : donor atoms contribute electrons to the conduction band. Examples: P, As in Si. p-type : acceptor atoms contribute holes to the valence band. Examples: B, Ga, Al in Si.

28 Technische Universität Graz Institute of Solid State Physics n and p n The electron density and hole density are: E E c Nc exp p kt B Ev E Nv exp kt B The law of mass action: 2 np ni NvNcexp E B g kt

29 Ionization of dopants Easier to ionize a P atom in Si than a free P atom E n 4 me 8 hn Ionization energy is smaller by a factor: * m m 0 r 0 2 Ionization energy ~ 25 mev

30 acceptors in Si donors in Si

31 Crystal growth Czochralski Process add dopants to the melt images from wikipedia

32 Crystal growth loat zone Process Neutron transmutation 30 Si + n 31 Si + 31 Si 31 P + image from wikipedia

33 Gas phase diffusion AsH 3 (Arsine) or PH 3 (phosphine) for n-doping B 2 H 6 (diborane) for p-doping.

34 Chemical vapor deposition Epitaxial silicon CVD SiH 4 (silane) or SiH 2 Cl 2 (dichlorosilane) PH 3 (phosphine) for n-doping or B 2 H 6 (diborane) for p-doping. image from wikipedia

35 Ion implantation Implant at 7º to avoid channeling

36

37

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Lecture 1 OUTLINE Basic Semiconductor Physics Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Reading: Chapter 2.1 EE105 Fall 2007 Lecture 1, Slide 1 What is a Semiconductor? Low

More information

Basic cell design. Si cell

Basic cell design. Si cell Basic cell design Si cell 1 Concepts needed to describe photovoltaic device 1. energy bands in semiconductors: from bonds to bands 2. free carriers: holes and electrons, doping 3. electron and hole current:

More information

Review of Semiconductor Fundamentals

Review of Semiconductor Fundamentals ECE 541/ME 541 Microelectronic Fabrication Techniques Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 1 Semiconductor A semiconductor is an almost insulating material,

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 8/30/2007 Semiconductor Fundamentals Lecture 2 Read: Chapters 1 and 2 Last Lecture: Energy Band Diagram Conduction band E c E g Band gap E v Valence

More information

Variation of Energy Bands with Alloy Composition E

Variation of Energy Bands with Alloy Composition E Variation of Energy Bands with Alloy Composition E 3.0 E.8.6 L 0.3eV Al x GaAs AlAs 1- xas 1.43eV.16eV X k.4 L. X.0 X 1.8 L 1.6 1.4 0 0. 0.4 0.6 X 0.8 1 1 Carriers in intrinsic Semiconductors Ec 4º 1º

More information

The Semiconductor in Equilibrium

The Semiconductor in Equilibrium Lecture 6 Semiconductor physics IV The Semiconductor in Equilibrium Equilibrium, or thermal equilibrium No external forces such as voltages, electric fields. Magnetic fields, or temperature gradients are

More information

Lecture 7: Extrinsic semiconductors - Fermi level

Lecture 7: Extrinsic semiconductors - Fermi level Lecture 7: Extrinsic semiconductors - Fermi level Contents 1 Dopant materials 1 2 E F in extrinsic semiconductors 5 3 Temperature dependence of carrier concentration 6 3.1 Low temperature regime (T < T

More information

ECE 442. Spring, Lecture -2

ECE 442. Spring, Lecture -2 ECE 442 Power Semiconductor Devices and Integrated circuits Spring, 2006 University of Illinois at Chicago Lecture -2 Semiconductor physics band structures and charge carriers 1. What are the types of

More information

Key Questions. ECE 340 Lecture 6 : Intrinsic and Extrinsic Material I 9/10/12. Class Outline: Effective Mass Intrinsic Material

Key Questions. ECE 340 Lecture 6 : Intrinsic and Extrinsic Material I 9/10/12. Class Outline: Effective Mass Intrinsic Material 9/1/1 ECE 34 Lecture 6 : Intrinsic and Extrinsic Material I Class Outline: Things you should know when you leave Key Questions What is the physical meaning of the effective mass What does a negative effective

More information

Charge Carriers in Semiconductor

Charge Carriers in Semiconductor Charge Carriers in Semiconductor To understand PN junction s IV characteristics, it is important to understand charge carriers behavior in solids, how to modify carrier densities, and different mechanisms

More information

ECE 340 Lecture 6 : Intrinsic and Extrinsic Material I Class Outline:

ECE 340 Lecture 6 : Intrinsic and Extrinsic Material I Class Outline: ECE 340 Lecture 6 : Intrinsic and Extrinsic Material I Class Outline: Effective Mass Intrinsic Material Extrinsic Material Things you should know when you leave Key Questions What is the physical meaning

More information

A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced.

A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced. Semiconductor A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced. Page 2 Semiconductor materials Page 3 Energy levels

More information

EE143 Fall 2016 Microfabrication Technologies. Evolution of Devices

EE143 Fall 2016 Microfabrication Technologies. Evolution of Devices EE143 Fall 2016 Microfabrication Technologies Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1-1 Evolution of Devices Yesterday s Transistor (1947) Today s Transistor (2006) 1-2 1 Why

More information

EE 346: Semiconductor Devices

EE 346: Semiconductor Devices EE 346: Semiconductor Devices Lecture - 6 02/06/2017 Tewodros A. Zewde 1 DENSTY OF STATES FUNCTON Since current is due to the flow of charge, an important step in the process is to determine the number

More information

EE 346: Semiconductor Devices. 02/08/2017 Tewodros A. Zewde 1

EE 346: Semiconductor Devices. 02/08/2017 Tewodros A. Zewde 1 EE 346: Semiconductor Devices 02/08/2017 Tewodros A. Zewde 1 DOPANT ATOMS AND ENERGY LEVELS Without help the total number of carriers (electrons and holes) is limited to 2ni. For most materials, this is

More information

EECS143 Microfabrication Technology

EECS143 Microfabrication Technology EECS143 Microfabrication Technology Professor Ali Javey Introduction to Materials Lecture 1 Evolution of Devices Yesterday s Transistor (1947) Today s Transistor (2006) Why Semiconductors? Conductors e.g

More information

Lecture 2 - Carrier Statistics in Equilibrium. September 5, 2002

Lecture 2 - Carrier Statistics in Equilibrium. September 5, 2002 6.720J/3.43J Integrated Microelectronic Devices Fall 2002 Lecture 21 Lecture 2 Carrier Statistics in Equilibrium Contents: September 5, 2002 1. Conduction and valence bands, bandgap, holes 2. Intrinsic

More information

Introduction to Semiconductor Physics. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Introduction to Semiconductor Physics. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Introduction to Semiconductor Physics 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/cmp2013 Review of Semiconductor Physics Semiconductor fundamentals

More information

n N D n p = n i p N A

n N D n p = n i p N A Summary of electron and hole concentration in semiconductors Intrinsic semiconductor: E G n kt i = pi = N e 2 0 Donor-doped semiconductor: n N D where N D is the concentration of donor impurity Acceptor-doped

More information

Three Most Important Topics (MIT) Today

Three Most Important Topics (MIT) Today Three Most Important Topics (MIT) Today Electrons in periodic potential Energy gap nearly free electron Bloch Theorem Energy gap tight binding Chapter 1 1 Electrons in Periodic Potential We now know the

More information

Direct and Indirect Semiconductor

Direct and Indirect Semiconductor Direct and Indirect Semiconductor Allowed values of energy can be plotted vs. the propagation constant, k. Since the periodicity of most lattices is different in various direction, the E-k diagram must

More information

Lecture 2 Electrons and Holes in Semiconductors

Lecture 2 Electrons and Holes in Semiconductors EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 2 Electrons and Holes in Semiconductors Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology

More information

Semiconductor-Detectors

Semiconductor-Detectors Semiconductor-Detectors 1 Motivation ~ 195: Discovery that pn-- junctions can be used to detect particles. Semiconductor detectors used for energy measurements ( Germanium) Since ~ 3 years: Semiconductor

More information

Lecture 3b. Bonding Model and Dopants. Reading: (Cont d) Notes and Anderson 2 sections

Lecture 3b. Bonding Model and Dopants. Reading: (Cont d) Notes and Anderson 2 sections Lecture 3b Bonding Model and Dopants Reading: (Cont d) Notes and Anderson 2 sections 2.3-2.7 The need for more control over carrier concentration Without help the total number of carriers (electrons and

More information

Ch. 2: Energy Bands And Charge Carriers In Semiconductors

Ch. 2: Energy Bands And Charge Carriers In Semiconductors Ch. 2: Energy Bands And Charge Carriers In Semiconductors Discrete energy levels arise from balance of attraction force between electrons and nucleus and repulsion force between electrons each electron

More information

smal band gap Saturday, April 9, 2011

smal band gap Saturday, April 9, 2011 small band gap upper (conduction) band empty small gap valence band filled 2s 2p 2s 2p hybrid (s+p)band 2p no gap 2s (depend on the crystallographic orientation) extrinsic semiconductor semi-metal electron

More information

PHYS208 P-N Junction. Olav Torheim. May 30, 2007

PHYS208 P-N Junction. Olav Torheim. May 30, 2007 1 PHYS208 P-N Junction Olav Torheim May 30, 2007 1 Intrinsic semiconductors The lower end of the conduction band is a parabola, just like in the quadratic free electron case (E = h2 k 2 2m ). The density

More information

Crystal Properties. MS415 Lec. 2. High performance, high current. ZnO. GaN

Crystal Properties. MS415 Lec. 2. High performance, high current. ZnO. GaN Crystal Properties Crystal Lattices: Periodic arrangement of atoms Repeated unit cells (solid-state) Stuffing atoms into unit cells Determine mechanical & electrical properties High performance, high current

More information

Solid State Device Fundamentals

Solid State Device Fundamentals 4. lectrons and Holes Solid State Device Fundamentals NS 45 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 4N101b 1 4. lectrons and Holes Free electrons and holes

More information

Chapter 1 Semiconductor basics

Chapter 1 Semiconductor basics Chapter 1 Semiconductor basics ELEC-H402/CH1: Semiconductor basics 1 Basic semiconductor concepts Semiconductor basics Semiconductors, silicon and hole-electron pair Intrinsic silicon properties Doped

More information

n i exp E g 2kT lnn i E g 2kT

n i exp E g 2kT lnn i E g 2kT HOMEWORK #10 12.19 For intrinsic semiconductors, the intrinsic carrier concentration n i depends on temperature as follows: n i exp E g 2kT (28.35a) or taking natural logarithms, lnn i E g 2kT (12.35b)

More information

CLASS 12th. Semiconductors

CLASS 12th. Semiconductors CLASS 12th Semiconductors 01. Distinction Between Metals, Insulators and Semi-Conductors Metals are good conductors of electricity, insulators do not conduct electricity, while the semiconductors have

More information

ECE 250 Electronic Devices 1. Electronic Device Modeling

ECE 250 Electronic Devices 1. Electronic Device Modeling ECE 250 Electronic Devices 1 ECE 250 Electronic Device Modeling ECE 250 Electronic Devices 2 Introduction to Semiconductor Physics You should really take a semiconductor device physics course. We can only

More information

Calculating Band Structure

Calculating Band Structure Calculating Band Structure Nearly free electron Assume plane wave solution for electrons Weak potential V(x) Brillouin zone edge Tight binding method Electrons in local atomic states (bound states) Interatomic

More information

Semiconductors. SEM and EDAX images of an integrated circuit. SEM EDAX: Si EDAX: Al. Institut für Werkstoffe der ElektrotechnikIWE

Semiconductors. SEM and EDAX images of an integrated circuit. SEM EDAX: Si EDAX: Al. Institut für Werkstoffe der ElektrotechnikIWE SEM and EDAX images of an integrated circuit SEM EDAX: Si EDAX: Al source: [Cal 99 / 605] M&D-.PPT, slide: 1, 12.02.02 Classification semiconductors electronic semiconductors mixed conductors ionic conductors

More information

Lecture 2. Semiconductor Physics. Sunday 4/10/2015 Semiconductor Physics 1-1

Lecture 2. Semiconductor Physics. Sunday 4/10/2015 Semiconductor Physics 1-1 Lecture 2 Semiconductor Physics Sunday 4/10/2015 Semiconductor Physics 1-1 Outline Intrinsic bond model: electrons and holes Charge carrier generation and recombination Intrinsic semiconductor Doping:

More information

Note that it is traditional to draw the diagram for semiconductors rotated 90 degrees, i.e. the version on the right above.

Note that it is traditional to draw the diagram for semiconductors rotated 90 degrees, i.e. the version on the right above. 5 Semiconductors The nearly free electron model applies equally in the case where the Fermi level lies within a small band gap (semiconductors), as it does when the Fermi level lies within a band (metal)

More information

Chapter 7. The pn Junction

Chapter 7. The pn Junction Chapter 7 The pn Junction Chapter 7 PN Junction PN junction can be fabricated by implanting or diffusing donors into a P-type substrate such that a layer of semiconductor is converted into N type. Converting

More information

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors Lecture 2 Introduction to semiconductors Structures and characteristics in semiconductors Semiconductor p-n junction Metal Oxide Silicon structure Semiconductor contact Literature Glen F. Knoll, Radiation

More information

CHAPTER 2: ENERGY BANDS & CARRIER CONCENTRATION IN THERMAL EQUILIBRIUM. M.N.A. Halif & S.N. Sabki

CHAPTER 2: ENERGY BANDS & CARRIER CONCENTRATION IN THERMAL EQUILIBRIUM. M.N.A. Halif & S.N. Sabki CHAPTER 2: ENERGY BANDS & CARRIER CONCENTRATION IN THERMAL EQUILIBRIUM OUTLINE 2.1 INTRODUCTION: 2.1.1 Semiconductor Materials 2.1.2 Basic Crystal Structure 2.1.3 Basic Crystal Growth technique 2.1.4 Valence

More information

1. Visualization of the Silicon Crystal 2. Conductivity 3. Temperature Dependence of Semiconductor Conductivity 4. Electron and Hole Concentrations

1. Visualization of the Silicon Crystal 2. Conductivity 3. Temperature Dependence of Semiconductor Conductivity 4. Electron and Hole Concentrations 1. Visualization of the Silicon Crystal. Conductivity 3. Temperature Dependence of Semiconductor Conductivity 4. Electron and Hole Concentrations 5. The Concept of Mobility, FIELD DEPENDENCE 6. complete

More information

Physics of Semiconductors. Exercises. The Evaluation of the Fermi Level in Semiconductors.

Physics of Semiconductors. Exercises. The Evaluation of the Fermi Level in Semiconductors. Physics of Semiconductors. Exercises. The Evaluation of the Fermi Level in Semiconductors. B.I.Lembrikov Department of Communication Engineering Holon Academic Institute of Technology I. Problem 8. The

More information

Consider a uniformly doped PN junction, in which one region of the semiconductor is uniformly doped with acceptor atoms and the adjacent region is

Consider a uniformly doped PN junction, in which one region of the semiconductor is uniformly doped with acceptor atoms and the adjacent region is CHAPTER 7 The PN Junction Consider a uniformly doped PN junction, in which one region of the semiconductor is uniformly doped with acceptor atoms and the adjacent region is uniformly doped with donor atoms.

More information

PHYS208 p-n junction. January 15, 2010

PHYS208 p-n junction. January 15, 2010 1 PHYS208 p-n junction January 15, 2010 List of topics (1) Density of states Fermi-Dirac distribution Law of mass action Doped semiconductors Dopinglevel p-n-junctions 1 Intrinsic semiconductors List of

More information

Lecture 2 - Carrier Statistics in Equilibrium. February 8, 2007

Lecture 2 - Carrier Statistics in Equilibrium. February 8, 2007 6.720J/3.43J Integrated Microelectronic Devices Spring 2007 Lecture 21 Lecture 2 Carrier Statistics in Equilibrium Contents: February 8, 2007 1. Conduction and valence bands, bandgap, holes 2. Intrinsic

More information

Silicon. tetrahedron diamond structure

Silicon. tetrahedron diamond structure Silicon a tetrahedron a a diamond structure Tetrahedral bonding Hund s Rule 14Si [e] 3s 3p [e] hybridize 3sp 3 Hybridized level has higher energy for an isolated atom, but allows overall reduction in energy

More information

PH575 Spring Lecture #19 Semiconductors: electrical & optical properties: Kittel Ch. 8 pp ; Ch. 20

PH575 Spring Lecture #19 Semiconductors: electrical & optical properties: Kittel Ch. 8 pp ; Ch. 20 PH575 Spring 2014 Lecture #19 Semiconductors: electrical & optical properties: Kittel Ch. 8 pp. 205-214; Ch. 20 Simplified diagram of the filling of electronic band structure in various types of material,

More information

Topic 11-3: Fermi Levels of Intrinsic Semiconductors with Effective Mass in Temperature

Topic 11-3: Fermi Levels of Intrinsic Semiconductors with Effective Mass in Temperature Topic 11-3: Fermi Levels of Intrinsic Semiconductors with Effective Mass in Temperature Summary: In this video we aim to get an expression for carrier concentration in an intrinsic semiconductor. To do

More information

ECE 142: Electronic Circuits Lecture 3: Semiconductors

ECE 142: Electronic Circuits Lecture 3: Semiconductors Faculty of Engineering ECE 142: Electronic Circuits Lecture 3: Semiconductors Agenda Intrinsic Semiconductors Extrinsic Semiconductors N-type P-type Carrier Transport Drift Diffusion Semiconductors A semiconductor

More information

Mark Lundstrom 2/10/2013. SOLUTIONS: ECE 606 Homework Week 5 Mark Lundstrom Purdue University (corrected 3/26/13)

Mark Lundstrom 2/10/2013. SOLUTIONS: ECE 606 Homework Week 5 Mark Lundstrom Purdue University (corrected 3/26/13) SOLUIONS: ECE 606 Homework Week 5 Mark Lundstrom Purdue University corrected 6/13) Some of the problems below are taken/adapted from Chapter 4 in Advanced Semiconductor Fundamentals, nd. Ed. By R.F. Pierret.

More information

Chemistry Instrumental Analysis Lecture 8. Chem 4631

Chemistry Instrumental Analysis Lecture 8. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 8 UV to IR Components of Optical Basic components of spectroscopic instruments: stable source of radiant energy transparent container to hold sample device

More information

ME 432 Fundamentals of Modern Photovoltaics. Discussion 15: Semiconductor Carrier Sta?s?cs 3 October 2018

ME 432 Fundamentals of Modern Photovoltaics. Discussion 15: Semiconductor Carrier Sta?s?cs 3 October 2018 ME 432 Fundamentals of Modern Photovoltaics Discussion 15: Semiconductor Carrier Sta?s?cs 3 October 2018 Fundamental concepts underlying PV conversion input solar spectrum light absorp?on carrier excita?on

More information

Semiconductor Device Physics

Semiconductor Device Physics 1 Semiconductor Device Physics Lecture 1 http://zitompul.wordpress.com 2 0 1 3 2 Semiconductor Device Physics Textbook: Semiconductor Device Fundamentals, Robert F. Pierret, International Edition, Addison

More information

Electrons, Holes, and Defect ionization

Electrons, Holes, and Defect ionization Electrons, Holes, and Defect ionization The process of forming intrinsic electron-hole pairs is excitation a cross the band gap ( formation energy ). intrinsic electronic reaction : null e + h When electrons

More information

Semiconductor physics I. The Crystal Structure of Solids

Semiconductor physics I. The Crystal Structure of Solids Lecture 3 Semiconductor physics I The Crystal Structure of Solids 1 Semiconductor materials Types of solids Space lattices Atomic Bonding Imperfection and doping in SOLIDS 2 Semiconductor Semiconductors

More information

Diamond. Covalent Insulators and Semiconductors. Silicon, Germanium, Gray Tin. Chem 462 September 24, 2004

Diamond. Covalent Insulators and Semiconductors. Silicon, Germanium, Gray Tin. Chem 462 September 24, 2004 Covalent Insulators and Chem 462 September 24, 2004 Diamond Pure sp 3 carbon All bonds staggered- ideal d(c-c) - 1.54 Å, like ethane Silicon, Germanium, Gray Tin Diamond structure Si and Ge: semiconductors

More information

MTLE-6120: Advanced Electronic Properties of Materials. Intrinsic and extrinsic semiconductors. Reading: Kasap:

MTLE-6120: Advanced Electronic Properties of Materials. Intrinsic and extrinsic semiconductors. Reading: Kasap: MTLE-6120: Advanced Electronic Properties of Materials 1 Intrinsic and extrinsic semiconductors Reading: Kasap: 5.1-5.6 Band structure and conduction 2 Metals: partially filled band(s) i.e. bands cross

More information

Semiconductor Device Physics

Semiconductor Device Physics 1 Semiconductor Device Physics Lecture 3 http://zitompul.wordpress.com 2 0 1 3 Semiconductor Device Physics 2 Three primary types of carrier action occur inside a semiconductor: Drift: charged particle

More information

CEMTool Tutorial. Semiconductor physics

CEMTool Tutorial. Semiconductor physics EMTool Tutorial Semiconductor physics Overview This tutorial is part of the EMWARE series. Each tutorial in this series will teach you a specific topic of common applications by explaining theoretical

More information

Introduction to Engineering Materials ENGR2000. Dr.Coates

Introduction to Engineering Materials ENGR2000. Dr.Coates Introduction to Engineering Materials ENGR2000 Chapter 18: Electrical Properties Dr.Coates 18.2 Ohm s Law V = IR where R is the resistance of the material, V is the voltage and I is the current. l R A

More information

Section 12: Intro to Devices

Section 12: Intro to Devices Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si

More information

Section 12: Intro to Devices

Section 12: Intro to Devices Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals Bond Model of Electrons and Holes Si Si Si Si Si Si Si Si Si Silicon

More information

Carriers Concentration in Semiconductors - V. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Carriers Concentration in Semiconductors - V. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Carriers Concentration in Semiconductors - V 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 Motion and Recombination of Electrons and

More information

3. Consider a semiconductor. The concentration of electrons, n, in the conduction band is given by

3. Consider a semiconductor. The concentration of electrons, n, in the conduction band is given by Colloqium problems to chapter 13 1. What is meant by an intrinsic semiconductor? n = p All the electrons are originating from thermal excitation from the valence band for an intrinsic semiconductor. Then

More information

Ga and P Atoms to Covalent Solid GaP

Ga and P Atoms to Covalent Solid GaP Ga and P Atoms to Covalent Solid GaP Band Gaps in Binary Group III-V Semiconductors Mixed Semiconductors Affect of replacing some of the As with P in GaAs Band Gap (ev) (nm) GaAs 1.35 919 (IR) GaP 2.24

More information

Chapter 12: Semiconductors

Chapter 12: Semiconductors Chapter 12: Semiconductors Bardeen & Shottky January 30, 2017 Contents 1 Band Structure 4 2 Charge Carrier Density in Intrinsic Semiconductors. 6 3 Doping of Semiconductors 12 4 Carrier Densities in Doped

More information

Semiconductor Detectors

Semiconductor Detectors Semiconductor Detectors Summary of Last Lecture Band structure in Solids: Conduction band Conduction band thermal conductivity: E g > 5 ev Valence band Insulator Charge carrier in conductor: e - Charge

More information

Semiconductors 1. Explain different types of semiconductors in detail with necessary bond diagrams. Intrinsic semiconductors:

Semiconductors 1. Explain different types of semiconductors in detail with necessary bond diagrams. Intrinsic semiconductors: Semiconductors 1. Explain different types of semiconductors in detail with necessary bond diagrams. There are two types of semi conductors. 1. Intrinsic semiconductors 2. Extrinsic semiconductors Intrinsic

More information

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00 1 Name: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND Final Exam Physics 3000 December 11, 2012 Fall 2012 9:00-11:00 INSTRUCTIONS: 1. Answer all seven (7) questions.

More information

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors Lecture 2 Introduction to semiconductors Structures and characteristics in semiconductors Semiconductor p-n junction Metal Oxide Silicon structure Semiconductor contact Literature Glen F. Knoll, Radiation

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Chenming Hu.

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Chenming Hu. UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Spring 2009 Professor Chenming Hu Midterm I Name: Closed book. One sheet of notes is

More information

Chapter 2. Semiconductor Fundamentals

Chapter 2. Semiconductor Fundamentals hapter Semiconductor Fundamentals.0 Introduction There are altogether 9 types of natural occurring elements, of which only few types are important in semiconductor physics and technology. They are the

More information

Chapter 1 Overview of Semiconductor Materials and Physics

Chapter 1 Overview of Semiconductor Materials and Physics Chapter 1 Overview of Semiconductor Materials and Physics Professor Paul K. Chu Conductivity / Resistivity of Insulators, Semiconductors, and Conductors Semiconductor Elements Period II III IV V VI 2 B

More information

Enhancement of Ionization Efficiency of Acceptors by Their Excited States in Heavily Doped p-type GaN and Wide Bandgap Semiconductors

Enhancement of Ionization Efficiency of Acceptors by Their Excited States in Heavily Doped p-type GaN and Wide Bandgap Semiconductors Enhancement of Ionization Efficiency of cceptors by Their Excited States in Heavily Doped p-type GaN and Wide Bandgap Semiconductors Hideharu Matsuura Osaka Electro-Communication University 2004 Joint

More information

ELEMENTARY BAND THEORY

ELEMENTARY BAND THEORY ELEMENTARY BAND THEORY PHYSICIST Solid state band Valence band, VB Conduction band, CB Fermi energy, E F Bloch orbital, delocalized n-doping p-doping Band gap, E g Direct band gap Indirect band gap Phonon

More information

ECE 440 Lecture 20 : PN Junction Electrostatics II Class Outline:

ECE 440 Lecture 20 : PN Junction Electrostatics II Class Outline: ECE 440 Lecture 20 : PN Junction Electrostatics II Class Outline: Depletion Approximation Step Junction Things you should know when you leave Key Questions What is the space charge region? What are the

More information

SEMICONDUCTOR PHYSICS

SEMICONDUCTOR PHYSICS SEMICONDUCTOR PHYSICS by Dibyendu Chowdhury Semiconductors The materials whose electrical conductivity lies between those of conductors and insulators, are known as semiconductors. Silicon Germanium Cadmium

More information

UConn ECE 4211, Semiconductor Devices and Nanostructures Lecture Week 1 January 17, 2017

UConn ECE 4211, Semiconductor Devices and Nanostructures Lecture Week 1 January 17, 2017 UConn ECE 411, Semiconductor Devices and Nanostructures Lecture Week 1 January 17, 017 Device Operation: One of the objectives of this course is to understand operation of carrier transport in semiconductor

More information

CME 300 Properties of Materials. ANSWERS: Homework 9 November 26, As atoms approach each other in the solid state the quantized energy states:

CME 300 Properties of Materials. ANSWERS: Homework 9 November 26, As atoms approach each other in the solid state the quantized energy states: CME 300 Properties of Materials ANSWERS: Homework 9 November 26, 2011 As atoms approach each other in the solid state the quantized energy states: are split. This splitting is associated with the wave

More information

Lecture 2. Unit Cells and Miller Indexes. Reading: (Cont d) Anderson 2 1.8,

Lecture 2. Unit Cells and Miller Indexes. Reading: (Cont d) Anderson 2 1.8, Lecture 2 Unit Cells and Miller Indexes Reading: (Cont d) Anderson 2 1.8, 2.1-2.7 Unit Cell Concept The crystal lattice consists of a periodic array of atoms. Unit Cell Concept A building block that can

More information

Ion Implant Part 1. Saroj Kumar Patra, TFE4180 Semiconductor Manufacturing Technology. Norwegian University of Science and Technology ( NTNU )

Ion Implant Part 1. Saroj Kumar Patra, TFE4180 Semiconductor Manufacturing Technology. Norwegian University of Science and Technology ( NTNU ) 1 Ion Implant Part 1 Chapter 17: Semiconductor Manufacturing Technology by M. Quirk & J. Serda Spring Semester 2014 Saroj Kumar Patra,, Norwegian University of Science and Technology ( NTNU ) 2 Objectives

More information

ECE 340 Lecture 21 : P-N Junction II Class Outline:

ECE 340 Lecture 21 : P-N Junction II Class Outline: ECE 340 Lecture 21 : P-N Junction II Class Outline: Contact Potential Equilibrium Fermi Levels Things you should know when you leave Key Questions What is the contact potential? Where does the transition

More information

Electrical Resistance

Electrical Resistance Electrical Resistance I + V _ W Material with resistivity ρ t L Resistance R V I = L ρ Wt (Unit: ohms) where ρ is the electrical resistivity 1 Adding parts/billion to parts/thousand of dopants to pure

More information

ECE 335: Electronic Engineering Lecture 2: Semiconductors

ECE 335: Electronic Engineering Lecture 2: Semiconductors Faculty of Engineering ECE 335: Electronic Engineering Lecture 2: Semiconductors Agenda Intrinsic Semiconductors Extrinsic Semiconductors N-type P-type Carrier Transport Drift Diffusion Semiconductors

More information

pn JUNCTION THE SHOCKLEY MODEL

pn JUNCTION THE SHOCKLEY MODEL The pn Junction: The Shockley Model ( S. O. Kasap, 1990-001) 1 pn JUNCTION THE SHOCKLEY MODEL Safa Kasap Department of Electrical Engineering University of Saskatchewan Canada Although the hole and its

More information

For the following statements, mark ( ) for true statement and (X) for wrong statement and correct it.

For the following statements, mark ( ) for true statement and (X) for wrong statement and correct it. Benha University Faculty of Engineering Shoubra Electrical Engineering Department First Year communications. Answer all the following questions Illustrate your answers with sketches when necessary. The

More information

Due to the quantum nature of electrons, one energy state can be occupied only by one electron.

Due to the quantum nature of electrons, one energy state can be occupied only by one electron. In crystalline solids, not all values of the electron energy are possible. The allowed intervals of energy are called allowed bands (shown as blue and chess-board blue). The forbidden intervals are called

More information

Electronics The basics of semiconductor physics

Electronics The basics of semiconductor physics Electronics The basics of semiconductor physics Prof. Márta Rencz, Gergely Nagy BME DED September 16, 2013 The basic properties of semiconductors Semiconductors conductance is between that of conductors

More information

Course overview. Me: Dr Luke Wilson. The course: Physics and applications of semiconductors. Office: E17 open door policy

Course overview. Me: Dr Luke Wilson. The course: Physics and applications of semiconductors. Office: E17 open door policy Course overview Me: Dr Luke Wilson Office: E17 open door policy email: luke.wilson@sheffield.ac.uk The course: Physics and applications of semiconductors 10 lectures aim is to allow time for at least one

More information

1. The MOS Transistor. Electrical Conduction in Solids

1. The MOS Transistor. Electrical Conduction in Solids Electrical Conduction in Solids!The band diagram describes the energy levels for electron in solids.!the lower filled band is named Valence Band.!The upper vacant band is named conduction band.!the distance

More information

Introductory Nanotechnology ~ Basic Condensed Matter Physics ~

Introductory Nanotechnology ~ Basic Condensed Matter Physics ~ Introductory Nanotechnology ~ Basic Condensed Matter Physics ~ Atsufumi Hirohata Department of Electronics Quick Review over the Last Lecture Classic model : Dulong-Petit empirical law c V, mol 3R 0 E

More information

CLASS 1 & 2 REVISION ON SEMICONDUCTOR PHYSICS. Reference: Electronic Devices by Floyd

CLASS 1 & 2 REVISION ON SEMICONDUCTOR PHYSICS. Reference: Electronic Devices by Floyd CLASS 1 & 2 REVISION ON SEMICONDUCTOR PHYSICS Reference: Electronic Devices by Floyd 1 ELECTRONIC DEVICES Diodes, transistors and integrated circuits (IC) are typical devices in electronic circuits. All

More information

Section 7: Diffusion. Jaeger Chapter 4. EE143 Ali Javey

Section 7: Diffusion. Jaeger Chapter 4. EE143 Ali Javey Section 7: Diffusion Jaeger Chapter 4 Surface Diffusion: Dopant Sources (a) Gas Source: AsH 3, PH 3, B 2 H 6 (b) Solid Source BN Si BN Si (c) Spin-on-glass SiO 2 +dopant oxide (d) Liquid Source. Fick s

More information

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOSFET N-Type, P-Type. Semiconductor Physics.

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOSFET N-Type, P-Type. Semiconductor Physics. ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 24, 217 MOS Transistor Theory, MOS Model Lecture Outline! Semiconductor Physics " Band gaps " Field Effects! MOS Physics " Cutoff

More information

Fabrication Technology, Part I

Fabrication Technology, Part I EEL5225: Principles of MEMS Transducers (Fall 2004) Fabrication Technology, Part I Agenda: Microfabrication Overview Basic semiconductor devices Materials Key processes Oxidation Thin-film Deposition Reading:

More information

Where µ n mobility of -e in C.B. µ p mobility of holes in V.B. And 2

Where µ n mobility of -e in C.B. µ p mobility of holes in V.B. And 2 3.. Intrinsic semiconductors: Unbroken covalent bonds make a low conductivity crystal, and at 0 o k the crystal behaves as an insulator, since no free electrons and holes are available. At room temperature,

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals ES 345 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 Oice 4101b 1 The ree electron model o metals The ree electron model o metals

More information

KATIHAL FİZİĞİ MNT-510

KATIHAL FİZİĞİ MNT-510 KATIHAL FİZİĞİ MNT-510 YARIİLETKENLER Kaynaklar: Katıhal Fiziği, Prof. Dr. Mustafa Dikici, Seçkin Yayıncılık Katıhal Fiziği, Şakir Aydoğan, Nobel Yayıncılık, Physics for Computer Science Students: With

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 24, 2017 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2017 Khanna Lecture Outline! Semiconductor Physics " Band gaps "

More information

EE130: Integrated Circuit Devices

EE130: Integrated Circuit Devices EE130: Integrated Circuit Devices (online at http://webcast.berkeley.edu) Instructor: Prof. Tsu-Jae King (tking@eecs.berkeley.edu) TA s: Marie Eyoum (meyoum@eecs.berkeley.edu) Alvaro Padilla (apadilla@eecs.berkeley.edu)

More information